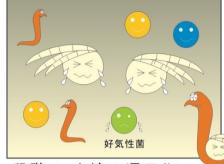

・低濃度エタノールを用いた土壌還元消毒のメカニズムの解明

低濃度エタノールを用いた土壌還元消毒方法

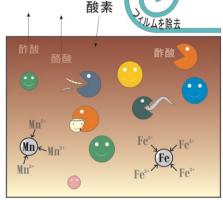
低濃度エタノール そのものには 殺菌作用はない。

段階1. 微生物の活性化 エタノールがエサとなり 微生物が活性化。

酸素



段階3. 有効成分の蓄積 / 酢酸(お酢の成分)や酪酸 (銀杏の臭い成分)、金属 イオンなどの蓄積。


酸素

↓ポリエチレンフィルム

段階2. 土壌の還元化

還元条件(≒無酸素条件) では、病原菌や線虫などの 活動が抑制。

段階4. 好気条件への回復 抑制作用に関連する物質は 処理後にすぐに消失して、 土壌中に残留しない。

どうして土壌還元消毒効果が 得られるのか?

表1 低濃度エタノールによる土壌還元消毒の現地 実証試験、もしくは実用的に取り組まれている作物 と対象の病原性微生物

トムト	きゅうり	ピーマン	シシトウ
レタス	チンゲンサイ	ほうれんそう	こまつな
セルリー	みずな	さやいんげん	いんげん
いちご	メロン	すいか	しょうが
アスパラガス	ごぼう	さつまいも	だいこん
やまのいも			
トルコギキョウ	ストック	ガーベラ	クルクマ
ネコブセンチュウ	萎凋病菌	褐色根腐病菌	白絹病菌
ホモプシス根腐病菌	半身萎凋病菌	萎凋細菌病菌	疫病菌
青枯病菌	黒点根腐病菌		

低濃度エタノールを利用した土壌還元 作用による土壌消毒 実施マニュアル (第1.2版)より

土着の土壌微生物の働きが重要

低濃度エタノール水溶液を処理することによって 土壌微生物の働きが活発化

*トマト萎凋病菌の推移

	処理区	平均	SE
	無処理	5.22	0.06
	水	4.34	
滅菌土	0.50%	4.24	
冰風土	0.75%	4.49	0.04
	1.00%	4.39	0.16
	2.00%	4.62	0.04
生土	2.00%	<1.35	_

単位:log CFU/g dry soil

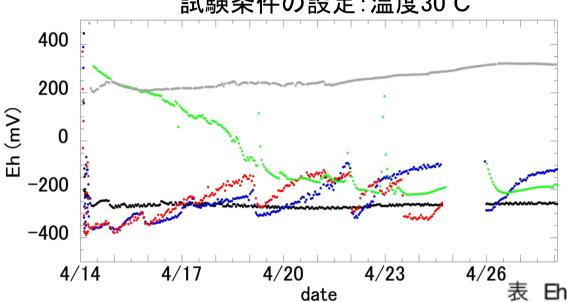
初期菌数:5.0 log cell/g dry soil

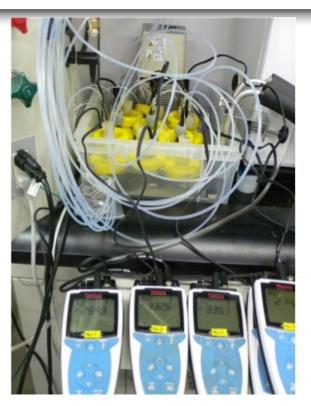
(低濃度エタノールを利用した土壌還元作用による土壌 消毒技術技術資料より)

エタノール水溶液中における病原菌への影響の確認

トマト萎凋病菌を2%(v/v)の エタノール溶液に15日間浸 漬後、寒天培地上に移し、 菌糸生育の有無を確認した。 低濃度エタノールによる土壌 還元消毒に用いるエタノール 濃度では、

エタノールによる直接的な病原菌の殺菌作用はない。 (他にもトマト青枯病菌等でも確認済み)


左:蒸留水、右:2%エタノール処理


還元化のみで消毒効果が得られるか?

