TO: - Codex Contact Points
 - Interested International Organizations

FROM: Secretary, Joint FAO/WHO Food Standards Programme, FAO,
Viale delle Terme di Caracalla, 00100 Rome, Italy

SUBJECT: DISTRIBUTION OF THE REPORT OF THE THIRTY-FOURTH SESSION OF THE
CODEX COMMITTEE ON FOOD ADDITIVES AND CONTAMINANTS
(ALINORM 03/12)

The report of the thirty-fourth Session of the Codex Committee on Food Additives and Contaminants
will be considered by the 50th Session of the Executive Committee of the Codex Alimentarius Commission
(Rome, 26-28 June 2002) and the 25th Session of the Codex Alimentarius Commission (Rome, 30 June – 5
July 2003).

PART A: MATTERS FOR ADOPTION BY THE 25TH SESSION OF THE CODEX
ALIMENTARIUS COMMISSION

Proposed Draft and Draft Standards and Related Texts at Steps 5/8 or 8 of the Uniform Procedure,
Respectively

1. Proposed Draft (Step 5/8) and Draft (Step 8) Revisions to the Codex General Standard for
Food Additives (para. 61 and Appendix II).

2. Proposed Draft Revised Recommended International Code of Practice for Radiation
Processing of Food at Step 5/8 (para. 88 and Appendix V).

3. Specifications for the Identity and Purity of Food Additives Arising from the 57th JECFA
Meeting at Step 5/8 (para. 95 and Appendix VI).

4. Proposed Draft Amendments to the International Numbering System for Food Additives at
Step 5/8 (para. 97 and Appendix VII).

5. Draft Maximum Level for Ochratoxin A in Raw Wheat, Barley, and Rye and Derived Products
at Step 8 (para. 114 and Appendix IX).

6. Draft Maximum Level for Patulin in Apple Juice and Apple Juice Ingredients in Other
Beverages at Step 8 (para. 118 and Appendix X).
Governments wishing to propose amendments or to comment on the above texts should do so in writing in conformity with the Uniform Procedure for the Elaboration of Codex Standards and Related Texts (at Step 5/8 or 8) (Codex Alimentarius Procedural Manual, Twelfth Edition, pages 19-21) to the Secretary, Codex Alimentarius Commission, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy (telefax: +39.06.5705.4593; e-mail: codex@fao.org) no later than 31 March 2003.

Draft Standards and Related Texts at Step 5 of the Accelerated Procedure

1. Draft Amendment to the INS Number for Sodium Potassium Tripolyphosphate at Step 5 (Accelerated) (para. 97 and Appendix VII).

Governments wishing to propose amendments or to comment regarding the implications which the above text or any provisions thereof may have for their economic interests should do so in writing in conformity with the Uniform Accelerated Procedure for the Elaboration of Codex Standards and Related Texts (at Step 5) (Codex Alimentarius Procedural Manual, Twelfth Edition, pages 21-22) to the Secretary, Codex Alimentarius Commission, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy (telefax: +39.06.5705.4593; e-mail: codex@fao.org) no later than 31 March 2003.

PART B: MATTERS FOR ADOPTION BY THE 50TH SESSION OF THE EXECUTIVE COMMITTEE OF THE CODEX ALIMENTARIUS COMMISSION

Proposed Draft Standards and Related Texts at Step 5 of the Uniform Procedure

1. Proposed Draft Amendments to the INS Numbers for Mineral Oil at Step 5 (para. 97 and Appendix VII).

3. Proposed Draft Code of Practice for the Prevention (Reduction) of Mycotoxin Contamination in Cereals, including Annexes on Ochratoxin A, Zearalenone, Fumonisin and Tricothecenes (para. 125 and Appendix XII).

Governments wishing to propose amendments or to comment regarding the implications which the above texts or any provisions thereof may have for their economic interests should do so in writing in conformity with the Uniform Procedure for the Elaboration of Codex Standards and Related Texts (at Step 5) (Codex Alimentarius Procedural Manual, Twelfth Edition, pages 19-21) to the Secretary, Codex Alimentarius Commission, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy (telefax: +39.06.5705.4593; e-mail: codex@fao.org) no later than 31 May 2002.

