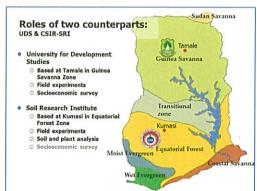
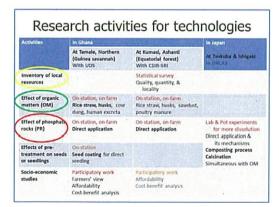

Studies on the soil fertility improvement technologies with use of indigenous resources in rice systems in SSA


A commissioned project of MAFF toward the CARD


Satoshi TOBITA JIRCAS, Japan

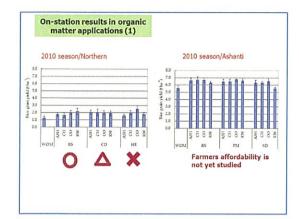
Goals of the project

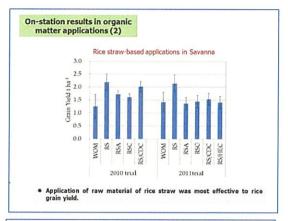
- · Development of technologies for soil fertility management/improvement in rice ecologies,
 - with use of indigenous resources
 - with affordability of local farmers and sustainability

To contribute to

- · The goal of CARD (Coalition of African Rice Development):
 - Double the production of rice in SSA in 10 years

Target site: Ghana/West Africa Which country is most suitable to implement this project? Ghana for several reasons.


- Agro-ecological reason
 - Two major lowland rice ecologies


Rice system	Rain-fed lowland	Irrigated lowland
gro-ecological zone	Guinea savannah	Equatorial forest
opography	Flood plain	Inland valley
Regions in Ghana	Northern region etc.	Ashanti region etc.

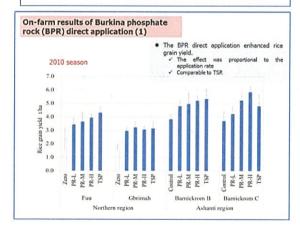
- - MOFA is very positive to expand the rice production.
 - One of the 1st prioritized countries in NRDS of the CARD.

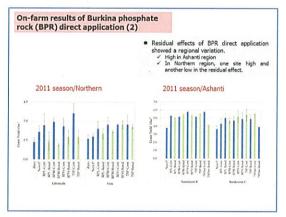
Inventory of local			N	P2O5	K ₂ O
Inventory of local	Plant Rice	Straw	1.8	0.6	5.1
organic resources	Sources	Husk	0.7	0.4	0.3
(summary)	Sum		2.5	1.0	5.5
Northern and Volta Rgn.	Cow	Dung	20.7	31.6	8.9
		Urine	21.1	0.2	23.6
Northern and Upper Rgns		420	500	879	100
\	Pig	Dung	2.7	2.2	2.1
Ashanti and Greater Accra		Urine	0.4	0.1	1.1
Asiano and dieater Accia	7-11-01-1			~ .	
\	Artiful Chicken	Dung	5.8	3.1	2.9
PRODUCTION OF THE PARTY OF THE	Ponces	Urine			
If only 20 percent of these	Sheep	Dung	8.8	3.2	3.2
resources were utilized, it	7 .	Urine	4.6	0.2	6.1
could replace the requirement					
for chemical fertilizer in rice	Goat	Dung	10.8	3.9	3.9
cultivation system for the	_	Urine	5.6	0.2	
THE RESERVOIS AND PROPERTY OF THE PROPERTY OF	Sum		80.5	44.5	59.2
entire Northern region.		Total	53.0	45.5	64.6
			In kil	o tons p	er vea

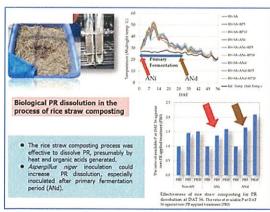
On-station results in organic matter applications (3)

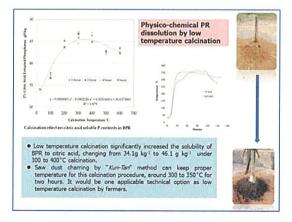
Amended Orga	nic Materials		Application	Rate	
RS	1.71	a	CF+OM	1.48	ab
RS/CDC	1.42	a	OM	1.16	ь
RS/HEC	1.41	13	CF+Doubled	1.67	a
RSA	1.32	a	Doubled OM	1.31	b
RSC	1.29	a			
WOM	1.29	a			
LSD (5%)	0.438		LSD(5%)	0.358	

 Combination of organic matter with small amount of chemical fertilizer enhanced the yield.


Effect of phosphate rocks






Justifications

- Direct application of phosphate rocks (PR) is a cheap agricultural practice, due to minimum processing compared to expensive chemical P fertilizers.
- More than a hundred phosphate deposits in 31 countries in SSA.
- Unfortunately, no commercial activity of PR in Ghana.
- Burkina Faso PR (BPR) has potential in agronomic use inside the country and also neighboring countries.