水素ガスのバブリングによる還元化

4/26 表 Ehが安定してからの平均値

No.6: 蒸留水+水素バブリング+菌叢ディスク

No.7: 蒸留水+水素バブリング

No.8: POB(栄養培地)+水素バブリング

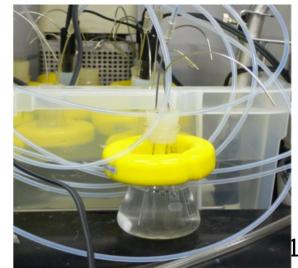
No.14: 蒸留水+菌叢ディスク

No.15: 蒸留水

	平均Eh(RmV)	平均温度(℃)
No.6	- 268	30.1
No.7	- 234	30.2
No.8	- 245	30.1
No.14	- 9.35	30.0
No.15	260	30.2 1

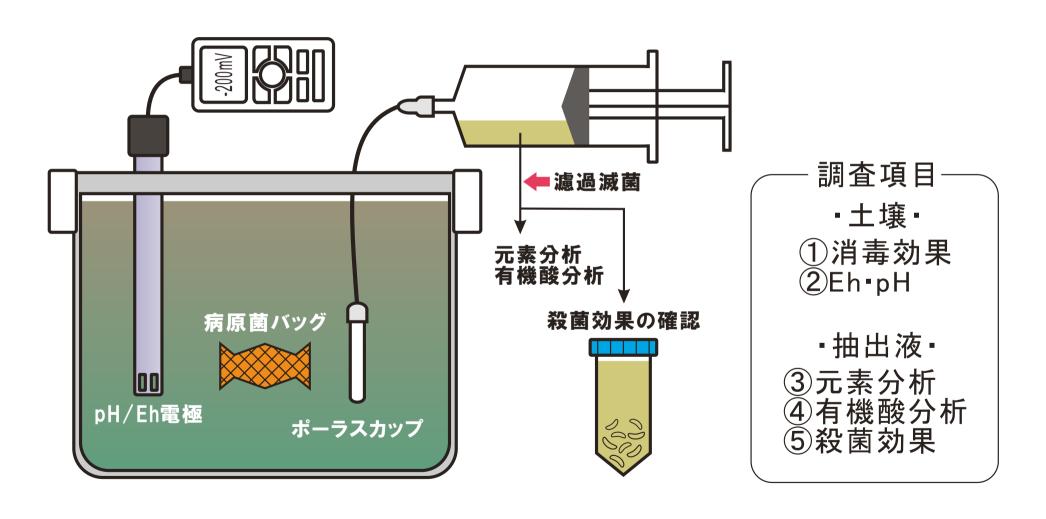
(低濃度エタノールを利用した土壌還元作用による土壌 消毒技術技術資料より)

水素ガスのバブリングによる還元化



トマト萎凋病菌のbud cellの<u>0.1%(1000ppm)の酢酸を含む蒸留水</u>またはPDB培地での生菌数の推移

表3. 還元酢酸水溶液中におけるトマト萎凋病菌の生残性

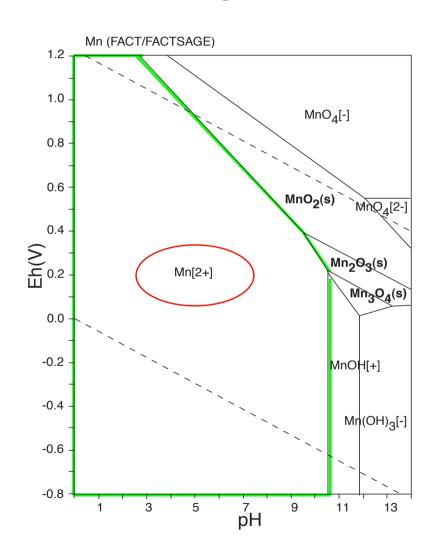

	水素バブリング	生菌数
	有	ND
八	無	ND
	有	3.94(0.05)
PDB	無	3.43(0.03)

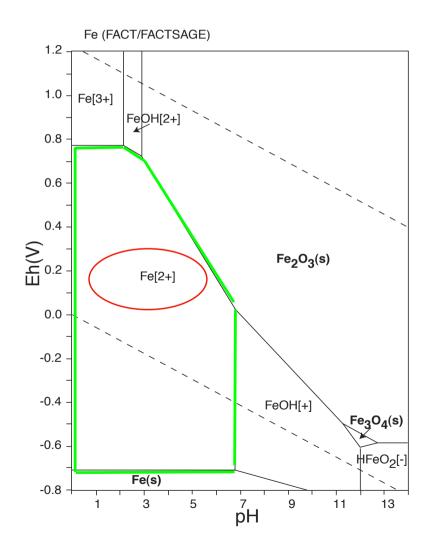
生菌数:Log CFU/ml(±S.E.)