PART C: REQUEST FOR COMMENTS AND INFORMATION

Governments and international organizations wishing to submit comments on the following subject matter are invited to do so no later than 1 September 2002 as follows: Netherlands Codex Contact Point, Ministry of Agriculture, Nature Management and Fisheries, P.O. Box 20401, 2500 E.K., The Hague, The Netherlands (Telefax: +31.70.378.6141; E-mail: info@codexalimentarius.nl, with a copy to the Secretary, Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy (Telefax: +39.06.5705.4593; E-mail: Codex@fao.org).

1. Information on Food Additives Considered by the 57th JECFA Meeting in the Context of the Codex General Standard for Food Additives (para. 20).

The Committee agreed with several recommendations and requests for information on additives considered by the 57th JECFA in the context of the Codex General Standard for Food Additives.

The Committee agreed to circulate the above proposed Policy Statement for comments at Step 3 and further consideration at its next meeting.

3. Proposed Draft (Step 3) and Draft (Step 6) Revisions to the Codex General Standard for Food Additives (para. 60 and Appendix III)

The Committee agreed to hold all GMP provisions for additives with numerical ADIs at Steps 3 and 6 so that specific numeric levels of use could be provided. The Committee also agreed to hold food additive provisions with specific numeric levels at Steps 3 and 6 and to request additional information, including technological need and justification, for their use.

4. Draft Revised Annex to Table 3 of the Codex General Standard for Food Additives (para. 64 and Appendix IV).

The Committee agreed to revisions to the Annex to Table 3 as proposed by the Working Group and decided to request additional comments at Step 6 for further consideration at its next meeting.

The Committee decided to request comments on the Discussion Paper on Processing Aids and Carriers (CX/FAC 02/9) for further consideration at the 35th CCFAC.

6. Discussion Paper on the Use of Active Chlorine (para. 73).

The Committee agreed that the Discussion Paper should be revised under the leadership of Denmark in light of the Committee’s discussion and comments to be submitted in response to this Circular Letter for circulation, comment and further consideration at its next meeting.

The Committee agreed that the Principles would be circulated for comments at Step 3.

8. Maximum Level for Patulin in Apple Juice and Apple Juice Ingredients in Other Beverages (para. 119).

The Committee agreed to request more data on the level of patulin in apple juice and apple juice ingredients in other beverages and to reconsider the possible reduction of the maximum level of 50 µg/kg to 25 µg/kg once the Code of Practice had been implemented.

The Committee agreed that information on aflatoxin contamination in tree nuts as well as methods of analysis for the determination of aflatoxins in tree nuts would be requested by circular letter to this report.
10. Draft Maximum Level for Lead in Fish (para. 133 and Appendices XIII and XX).

The Committee decided that the proposed level of 0.2 mg/kg, as well as certain species for which the level might not apply, should be returned to Step 6 for additional comments on specific issues.

11. Maximum Levels for Lead in Milk and Milk Fat (para. 137).

The Committee decided that comments should be requested on the maximum levels of lead in milk (0.02 mg/kg) and milk fat (0.1 mg/kg) for further consideration at its next meeting.

The Committee returned proposed draft maximum levels for fruit; wheat grain; milled rice; soybean and peanuts; meat of cattle, poultry, pig and sheep; meat of horse; vegetables; peeled potatoes, stem and root vegetables; leafy vegetables, fresh herbs, fungi and celeriac; and, molluscs to Step 3 for circulation, comment and further consideration at its next meeting.

The Committee returned the maximum levels for tin (200 mg/kg in liquid canned foods and 250 mg/kg in solid canned foods) to Step 3 for circulation, comments and further consideration at its next meeting.

The Committee agreed to request information on actual dioxin and dioxin-like PCB levels and information on inexpensive, quick and validated analytical (screening, confirmation) methods.

The Committee agreed to request comments on the proposed draft Code of Practice for Source Directed Measures to Reduce Dioxin and Dioxin Like PCB Contaminantion of Foods (CX/FAC 02/27).

16. Information and Data on the Occurrence of Deoxynivalenol in Cereals (para. 163).

The Committee agreed to request additional information and data on the occurrence of deoxynivalenol in cereals, as well as the results of any studies on the effects of processing.