Fertilizer seed coating

Fertilizer seedling soaking

Current and future activities

- Continuation of field experiments with more emphasis on on-farm to reproduce positive effects of technologies
 - ✓ BPR direct application & its residual effect
 - ✓ Local organic materials (sawdust & rice straw "kuntan")
 - ✓ P-enriched compost & "kuntan"
- Soil chemical properties to explain the rice yield
 - ✓ Locality in PR residual effect
 - √ Organic matter/PR antagonism?
- Farmers' participatory processing of materials
 - √ "Kuntan", composting
- Cost-benefit analysis
- ✓ Data from on-farm practices
 Discussion on the "technology manual" as an outcome
 - ✓ Editorial committee, contributors
 - √ User, language, contents

Acknowledgements

- - Drs. Nagumo, Nakamura, Fukuda
 - Mr. Koide (new)
 - Director Dr. Toriyama as chief consultation
- - Dr. Dzomeku as representative
 - Mr. Awuni & Mr. Avornyo
- CSIR-SRI
 - Dr. Issaka as representative
 - Dr. Moro Buri & Dr. Adjey
 - Dr. Anchirinah (new from CRIG)

Thank you for your attention!

Concept note (first touch visiting to MOFA)

Dissemination of technologies for soil fertility improvement For the final stage of the MAFF-commissioned project

- The project: Studies on soil fertility improvement with use of indigenous resources for rice systems in SSA
 - 1) 2009-2013 (March 2014)
 - 2) MAFF-commissioned CARD-targeted project
 - 3) Contribute to the area of soil fertility management
 - 4) Targeted toward the technology development for lowland rice systems
 - 5) JIRCAS collaborating with Ghanaian institutions (UDS & CSIR-SRI)
 - 6) Experiments/trials in the levels from lab and glasshouse to on station and on-farm fields

2. Proposed technologies

- 1) Organic matters
 - ① Locality: Northern/Upper & Ashanti
 - ② Materials with farmers accessibility, acceptability and affordability
 - ③ Processing technologies for more effectiveness and sustainability: Composting and charring
 - ---> Rice straw in Northern, poultry manure and sawdust in Ashanti
 - ---> To be finalized at the end of this fiscal year
- Phosphate rocks

As a regional resource for non-producing countries, like Ghana As a local resource for producing countries, like Burkina Faso

- ① Direct application to lowland field
- ② Biological and physic-chemical dissolution technologies
 Farmers' affordability examined through participatory studies
- 3 Application of P-enriched manure or char
- --> To be listed at the end of this fiscal year
- 3) Evaluated by the cost/benefit analysis

3. A manual as a project outcome

- 1) Existing manuals
 - ① MOFA's: soil fertility management specified?
 - ② JIRCAS's: to be improved through more inputs from this project
- 2) Manual to be produced in the project (still an idea)
 - ① Users: extension workers
 - ② Beneficiaries: local rice farmers
 - 3 Contents: technologies with descriptions on precise practices with pictures and illustrations, possibly separated in each technology
 - 4 Language: English first, French later (for neighboring countries)
 - ⑤ Distributing media: booklet of small size, movies?
 - © Contributors: JIRCAS, UDS, CSIR-SRI, MOFA including regional offices
 - 7 Editorial committee

4. Some notes

- 1) Consistency with MOFA's policy?
 - <u>Chemical fertilizer</u>: it's actually effective in combination with OM
 - <u>Phosphate rocks from outside</u>: need more propaganda on its effectiveness from research
- 2) Cooperation of MOFA and its regional offices, especially in the stage of technology transfer
- 3) Ghanaian MOFA and Japanese MAFF

4)

Memo of the meeting at MOFA on 08/02/2013

Purpose

To discuss about possible involvement of MOFA in the Soil Fertility Project toward the CARD goal

The Project

- Funded by MAFF (Ministry of Agriculture, Forestry & Fisheries, Japan) from 2009 to 2013,
 FY)
- Commissioned to JIRCAS after competition
- Technology development for soil fertility improvement in lowland rice ecologies in Ghana and neighboring countries
- Technologies shall be:
 - > With use of indigenous resources
 - > With local farmers affordability
- In collaboration with CSIR-SRI (Kumasi) and UDS (Tamale) scientists

Progress of the project

- 1. Surveys on the status of soil fertility in rice fields over Ghanaian Regions
 - ❖ P is the most deficient element followed by N.
 - P deficiency is very common. N status is better in the Forest zone than in the Savannah zone.
- 2. Surveys on the local resources available in two zones.
 - Forest zone: Rice residues, poultry manure, sawdust
 - Savannah zone: Rice residues, cow droppings, human excreta
 - Phosphate rock from Burkina Faso is characterized as a sub-regional resource.
- 3. On-station and on-farm experiments for evaluation of effectiveness of the resources
- 4. Farmers accessibility and acceptability of the resources
- 5. Examination of treatment/processing methods to enhance the effects
- 6. Some technology options are being proposed from the results of 3), 4) and 5).

