（5）小麦「ニシノカオリ」の不耕起栽培に適した播種期、播種量

♡播種適期・・・11月中旬〜下旬
♡播種量・・・6〜9 kg/10 a（出芽数 100〜150 本/㎡）

○11月上旬に早播する場合
播種量：6 kg/10 a（出芽数 100 本/㎡）

○12月上旬〜中旬に播種が遅れた場合
播種量：9〜12 kg/10 a（出芽数 150〜200 本/㎡）

ア 播種適期

（ア）11月上旬播種は、穂数が確保しやすいですが、年によっては凍霜害の発生により、収量が著しく低下します。また、生育期間が長く充実不足により外観品質が低下します（表6）。

（イ）11月中下旬播種は、収量が安定して多く、凍霜害、倒伏の発生も少ないです（表6）。

（ウ）12月上旬〜中旬播種は、外観品質が安定して優れるものの、最高茎数、穂数が少なく、収量は10〜20％低下する場合が多くあります（表6）。また、収穫期が梅雨入り後になる危険性が高くなります（表7）。このことから、「ニシノカオリ」の不耕起栽培は、耕起栽培と同じ11月中下旬播種が適します。

イ 播種期に応じた適播種量

（ア）11月中下旬播種では、播種量6〜9 kg/10 a（出芽数 100〜150 本/㎡）で、収量350kg/10 a以上が確保できます（図8、9）。

（イ）12月上旬〜中旬播種では、生育中の障害、外観品質の低下もなく、播種量を9〜12 kg/10 a（出芽数 150〜200 本/㎡）に増やすことで、穂数が確保され、収量300kg/10 a程度が期待されます（図8、9）。
施肥は、緩効性肥料（速効性：ユートップ30：ユートップ50＝50：37：13）を播種同時全量基肥で、10a当たり窒素成分量として2007年が11.5～12.8kg、2008年が12.5～13.1kg、2009年が14.0～16.2kgを施用した。2009年は凍霜害の影響で11月上旬播種では遅れ穂が多発した。倒伏程度は0（無）～5（甚）、収量は2.2mmで篩選後、水分換算12.5％で求めた。外観品質は1～6で示し、概ね1～3が検査等級の1等、4～5が2等相当

| 表6 小麦「ニシノカオリ」の不耕起栽培における播種期が生育、収量、品質に及ぼす影響 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 試験年度 | 播種期 | 出芽数 | 最高茎数 | 稜数 | 遅れ穂の割合 | 有効茎数 | 收量 | 同左比率 | 容積重 | ダンパク | 品質 | |
| | (月/旬) | (本/㎡) | (%) | (%) | (%) | (%) | (kg/10a) | (%) | (g/L) | (%) | (1-6) |
| 2007 | 11/上 | 99 | 692 | 446 | - | 0 | 64 | 322 | 113 | 806 | 12.1 | 2.5 |
| | 11/中下 | 68 | 543 | 271 | - | 0 | 50 | 285 | 100 | 805 | 11.8 | 3.5 |
| | 12/上 | 67 | 536 | 268 | - | 0 | 50 | 260 | 91 | 820 | 11.8 | 3.0 |
| | 12/中 | 64 | 459 | 257 | - | 0 | 56 | 237 | 83 | 834 | 12.4 | 3.0 |
| 2008 | 11/上 | 103 | 874 | 482 | - | 1.5 | 55 | 343 | 95 | 817 | 12.9 | 4.0 |
| | 11/中下 | 111 | 795 | 380 | - | 0.5 | 48 | 360 | 100 | 833 | 10.1 | 2.0 |
| | 12/上 | 141 | 778 | 383 | - | 0 | 49 | 439 | 122 | 833 | 9.8 | 2.0 |
| | 12/中 | 138 | 559 | 388 | - | 0 | 69 | 534 | 148 | 825 | 10.2 | 3.0 |
| 2009 | 11/上 | 118 | 1013 | 391 | 28 | 0.7 | 39 | 262 | 73 | 816 | 12.2 | 5.5 |
| | 11/中下 | 109 | 787 | 344 | - | 0 | 44 | 361 | 100 | 821 | 10.2 | 4.0 |
| | 12/上 | 107 | 567 | 274 | - | 0 | 48 | 294 | 81 | 828 | 10.8 | 3.0 |
| | 12/中 | 105 | 472 | 274 | - | 0 | 58 | 279 | 77 | 837 | 11.5 | 2.0 |