The Committee agreed to request additional comments for additions or amendments to its Priority List for consideration at its next Session.
SUMMARY AND CONCLUSIONS

The thirty-fourth Session of the Codex Committee on Food Additives and Contaminants reached the following conclusions:

Matters for Adoption/Consideration by the 25th Session of the Codex Alimentarius Commission:
- Agreed to forward food additive provisions to the Commission for final adoption at Step 5/8 or 8 as amendments to the Codex General Standard for Food Additives (para. 61);
- Forwarded the proposed draft Revised Recommended International Code of Practice for Radiation Processing of Food to the Commission for adoption at Step 5/8 (with the omission of Steps 6 and 7) (para. 88);
- The Committee forwarded Specifications in categories I and II to the Commission for adoption at Step 5/8 as Codex Advisory Specifications (para. 95);
- The Committee forwarded INS 452(iv) for Sodium potassium tripolyphosphate as an emulsifier, stabilizer, acidity regulator, raising agent, sequesterant and water retention agent to the Commission for final adoption at Step 5 of the accelerated procedure and for INS numbers 163(iv), 163(v), 165, 407, 445, 650, 949 and 961 for final adoption at Step 5/8 (para. 97);
- Forwarded the draft maximum level of 5 \(\mu g/kg \) for ochratoxin A in raw wheat, barley, and rye and derived products to the Commission for final adoption at Step 8 (para. 114);
- Forwarded the draft maximum level of 50 \(\mu g/kg \) for patulin in apple juice and apple juice ingredients in other beverages to the Commission for final adoption at Step 8 (para. 118), and;
- Recommended the deletion of the maximum level of 50 \(\mu g/kg \) for lead in butter (para. 135).

Matters for Adoption/Consideration by the 50th Session of the Executive Committee of the Codex Alimentarius Commission:
- Forwarded various amendments to the INS numbers for Mineral Oil to the Executive Committee for preliminary adoption at Step 5 (para. 97);
- Agreed to forward the proposed draft Code of Practice for the Reduction of Patulin Contamination in Apple Juice and Apple Juice Ingredients in Other Beverages to the Executive Committee for preliminary adoption at Step 5 (para. 122);
- Agreed to forward the proposed draft Code of Practice for the Prevention (Reduction) of Mycotoxin Contamination in Cereals, including Annexes on Ochratoxin A, Zearalenone, Fumonisin and Tricothecenes to the Executive Committee for preliminary adoption at Step 5 (para. 125);
- Agreed that a drafting group under the direction of China would elaborate a proposed draft Code of Practice for the Reduction of Aflatoxin Contamination in Tree Nuts for circulation, comment and consideration at its next meeting, and with the understanding that the proposal was subject to approval as new work by the Executive Committee (para. 128);
- Decided that a drafting group under the direction of the United States would elaborate a proposed draft Code of Practice for the Prevention and Reduction of Lead in Food, subject to confirmation by the Executive Committee (para. 138), and;
- Discontinued the elaboration of maximum levels for cadmium in liver and kidney (para. 142).

Matters of Interest to the Codex Alimentarius Commission and Other Codex Committees:
- Decided to request information on several additives considered by the 57th JECFA in the context of the Codex General Standard for Food Additives (GSFA) (para. 20);
- Agreed that future versions of the document on Action Required as a Result of Changes in ADI Status and Other Toxicological Recommendations should be considered by the Ad Hoc Working Group on the Codex General Standard on Food Additives when considering amendments to the General Standard (para. 21);
• Agreed to circulate the Proposed Risk Assessment Policy Statement for the Application of Risk Analysis Principles to the Standard Setting Activities of the Codex Committee on Food Additives and Contaminants (CCFAC) in Conjunction with Risk Assessments Performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) for comments at Step 3 and further consideration at its next meeting (para. 30);

• Attached the revised and endorsed food additive provisions for the draft Standard for Chocolate and Chocolate Products to its report (para. 35);

• Agreed that the additives listed in Appendix I of the Report of the Working Group on the Codex General Standard for Food Additives should be given priority for discussion at its 35th Session (para. 38);