室内実験の概要

遊離金属イオンFe²⁺とMn²⁺の水溶液曝露での 病原性フザリウムの密度低減化効果

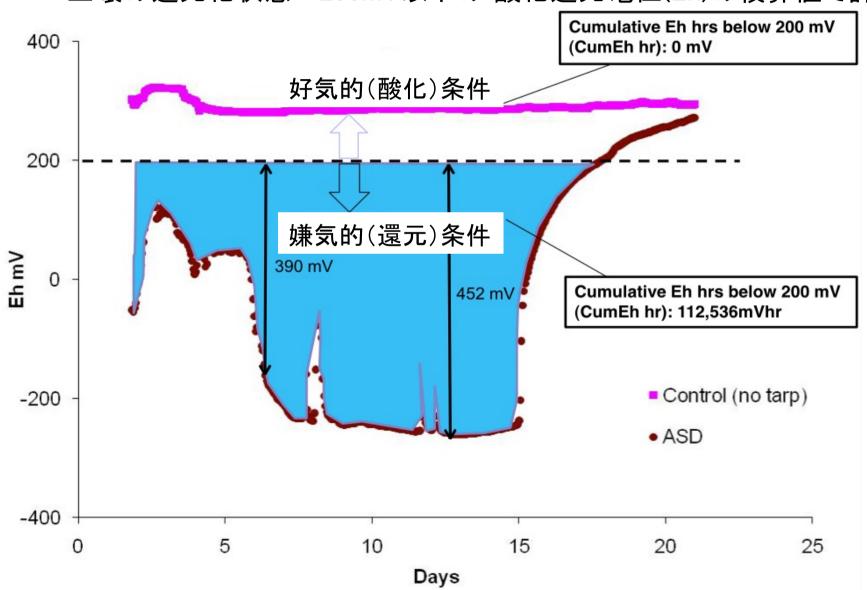
Treatments -		Incubation days		
		1	4	7
Wataer	-	4.8 (0.1) ¹	4.8 (0)	4.8 (0)
Fe ²⁺	1%	2.6 (0)	ND^2	ND
	0.10%	1.9 (0.1)	ND	ND
	0.01%	3.5 (0)	ND	ND
	0.00%	4.2 (0)	2.1 (0.1)	ND
Fe ³⁺	1%	2.6 (0.1)	ND	ND
	0.10%	3.6 (0)	1.6 (0.1)	ND
	0.01%	4.0 (0)	3.8 (0)	3.8 (0)
	0.00%	4.2 (0)	4.3 (0)	4.3 (0)
Mg^{2+}	1%	4.7 (0)	4.7 (0)	4.8 (0)
	0.10%	4.8 (0)	4.9 (0)	4.8 (0)
	0.01%	4.8 (0)	4.8 (0)	4.9 (0)
	0.00%	4.8 (0)	4.8 (0)	4.9 (0)
Mn ²⁺	1%	2.4 (0)	ND	ND
	0.10%	2.5 (0)	ND	ND
	0.01%	2.6 (0)	ND	ND
	0.00%	3.5 (0)	2.6 (0)	1.9 (0.1)


単位: log CFU/ml(±SE)


(J Gen Plant Pathol DOI 10.1007/s10327-010-0252-3)

土壌(水)中でのMnとFeの存在形態

FACTSAGEにより計算したEh-pHの結果(地質調査総合センター研究資料集No.419より引用) Σ Fe=10⁻¹⁰mole/kg、Σ Mn=10⁻¹⁰mole/kg、298.15K、10⁵Pa



米国でのASDの評価事例(Shennanら)

土壌の還元化状態 200mV以下の 酸化還元電位(Eh)の積算値で評価



米国でのASDの評価事例(Shennanら)

Eh 200 mV以下の積算mV・hrsによるバーティシリウムの密度低減化効果 50,000以上必要(25°C)