施設は緩効性肥料（速効性：ユートップ30：ユートップ50＝50：37：13）を播種同時全量基肥で、10a当たり窒素成分量としてとして2007年が11.5～12.8kg、2008年が12.5～13.1kg、2009年が14.0～16.2kgを施用した。2009年は凍霜害の影響で11月上旬播種では遅れ穂が多発した。倒伏程度は0（無）～5（甚）、収量は2.2mmで篩選後、水分換算12.5％で求めた。外観品質は1～6で示し、概ね1～3が検査等級の1等、4～5が2等相当

表7 小麦「ニシノカオリ」の不耕起栽培における播種期が生育ステージに及ぼす影響（2007～2009）

<table>
<thead>
<tr>
<th>播種期（月/旬）</th>
<th>出穂期（月/日）</th>
<th>成熟期（月/日）</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/上</td>
<td>4/6 ± 2.1</td>
<td>5/29 ± 4.0</td>
</tr>
<tr>
<td>11/中下</td>
<td>4/14 ± 2.1</td>
<td>6/3 ± 2.0</td>
</tr>
<tr>
<td>12/上</td>
<td>4/20 ± 2.6</td>
<td>6/7 ± 2.6</td>
</tr>
<tr>
<td>12/中</td>
<td>4/25 ± 3.6</td>
<td>6/10 ± 1.0</td>
</tr>
</tbody>
</table>

月/日の後の数字は、標準偏差を示す
【導入に当たっての留意点】

ア 不耕起栽培は降雨後に滞水しやすく、出芽不良、湿害が発生しやすいので、額縁明きょ、弾丸暗きょなどを設置し排水対策を確実に行います。

排水対策はp 4 を参照して行います。

イ やむを得ず 11 月上旬に播種する場合には、茎数、穂数が確保しやすいので、播種量 6 kg／10 a 程度とします。

ウ 播種量を増やすことで増収しますが、11 月中下旬播種では倒伏の危険性が高まることから、播種量は 9 kg／10 a を上限とし、12 月上中旬播種では、播種量増による増収効果が小さいので、実用上 12 kg／10 a 程度にとどめます。

エ 播種時の土壌水分が高く碎土が不良になることが予想される場合には、各播種期の上限播種量で播種し出芽数を確保します。
（6）小麦「ニシノカオリ」の不耕起栽培における鉄効性肥料の利用

不耕起栽培における鉄効性肥料の窒素施肥量
◎水稲跡・・・15〜16kg/10a
◎大豆跡・・・12〜15kg/10a

耕起栽培より窒素施肥量が多く必要

ア 水稲跡

窒素施肥量16kg/10a（耕起の標準窒素施肥量12kg/10aとした場合、
33%程度増肥）では、穂数や1穂粒数の増加により収量が増加します。
成熟期の遅れも小さい、倒伏の増大や外観品質の低下はありません（表8、図10）。

<table>
<thead>
<tr>
<th>播種様式</th>
<th>2007年度施肥量</th>
<th>2008年度施肥量</th>
<th>2009年度施肥量</th>
</tr>
</thead>
<tbody>
<tr>
<td>区名 Nkg/10a</td>
<td>区名 Nkg/10a</td>
<td>区名 Nkg/10a</td>
<td></td>
</tr>
<tr>
<td>少肥</td>
<td>8.2(68)</td>
<td>標肥</td>
<td>12.9(100)</td>
</tr>
<tr>
<td>不耕起</td>
<td>標肥</td>
<td>12.0(100)</td>
<td>多肥</td>
</tr>
<tr>
<td>多肥</td>
<td>14.0(117)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>耕起</td>
<td>-</td>
<td>標肥</td>
<td>12.7(100)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>多肥</td>
<td>15.0(118)</td>
</tr>
</tbody>
</table>

注1.「不耕起」はM社製MJSE18-6(6条、条間30cm)による不耕起部分耕、「耕起」は畦立て同時ドリル播き（畦幅1.5m、1畦4条）
2.基肥はいずれも播種同時側条施用、肥料はユートップ12号、以上大豆跡も同様

イ 大豆跡

（イ）窒素施肥量7.5〜7.9kg/10a（耕起の標準窒素施用量を10kg/10aとした場合21〜25%程度減肥）では、耕起、不耕起とも穂数や1穂粒数
が減少して収量が低下します（表9、図11）。
窒素施肥量12.5～15kg/10a（25～49％程度増量した場合）では、不耕起は穂数の増加により収量が増加します。耕起では倒伏が発生しやすく、増収効果が小さいです。成熟期の遅れは小さく、外観品質の低下はないですが、倒伏はやや増加し、耕起で程度が大きくなります（表9、図11）。