• Agreed that a revised Table 1 of the GSFA with all food additive provisions (final provisions as well as provisions in the step process), including electronic versions of Tables 1, 2 and the source data for the priority additives, should be circulated for the Committee well in advance of the 35th CCFAC (paras. 39-40);

• Decided to reconvene the Ad Hoc Working Group on the General Standard for Food Additives prior to its next Session under the Chairmanship of the United States (para. 41);

• Reaffirmed and agreed on general principles and approaches concerning the Relationship Between Codex Commodity Standards and the Codex General Standard for Food Additives, including proposed revisions to the Procedural Manual of the Codex Alimentarius Commission (paras. 42 – 49);

• Decided to install a drafting group under the direction of France/USA to elaborate a proposed draft revision to the Preamble to the Codex General Standard for Food Additives (para. 51);

• Reaffirmed several points to promote the consistent interpretation of the Food Category System of the GSFA, and agreed that a drafting group under the direction of the USA would elaborate a revised version of the FCS for circulation, comment and additional consideration at its next meeting (paras. 52-54);

• Revised the Food Category System of the GSFA in relation to Pastas and Noodles (para. 55);

• The Committee agreed to hold all GMP provisions for additives with numerical ADIs at Steps 3 and 6 so that specific numeric levels of use could be provided. The Committee also agreed to hold food additive provisions with specific numeric levels at Steps 3 and 6 and to request additional information, including technological need and justification, for their use (para. 60);

• Agreed to revisions to the Annex to Table 3 of the GSFA and decided to request additional comments at Step 6 for further consideration at its next meeting (para. 64);

• Decided to request comments on the Discussion Paper on Processing Aids and Carriers (CX/FAC 02/9) for further consideration at the 35th CCFAC (para. 68);

• Agreed that the Discussion Paper on the Use of Active Chlorine should be revised by Denmark in light of the Committee’s discussions and comments to be submitted in response to a Circular Letter to this report for circulation, comment and further consideration at its next meeting (para. 73);

• Decided to suspend further discussion of the Draft Revised Codex General Standard for Irradiated Foods and requested a drafting group led by the Philippines to revise the current Standard on the basis of written comments submitted and the Committee’s discussions for circulation, additional comment and further consideration at its next meeting (para. 81);

• Decided to reconvene the Ad Hoc Working Group on Specifications prior to its next Session under the Chairmanship of the United States (para. 92);

• Agreed that the Codex Secretariat would prepare a Discussion Paper on the Harmonization of Terms Used by Codex and JECFA for Functional Sub-Classes and Technological Functions for consideration at the next CCFAC (para. 97);

• Decided to reconvene the Ad Hoc Working Group on Contaminants and Toxins prior to its next Session under the Chairmanship of Denmark (para. 102);

• Agreed that the Netherlands would provide an updated Schedule 1 of the Codex General Standard for Contaminants and Toxins in Foods every year and that the Codex Secretariat would investigate the feasibility of providing the Schedule in electronic form (paras. 104 – 105);
Agreed that the proposed draft Principles for Exposure Assessment of Contaminants and Toxins in Food would be circulated for comments at Step 3, revised by a drafting group under the direction of Australia/France, circulated for additional comment and further consideration at its next meeting and with the understanding that the entire document (CX/FAC 02/17) would also be sent to JECFA for comments (paras. 109 – 110);

Agreed to request more data on the level of patulin in apple juice and apple juice ingredients in other beverages by Circular Letter to this report (paras. 119);

Agreed that a drafting group led by Iran would prepare a Discussion Paper on Aflatoxins in Tree Nuts for circulation, comment and further consideration at its next Session and that information on aflatoxins in tree nuts as well as information on methods of analysis would be requested by circular letter to this report (para. 127);

Decided that the proposed level of 0.2 mg/kg, as well as certain species for which the level might not apply, should be returned to Step 6 for additional comments on specific issues. The Committee also agreed that a discussion paper would not be prepared (paras. 133-134);

Decided that comments should be requested on the maximum levels of lead in milk (0.02 mg/kg) and milk fat (0.1 mg/kg) for further consideration at its next meeting (para. 137);

Returned the proposed draft maximum levels for cadmium in various commodities to Step 3 for circulation, comment and further consideration at its next meeting (para. 143);