Technology options to be proposed

Options (high priority	Rice ecology		
is bolded)	Northern and Upper Regions	Ashanti and southern Regions	

	(Savannah zone)	(Equatorial Forest zone)	
Organic matter	Rice straw base	Poultry manure base	
application	❖ Direct application or compost	❖ Quick effect by direct	
	If applicable, small quantity of	application	
	chemical fertilizer shall be	❖ Direct application of rice straw	
	recommended.	and sawdust causes N	
		starvation in this ecology	
Composting	Cow dung/Human excreta +	Poultry manure + sawdust/rice	
	rice straw	straw	
	Some farmers not acceptable	 Utilization of waste resources 	
Charring (Kuntan)	Soil physical/biological improvement, not direct effect on soil fertility		
	improvement		
	Rice husks as material	Sawdust as material	
Phosphate rock	Phosphate rocks will appear in the market of Ghana in near future.		
application	Depends on stakeholders and policy-	makers in Ghana.	
	Applicable in neighboring PR-produci	ng countries	
	Direct application	Direct application	
	 Very effective in all area in the 	 Very effective in all areas in the 	
	first year of application.	first year of application as well	
	Residual effects differed	as residual effects at least 3	
	among fields.	years.	
	(At least) Burkina Faso PR is fine po	wder in texture, so spreading method	
	shall be considered like mixing with r	mud	
Dual application of	Optimization of quantity and timing of application		
organic matter and	 Rice straw shall be incorporated 	into soil just after harvesting, to have	
phosphate rock	better C/N ratio for the next season and to avoid unnecessary but		
	 Phosphate rock shall be applied 	at sowing or transplanting.	
Pretreatment	Early growth of rice is enhanced by pretreatment with a small quantity		
:	water-soluble P fertilizer		
	Coating of fertilizer with rice	Soaking of rice seedlings in	
	seeds	fertilizer solution	
	❖ Direct sowing	Transplanting	
Azolla	N input to rice ecosystems is exper-	cted through N fixation by symbiotic	
	bacteria		
	❖ No Azolla is found in fields.	❖ Azolla is found. Its proliferation	
	•		

	considered.	glasshouse experiment.	
Technologies for the	Useful for environments where the solubility of PR is lower, such as upland		
enhancement of	rice or crops.		
phosphate rock solubility	(1) Incorporate of PR in the process of composting to make		
	P-enriched compost		
	(2) Incorporate of PR in the charring process, expecting		
	calcination in relatively low temperature, to make P-enriche		
	char		
	(3) Utilization of cover crops		
	between rice, expecting of		
	root exudates to dissolve		
	PR		

At this moment, cost/benefit analysis is on-going for each option with data from on-farm trials, to finalize the list of technology options.

How to disseminate the technology options?

- Production and distribution of technology manuals
 - > Beneficiaries: Local rice farmers through MOFA extension workers
 - Contents: Technology options with verified effectiveness on the improvement of soil fertility in lowland rice ecology
 - ♦ <u>Cover all technologies</u> or emphasize only the outcomes of this project?
 - ♦ Include the phosphate rock technologies? --><u>Yes</u>

➤ Images

- ♦ Not a complete textbook, separate in each option with a few pages
- ♦ Usable in the field: size? -->not small, laminated feature
- ♦ User friendly: a lot of photos and illustrations

> Contributors

- ♦ Japanese side: JIRCAS scientists
- ♦ Ghanaian side: Scientists of SRI, UDS, extension workers of MOFA
- ♦ Editorial committee: Representatives of each institutions plus MOFA-HQ

Schedules

- → Feb 2013: Visits to all institutions involved and MOFA, accordance of manual production and their contribution, ideas of the manual
- ♦ May 2013: 1st Executive meeting in Ghana, confirmation of each role,

- estimation of necessary budget, commencement of script, request of illustrations to artists
- ♦ Oct 2013: Completion of draft, 2nd executive meeting, harmonization
- ♦ Nov 2013: Completion of the 2nd draft
- ♦ Dec 2013: Finalize the manuscripts of manual, printing in Ghana
- → Jan 2014: Completion of manual for each option, compilation upon regions or farmers, distribution of compiled manuals
- 2014 season: Demonstration/transfer of technologies by JICA and MOFA
- > Budget: to be estimated and requested to MAFF
- Workshop in Ghana to summarize the achievements of the project
 - Featuring academic findings and new technologies
 - Date and place: In October or around, at Accra (or other idea?), followed by a tour to Kumasi and Tamale for Japanese guests for interacting with key farmers
 - > Participants
 - ♦ Main contributors: Scientists of JIRCAS, SRI and UDS
 - ♦ Guest contributors: Expert of the associated JICA project, Scientists from International Institutes (IWMI and SARI)
 - ♦ MAFF officials, project evaluation team from Japan
 - MOFA officials of HQ (CARD focal points and Extension Office) and Regional Offices
 - Publications: Abstracts (small) and the proceedings (complete book)
 - Budget: to be estimated and requested to MAFF or JIRCAS

Discussion points breakdown

- Inclusion of phosphate rock-associated technologies (depends on Ghana's policy)
- ♦ Ideas on the manual: inputs from users are very important
- Nomination of personnel from HQ and regional offices to be involved in the manual production and distribution
- Personnel cost for MOFA (travel, per diem, etc.)

(by S. Tobita, JIRCAS)