【導入に当たっての留意点】
1. 耕起水稻跡不耕起小麦栽培では、湿害が発生しやすいので播種前に排水対策を実施します。排水対策はp4を参照して行います。
2. 試験は農林総合センター内圃場（灰色低地土、砂壌土）で行ったものであり、地域、土壌の地力により加減が必要です。
代かき回数の削減により移植までの期間が短くなるとともに作業の効率化が可能

ア 代かき回数の違いによる欠株率

代かき回数の違いによる水稲移植時の欠株率に差はありません（表10）。

イ 麦栽培方法の違いによる欠株率

前作麦の栽培方法の違い（不耕起播種、耕起畦立て播種）による水稲移植時の欠株率に差はありません（表11）。

ウ 生育への影響

1回代かきでは、前作麦の栽培方法にかかわらず、茎数が慣行と比べてやや少なく推移しましたが、収量および収量構成要素に差はみられません（表12、13）。

<table>
<thead>
<tr>
<th>代かき回数</th>
<th>欠株率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1回</td>
<td>1.2</td>
</tr>
<tr>
<td>2回</td>
<td>1.5</td>
</tr>
</tbody>
</table>

表10 代かき回数が水稲の欠株率に及ぼす影響（2010）

<table>
<thead>
<tr>
<th>代かき回数</th>
<th>前作麦耕起方法</th>
<th>欠株率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1回</td>
<td>不耕起</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>耕起</td>
<td>2.3</td>
</tr>
<tr>
<td>2回</td>
<td>不耕起</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>耕起</td>
<td>2.3</td>
</tr>
</tbody>
</table>

表11 前作麦の耕起方法および代かき回数が水稲の欠株率に及ぼす影響（2011）

表12 前作麦の耕起方法および代かき回数が水稲「ヒノヒカリ」の生育、収量に及ぼす影響（2011）

<table>
<thead>
<tr>
<th>代かき回数</th>
<th>前作麦耕起方法</th>
<th>茎数（本/㎡）</th>
<th>穂数（本/㎡）</th>
<th>収量（kg/10a）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1回</td>
<td>不耕起</td>
<td>+11日 122</td>
<td>+20日 237</td>
<td>+29日 477</td>
</tr>
<tr>
<td></td>
<td>耕起</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2回</td>
<td>不耕起</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>耕起</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
【導入に当たっての留意点】
麦稈は、ひたひた水程度で代かきすることで、植付け時の欠株が少なくなり、移植後の麦稈の浮遊量は少なくなるとされます。また、コンバイン収穫時に麦稈の切断長を長くすることで、さらに低下することが可能です（田中ら、2005）。

引用文献
田中 靖ら（2005）平成17年度佐賀県研究成果情報

<table>
<thead>
<tr>
<th>代かき回数</th>
<th>前作麦耕起方</th>
<th>械長(cm)</th>
<th>穂長(cm)</th>
<th>千粒重(g)</th>
<th>登熟歩合(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1回</td>
<td>不耕起</td>
<td>79</td>
<td>19.9</td>
<td>22.8</td>
<td>69.0</td>
</tr>
<tr>
<td></td>
<td>耕起</td>
<td>79</td>
<td>19.7</td>
<td>22.5</td>
<td>70.0</td>
</tr>
<tr>
<td>2回</td>
<td>不耕起</td>
<td>80</td>
<td>19.4</td>
<td>22.8</td>
<td>69.0</td>
</tr>
<tr>
<td></td>
<td>耕起</td>
<td>79</td>
<td>19.7</td>
<td>22.7</td>
<td>74.5</td>
</tr>
</tbody>
</table>

表13 前作麦の耕起方法および代かき回数が水稲「ヒノヒカリ」の生育、登熟に及ぼす影響（2011）
(8) 大豆「サチユタカ」の不耕起栽培に適した播種期、播種量

◎播種適期・・・6月中旬～7月上旬
◎栽植密度・・・15～20 本/㎡ (播種量 6 ～8 kg/10 a)

○6 月上旬に早播する場合
栽植密度：10～15 本/㎡ (播種量 4 ～6 kg/10 a)
○7 月中旬～下旬に播種が遅れた場合
栽植密度：20 本/㎡程度 (播種量 8 kg/10 a)