Returned the proposed draft maximum levels for tin to Step 3 for circulation, comments and further consideration at its next meeting (para. 146);

Agreed that the delegation of Australia would revise the Discussion Paper on Tin for circulation, comments and further consideration at its next meeting (para. 147);

Agreed that a drafting group led by the Netherlands would revise the Position Paper on Dioxins and Dioxin Like PCBs, including Methods of Analysis for Dioxins and Dioxin Like PCBs, for circulation, comment and further consideration at its next meeting (para. 153);

Agreed to request information on actual dioxin and dioxin-like PCB levels and on inexpensive, quick and validated analytical methods (para. 153);

Agreed to request comments on the proposed draft Code of Practice for Source Directed Measures to Reduce Dioxin and Dioxin Like PCB Contamination of Foods (CX/FAC 02/27) and on the basis of the comments submitted, the proposed draft Code would be revised by the drafting group led by Germany for circulation, additional comments and further consideration at its next Session (para. 156);

Agreed that a drafting group led by the United Kingdom would revise the Position Paper on Chloropropanols for circulation, comment and further consideration at its next Session (para. 160);

Agreed that a drafting group led by Belgium would revise the Discussion Paper on Deoxynivalenol for circulation, comment and further consideration at its next meeting. The Committee also agreed to request additional information and data on the occurrence of deoxynivalenol in cereals, as well as the results of any studies on the effects of processing (para. 163);

Agreed on the Priority List of Food Additives, Contaminants and Naturally Occurring Toxicants Proposed for Evaluation by JECFA and agreed to request additional comments for additions or amendments to the list for consideration at its next Session (paras. 168-169);

Forwarded methods of analysis for the determination of food additives and contaminants in foods to the CCMAS for endorsement (para. 172);

Agreed to request clarification from the Codex Committee on General Principles as to point (d) of the CCFAC terms of reference as to whether or not it allowed the consideration of analytical methods for both food additives and contaminants (paras. 174-175);

Agreed that a drafting group led by South Africa would prepare a Discussion Paper on the Development of a Code of Practice for the Reduction of Aflatoxin Contamination in Peanuts for circulation, comment and further consideration at its next meeting (para. 176);
• Agreed that Sudan would send comments on the potential inclusion of sorghum in the proposed draft Code of Practice for the Prevention (Reduction) of Mycotoxin Contamination in Cereals, including Annexes on Ochratoxin A, Zearalenone, Fumonisins and Tricothecenes for consideration at the next CCFAC (para. 177), and;