ア 播種適期
(ア) 収量は6月上旬～7月中旬播種で安定し、5月下旬および7月下旬播種では稔実数が少なく減収します（表14）。
(イ) 不耕起栽培の外観品質は耕起栽培と同程度で、6月中旬～7月下旬播種で優れます。播種期が早いほど扁平未熟粒や百粒重が大きい年に
は裂皮粒が発生しやすく、外観品質が低下します（表14）。
(ウ) 主茎長は播種期が早いほど長く、倒伏程度は5月下旬、6月上旬播
種で大きいです。7月中旬播種は、年によっては主茎長が 40cm 以下にな
り短茎化します（表14）。

以上、収量、外観品質、倒伏程度、茎長確保の面からみた不耕起栽培
の播種適期は、耕起栽培と同じ6月中旬～7月上旬です。

イ 播種期に応じた適栽植密度
(ア) 6月上旬播種では、栽植密度 10～20 本/㎡の間に収量差はありません。
20 本/㎡では倒伏しやすいので、10～15 本/㎡程度に抑えます。
(イ) 播種適期である6月中旬～7月上旬の収量は、栽植密度 15～20 本/
㎡程度で多く、これ以上に栽植密度を高めても収量は増加しません（図12）。
(ウ) 7月中～下旬播種では、適当な茎長を確保するとともに、茎葉の繁
茂を早め雑草の発生を抑えるため、20 本/㎡程度を確実に確保します
（表14、図12）。
表14 「サチユタカ」の不耕起栽培における播種期が生育、収量、品質に及ぼす影響

<table>
<thead>
<tr>
<th>試験年度</th>
<th>播種期</th>
<th>主茎長</th>
<th>倒伏程度</th>
<th>稔実数</th>
<th>百粒重</th>
<th>収量(kg/a)</th>
<th>同左</th>
<th>外観品質</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(月/旬)</td>
<td>(cm)</td>
<td>(0-5)</td>
<td>(/㎡)</td>
<td>(g)</td>
<td>(kg/a)</td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>5/下</td>
<td>59</td>
<td>2.5</td>
<td>786</td>
<td>34.8</td>
<td>35.7</td>
<td>76</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>6/中</td>
<td>46</td>
<td>0.0</td>
<td>944</td>
<td>36.8</td>
<td>47.0</td>
<td>100</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>7/中</td>
<td>37</td>
<td>0.3</td>
<td>863</td>
<td>35.9</td>
<td>44.4</td>
<td>95</td>
<td>4.0</td>
</tr>
<tr>
<td>2008</td>
<td>6/上</td>
<td>49</td>
<td>0.5</td>
<td>837</td>
<td>32.6</td>
<td>36.6</td>
<td>98</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>7/上</td>
<td>49</td>
<td>1.0</td>
<td>910</td>
<td>32.7</td>
<td>37.5</td>
<td>100</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>7/中</td>
<td>50</td>
<td>0.5</td>
<td>776</td>
<td>34.0</td>
<td>37.9</td>
<td>101</td>
<td>3.0</td>
</tr>
<tr>
<td>2009</td>
<td>6/上</td>
<td>55</td>
<td>2.5</td>
<td>1021</td>
<td>34.9</td>
<td>51.6</td>
<td>105</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>7/上</td>
<td>46</td>
<td>0.5</td>
<td>856</td>
<td>35.2</td>
<td>49.1</td>
<td>100</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>7/下</td>
<td>44</td>
<td>0.2</td>
<td>700</td>
<td>32.6</td>
<td>36.8</td>
<td>75</td>
<td>3.0</td>
</tr>
</tbody>
</table>

栽植様式は条間30cm、株1粒播で、栽植密度は15〜19本/㎡。倒伏程度は0（無）〜5（甚）、外観品質は1（上上）〜7（下）の7段階で示した。2008年の7月中旬播種は、生育前半に畦間灌水を行ったため、主茎長が著しく伸びた。

図14「サチユタカ」の不耕起栽培における播種期、栽植密度が収量に及ぼす影響(2007〜2009)
凡例は試験年次播種期(月/旬)で、播種期は表1のとおり。7月中〜下旬播種の○囲みは、倒伏程度が著しく大きかった区を示す

【導入に当たっての留意点】
除草体系はp 7を参照して行います。
大豆栽培における播種直後の大雨による出芽不良対策

大豆は播種直後に大雨に遭うと出芽が著しく不良になる。

〇播種直後に大雨が予想される場合には播種しない。
〇やむを得ず、播種する場合には調湿種子を利用する。

ア 冠水時の種子水分と大豆の出芽率

大雨により圃場が冠水した場合、大豆の出芽率が著しく不良になる場合があります（写真10）。これは、急激な吸水により大豆種子の組織が壊れてしまうからです。

播種後の大雨を想定し、冠水処理時までの時間（種子水分）を変えてプランターで行った試験結果を表に示します。0時間（種子水分10％）では、播種後12日目の出芽率は40％でしたが、吸水時間が12時間以上では概ね80％以上の出芽率が確保できました。

皆川ら（2008）によると、播種後8時間程度を経過すれば（種子が十分吸水すること）、大雨による出芽率の低下はほとんどないとされています。また、播種時の種子水分をあらかじめ15％程度に高める（調湿種子）ことで、播種直後の大雨による出芽率の低下が軽減できます。

表15 吸水時間の異なる種子に対する冠水処理が大豆の出芽率に及ぼす影響（2005）

<table>
<thead>
<tr>
<th>吸水時間（hr）</th>
<th>冠水処理時種子水分 (%)</th>
<th>播種後日数（日）</th>
<th>出芽率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>38</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>24</td>
<td>43</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>48</td>
<td>47</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>72</td>
<td>50</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>96</td>
<td>51</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>80</td>
</tr>
</tbody>
</table>

不良

良好

試験は、2004年産「サチユタカ」を用い、2005年9月上旬に屋外で実施した。
吸水時間の異なるプランターに播種し、播種直後から約5時間水深1〜2cmの冠水処理を行った。

写真10 播種直後の大雨による出芽不良
イ 調湿種子の作成方法

(7) 水稲育苗箱を用いた方法（牛尾ら）
① 大豆種子 10kg に対して水 100～200 g を、大容量の平型容器に殺菌剤や忌避剤と同時に加え、すばやく均一に攪拌します。目標とする水分含有率は 15％程度なので、加水前の種子水分が高い場合は、加水量を少なめにしておきます。
② 攪拌した種子を、おおよそ 4～4.5L（種子水分 15％で約 3.1～3.5kg）ごとに水稲用育苗箱に均一に広げます。種子の入った育苗箱を冷暗所に積み上げ、防水シートで覆って、水分の蒸発を防ぎながら保存します。
③ 保存期間は、冷暗所であれば 2 週間程度経過しても問題ありません。
④ 大豆種子の風乾重に対して 1～2％の水を加えて、種子水分を 1～2％程度高めるだけで、発芽に最適な種子水分といわれている 15％に至らなくても、十分に発芽能力が高まります。

(4) 浸漬による方法（北野ら）
① 種子を 5kg 程度に小分けして網袋に入れ、数秒水に浸漬して水切りし、ビニール袋に入れて保管することで、簡単に種子水分を高めることができます。
② 播種前日および 2 日前の 1 回浸漬処理で 2～3％程度、前日の 2 回処理で 5～6％程度種子水分が高まります。

引用文献
皆川博ら（2008）日作紀 77(1)78-79
牛尾昭浩ら（2003）平成 15 年度近畿中国四国農業研究成果情報
北野順一ら（2005）平成 17 年度関東東海北陸研究成果情報
作物の生育・収量、土壌の変化、雑草・病害虫の発生動向から、不耕起栽培を核とした3年に1回耕起代かき水稲に転換する3年6作の輪作体系モデルを作成しました（図13）。

○不耕起小麦
大豆跡では、耕起並の収量確保が可能
耕起移植水稲跡では、出芽不良や湿害により収量が低下
耕起移植水稲跡では、特に排水対策が重要

○不耕起大豆
大豆小麦体系で連続栽培すると、生育量は3年目から、収量は4年目から低下

○不耕起小麦
不耕起大豆小麦体系で連続栽培すると、ヤギシロトビムシの食害が増加し出芽率が低下（写真11）
2~3年に1回耕起代かき水稲に転換

作物の生育・収量、土壌の変化、雑草・病害虫の発生動向から、不耕起栽培を核とした3年に1回耕起代かき水稲に転換する3年6作の輪作体系モデルを作成しました（図13）。

図13 不耕起栽培を核とした3年6作の輪作体系モデル
（作物の生育・収量、土壌の変化、雑草・病害虫の発生への影響から作成）

24
ア 不耕起大豆の生育量は連作3年目から、収量は4年目から低下します。耕起代かき水稻を2～3年に1回作付けすることで、連作より生育量、収量は高まります（表16、17）。

イ 不耕起連続に比べて、耕起代かき水稻を2～3年に1回作付けすることで、土壌下層（深さ5～20 cm）の可給態窒素量の低下が抑えられます（表16、図14）。

ウ 雑草の発生量は、大豆を連作することで多くなりますが、耕起代かき水稻を作付けすることで発生量は少なくなります（表16、図15）。大豆の連作（耕起栽培での試験）により、水田雑草のアゼナ、キカシグサ、一年生カヤツリグサ等が減少し、畑雑草のメヒシバ、タカサブロウが増加します（表16）。

エ ア～ウのことから、不耕起大豆を2～3年に1回耕起代かき水稻に転換することで、不耕起大豆の生育、収量および圃場の地力低下、雑草発生量の増加が抑えられます。

オ 不耕起小麦は、不耕起大豆跡では出芽は良好で、耕起栽培並の収量が確保できますが、耕起代かき水稻跡では出芽不良や湿害により収量が低下しやすいので（表16、19、写真12）、圃場の選定、排水対策を確実に行います。

カ 不耕起大豆は梅雨の大雨で圃場が滞水する場合が多く、出芽不良や立枯性（茎疫病）の病害も発生しやすく、生育後半に病気が発生すると粒の肥大が悪くなり収量の低下が著しく大きくなるので（表20）、排水対策は確実に行います。

<table>
<thead>
<tr>
<th>年度</th>
<th>不耕起大豆小麦連作</th>
<th>2年1回水稻輪作</th>
<th>3年1回水稻輪作</th>
<th>3年1回水稻輪作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2006</td>
<td>大豆</td>
<td>大豆</td>
<td>大豆</td>
<td>大豆</td>
</tr>
<tr>
<td>2 2007</td>
<td>大豆</td>
<td>水稻</td>
<td>大豆</td>
<td>大豆</td>
</tr>
<tr>
<td>3 2008</td>
<td>大豆</td>
<td>大豆</td>
<td>水稻</td>
<td>水稻</td>
</tr>
<tr>
<td>4 2009</td>
<td>大豆</td>
<td>水稻</td>
<td>大豆</td>
<td>大豆</td>
</tr>
<tr>
<td>5 2010</td>
<td>大豆</td>
<td>大豆</td>
<td>大豆</td>
<td>大豆</td>
</tr>
</tbody>
</table>

冬作は各年度、各区とも小麦である。供試品種は、大豆「サチユタカ」、水稻「ヒノヒカリ」、小麦「ニシノカオリ」である。栽培法は大豆、小麦とも体系Ⅰ～Ⅳが不耕起、Ⅴが耕起で、水稻は耕起代かき移植、不耕起水稻は不耕起乾田直播である。
表17 作付体系が大豆の着莢期〜粒肥大期の生育、主茎長、収量に及ぼす影響

<table>
<thead>
<tr>
<th>試験年度</th>
<th>作付体系</th>
<th>乾物重(g/㎡)</th>
<th>主茎長(cm)</th>
<th>収量(kg/10a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ⅠⅡⅢⅣ</td>
<td>ⅠⅡⅢⅣ</td>
<td>ⅠⅡⅢⅣ</td>
<td>ⅠⅡⅢⅣ</td>
<td>ⅠⅡⅢⅣ</td>
</tr>
<tr>
<td>2006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2007</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2008</td>
<td>518</td>
<td>683</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2009</td>
<td>618 (65)</td>
<td>956</td>
<td>866</td>
<td>-</td>
</tr>
<tr>
<td>2010</td>
<td>506 (75)</td>
<td>900</td>
<td>671*</td>
<td>538</td>
</tr>
</tbody>
</table>

作付体系は、表1のとおり（以下の図表の同様）。乾物重は着莢期〜粒肥大期の9月上旬、主茎長は成熟期に調査した。
作付体系Ⅰ区の括弧内の数字は、Ⅲ区を100とした比率で示した。2010年は6月と7月に大雨により畑場が冠水し、各区とも登熟後半から立枯性病害（発病株率は体系Ⅰで10％、Ⅱで15％、Ⅲで29％、Ⅳで26％）が発生したため、低収であった。また、2010年は夏期が少雨のため畦間潅水を実施したが、作付体系Ⅲ*では潅水が十分でなかったため、干ばつ害を受け生育量、収量が低下した。

表18 大豆−小麦連作圃場における大豆作の雑草発生本数(1989)

<table>
<thead>
<tr>
<th>連作年数</th>
<th>本数(本/㎡)</th>
<th>その他イネ科</th>
<th>グサ</th>
<th>ヒメミソ</th>
<th>サブロウ</th>
<th>カヤツリグサ</th>
<th>1年生</th>
<th>その他広葉</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>758</td>
<td>138</td>
<td>166</td>
<td>18</td>
<td>452</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>36</td>
<td>0</td>
<td>1</td>
<td>101</td>
<td>176</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>147</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>289</td>
<td>14</td>
</tr>
</tbody>
</table>

栽培法：耕起栽培

写真11 作付け体系が小麦の出芽に及ぼす影響（2009年）
図14 作付体系が深さ別可給態窒素量に及ぼす影響
"作業処理剤は2007年では播種前、2008、2009年では播種後にグリホサートアンモニウム塩を250ml/10a散布した。土壌処理剤は、各年度とも播種後にジメテナミド乳剤を150ml/10a処理した。雑草調査は8月上旬に行った。"

図15 作付体系が大豆作における雑草乾物重に及ぼす影響
雑草処理剤は2006年では播種前、2008、2009年では播種後にグリホサートアンモニウム塩を250ml/10a散布した。土壌処理剤は、各年度とも播種後にジメテナミド乳剤を150ml/10a処理した。雑草調査は8月上旬に行った。"
表20 作付け体系の違いと立枯病の発生が大豆の主茎長と整粒重に及ぼす影響(2010)

<table>
<thead>
<tr>
<th>作付体系</th>
<th>主茎長(cm)</th>
<th>健全株</th>
<th>立枯株</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>47</td>
<td>44</td>
<td>224.8(100)</td>
</tr>
<tr>
<td>III</td>
<td>54</td>
<td>52</td>
<td>300.4(100)</td>
</tr>
</tbody>
</table>

9月上旬頃より立枯病が発生した

【導入に当たっての留意点】
ア 不耕起乾田直播水稲は、生育量を確保するため大麦跡が望ましいです。
イ 不耕起麦を作付けする前には、額縁明きょ、弾丸暗きょなどを設置し排水対策を確実に行います。
ウ 大豆の莢伸長期等の灌水は、水が大豆の株元に行き渡るまでとし、立枯病の発生や湿害を助長しないよう速やかに落水します。不耕起栽培では、F O E A Sや暗きょを利用した地下灌漑の利用が有効です。
2 播種遅れ対策

○小麦「ニシノカオリ」、「ふくさやか」の栽培の現状と問題点

本県では「ニシノカオリ」、「ふくさやか」の播種適期を、11月中下旬としています。しかしながら、法人化等による作付規模の拡大や天候不順の影響で、播種が12月上旬～中旬まで遅れることも多くあります。播種が遅れると生育が低下にともない、収量が低下することが指摘されています。

ここでは、播種が遅れても播種適期並の収量・品質が得られる施肥法について紹介します。

<table>
<thead>
<tr>
<th>11月</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>上旬</td>
<td>中旬</td>
</tr>
<tr>
<td>標準播</td>
<td>晩播</td>
</tr>
</tbody>
</table>

播種適期

作付規模の拡大

天候不順

収量の低下

○大豆「サチユタカ」の栽培の現状と問題点

本県では平坦部における「サチユタカ」の播種適期を、6月中旬から7月上旬としています。この時期は梅雨期にあたり、播種が計画どおりに出来ず、法人等の作付規模が大きい経営体では、しばしば7月中下旬の播種（以下、晩播）となることが多くあります。晚播栽培では生育量不足による収量の低下とともに、茎長が短くなるのに伴いコンバインの収穫ロスが多くなることが懸念されます。

ここでは、播種が遅れてもコンバインの収穫ロスを少なくできる栽培様式を中心に紹介します。

<table>
<thead>
<tr>
<th>6月</th>
<th>7月</th>
</tr>
</thead>
<tbody>
<tr>
<td>上旬</td>
<td>中旬</td>
</tr>
<tr>
<td>播種適期</td>
<td>晩播</td>
</tr>
</tbody>
</table>

梅雨期

計画どおりに播種できない

法人化等による作付規模の拡大

収量の低下

・短茎に伴うコンバインの収穫ロスの増加
図16 12月上旬播種の施肥法
出芽期は1月中下旬

ア 12月上旬播種
11月中下旬播種（標準播）に比べて、穂数が減少し10％程度減収するものの、3月上旬の穂肥窒素量を6kg/10aに増やすことで、穂数および1穂粒数が増え増収します（図18）。その際、穂肥の増量による倒伏の増大、成熟期の遅れ、外観品質の低下もほとんどありません。

イ 12月中下旬播種
分けつ肥を省略し、同量を3月上旬の穂肥時に施用することで穂数が確保でき、標準播並の収量が得られます。その際、穂肥施用量をさらに8kg/10aにまで増量することで、外観品質、子実タンパクが低下することなく、穂数および1穂粒数が増えられる傾向があります（図18、19）。穂肥施用時期を3月上旬から3月中下旬に遅らせることで増収しますが、成熟期は1～2日遅れます（図20、21）。
図18 穂肥施用量が「ニシノカオリ」の穂数、収量に及ぼす影響

グラフの下の数字は、基肥-分げつ肥-穂肥追肥の窒素施用量(kg/10a)を示す。

図19 極晩播における分げつ肥の省略が「ニシノカオリ」の穂数、収量に及ぼす影響(2006年)

播種期は標準播が11月22日、極晩播が12月20日。グラフの下の数字は、基肥-分けつ肥-穂肥追肥の窒素施用量(kg/10a)を示す。

図20 播種期、穂肥窒素量、施用時期が「ニシノカオリ」の収量に及ぼす影響(2006〜2008年)

穂肥の施用が3月20日頃まで遅れると、遅れ穂が発生し成熟期が遅延

図21 播種期が「ニシノカオリ」の成熟期に及ぼす影響(2006〜2008)
【導入に当たっての留意点】
ア 成熟期は標準播の6月2～3日に比べて、晩播では3～4日、極晩播では7～8日程度遅くなり、極晩播では収穫期が梅雨入り後になる危険性が高まります（図21）。
イ 穂肥を確実に施用することが重要ですが、12月中下旬播種では3月20日頃まで穂肥の施用が遅れると、遅れ穂が多発して成熟期が遅れ、外観品質も低下する恐れがあるので、降雨等の影響で施用時期が遅れる場合でもできるだけ早く施用します。
（2）大豆品種「サチユタカ」における播種遅れによる最下着莢高の低下に対応した栽植様式（耕起栽培）

7月中下旬播種が対象
◎栽植密度は7月上旬播種と同じで、栽植様式を密条播（1畦4条）で無中耕無培土（図22）とする。
◎土入れ・・・・溝の土を畦の上に飛ばすことで、倒伏軽減が可能（写真13）
コンバインの刈り位置が低く、走行も安定することから、晩播で多くなるコンバインの刈り残しの増加を防止できる。

図22 栽植様式
注）慣行が1畦2条、条間75cm、中耕培土栽培、密条播が1畦4条、畦上条間25cm、無中耕無培土栽培

中耕培土栽培
慣 行

無中耕培土栽培
密条播

中耕・培土(慣行)

土入れ

写真13 密条播の倒伏軽減対策
ア 晩播の収量は、播種適期の6月中旬、7月上旬と比べて、稔実数が減少するため、低下します。収量の低下は、栽植密度を高めることで、稔実数が増加し抑えられるものの、15〜20本/㎡程度確保すれば、それ以上高めても収量は増加しません（図23）。

イ 最下着高は、播種期が遅いほど低く、コンバインの刈り残しが懸念される下位の収量割合（以下、下位収量割合）が多くなります。しかし、条間を狭めた密条播にすることで、中耕培土を行う慣行栽培（以下、慣行）に比べて地際部からの最下着高が高くなり、下位収量割合が低下します（図24）。また、密条播ではコンバインの走行が安定し、刈り高さも低くできます（データ省略）。

ウ 倒伏は、慣行に比べて、密条播で多くなりますが、溝・畦肩部分の土を子葉節にかかる程度まで土入れすることで軽減されます（図25）。時期は茎葉が茂ると土が茎葉を押し倒す恐れがあるので、茎葉の繁茂が少ない5〜7葉期頃までが適期です。

エ 穂先熟は、倒伏と同様に密条播で密植ほど発生が多いです（図25）。

オ 雑草の発生量は、密条播ではダイズ群落による地表面の被覆が早いことから、溝・畦肩部では慣行並に少ないです。溝・畦肩部分では雑草の発生量が多いですが、栽植密度が高ければ雑草の発生が抑制されます（図26）。
【導入に当たっての留意点】

ア 畦・肩部分の土壌水分が高く土入れする土塊が大きくならったり、土入れ量が多い場合には、ダイズを押し倒してしまう恐れがあるので、土入れ作業前に必ず土壌水分を確認するとともに、カルチの深さを調整します。

写真14 土入れ作業の土が多い場合