• Agreed that South Africa might raise the issue of toxic seed contamination in grains at the next CCFAC after reviewing the adequacy of existing Codex texts in this regard (para. 178).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Paragraphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Opening of the Session</td>
<td>2</td>
</tr>
<tr>
<td>Adoption of the Agenda</td>
<td>3</td>
</tr>
<tr>
<td>Appointment of Rapporteur</td>
<td>4</td>
</tr>
<tr>
<td>Matters Referred from the Codex Alimentarius Commission and</td>
<td>5 – 9</td>
</tr>
<tr>
<td>Other Codex Committees</td>
<td></td>
</tr>
<tr>
<td>Summary Report of the Fifty-Seventh Meeting of the</td>
<td>10 - 18</td>
</tr>
<tr>
<td>Joint FAO/WHO Expert Committee on Food Additives</td>
<td></td>
</tr>
<tr>
<td>Action Required as a Result of Changes in ADI Status and</td>
<td>19 – 22</td>
</tr>
<tr>
<td>Other Toxicological Recommendations</td>
<td></td>
</tr>
<tr>
<td>Discussion Paper on the Application of Risk Analysis Principles for</td>
<td></td>
</tr>
<tr>
<td>Food Additives and Contaminants</td>
<td>23 – 32</td>
</tr>
<tr>
<td>Endorsement and/or Revision of Maximum Levels for</td>
<td></td>
</tr>
<tr>
<td>Food Additives in Codex Standards</td>
<td>33 – 35</td>
</tr>
<tr>
<td>Report of the Ad Hoc Working Group on the Codex</td>
<td></td>
</tr>
<tr>
<td>General Standard for Food Additives</td>
<td>36 – 41</td>
</tr>
<tr>
<td>Discussion Paper on The Relationship Between Codex Commodity Standards and the</td>
<td></td>
</tr>
<tr>
<td>Codex General Standard for Food Additives, Including the Food Category System</td>
<td>42 – 55</td>
</tr>
<tr>
<td>Comments on Table 1 of the Draft Codex General Standard for Food Additives</td>
<td>56 – 61</td>
</tr>
<tr>
<td>Comments on the Draft Revised Annex to Table 3 of the Codex</td>
<td></td>
</tr>
<tr>
<td>General Standard for Food Additives</td>
<td>62 – 64</td>
</tr>
<tr>
<td>Discussion Paper on Processing Aids and Carriers</td>
<td>65 – 68</td>
</tr>
<tr>
<td>Discussion Paper on the Use of Active Chlorine</td>
<td>69 – 73</td>
</tr>
<tr>
<td>Draft Revised Codex General Standard for Irradiated Foods</td>
<td>74 – 81</td>
</tr>
<tr>
<td>Proposed Draft Revised Recommended International Code of</td>
<td></td>
</tr>
<tr>
<td>Practice for Radiation Processing of Food</td>
<td>82 – 88</td>
</tr>
<tr>
<td>Specifications for the Identity and Purity of Food Additives Arising</td>
<td></td>
</tr>
<tr>
<td>from the 57th Meeting of JECFA</td>
<td>93 – 95</td>
</tr>
<tr>
<td>Proposed Amendments to the International Numbering System</td>
<td>96 - 99</td>
</tr>
<tr>
<td>Endorsement and/or Revision of Maximum Levels for</td>
<td></td>
</tr>
<tr>
<td>Contaminants in Codex Standards</td>
<td>100</td>
</tr>
<tr>
<td>Schedule 1 of the Proposed Draft Codex General Standard for</td>
<td></td>
</tr>
<tr>
<td>Contaminants and Toxins in Foods</td>
<td>103 – 105</td>
</tr>
<tr>
<td>Proposed Draft Principles for Exposure Assessment of Contaminants and</td>
<td></td>
</tr>
<tr>
<td>Toxins in Foods</td>
<td>106 – 110</td>
</tr>
<tr>
<td>Comments on the Draft Maximum Level for Ochratoxin A in Wheat,</td>
<td></td>
</tr>
<tr>
<td>Barley and Rye and Derived Products</td>
<td>111 – 114</td>
</tr>
<tr>
<td>Comments on the Draft Maximum Level for Patulin in Apple Juice and</td>
<td></td>
</tr>
<tr>
<td>Apple Juice Ingredients in Other Beverages</td>
<td>115 – 119</td>
</tr>
<tr>
<td>Proposed Draft Code of Practice for the Prevention of Patulin Contamination</td>
<td></td>
</tr>
<tr>
<td>In Apple Juice and Apple Juice Ingredients in Other Beverages</td>
<td>120 – 122</td>
</tr>
<tr>
<td>Proposed Draft Code of Practice for the Prevention of Mycotoxin Contamination in Cereals, Including Annexes on Ochratoxin A, Zearealenone, Fumonisins and Tricothecenes</td>
<td>123 – 125</td>
</tr>
<tr>
<td>Discussion Paper on Aflatoxins in Pistachios</td>
<td>126 – 128</td>
</tr>
<tr>
<td>Comments on the Draft Maximum Levels for Lead in Fish, Crustaceans and</td>
<td></td>
</tr>
<tr>
<td>Bivalve Molluscs</td>
<td>129 – 138</td>
</tr>
<tr>
<td>Comments on the Draft Maximum Levels for Cadmium</td>
<td>139 – 143</td>
</tr>
<tr>
<td>Proposed Draft Maximum Levels for Tin</td>
<td>144 – 147</td>
</tr>
<tr>
<td>Position Paper on Dioxins and Dioxin Like PCBs, Including Methods of Analysis for Dioxins and Dioxin Like PCBs</td>
<td>148 – 153</td>
</tr>
</tbody>
</table>
xii

Position Paper on Chloropropanols ... 157 – 160
Discussion Paper on Deoxynivalenol ... 161 – 163
Comments on the Priority List of Food Additives, Contaminants and Naturally Occurring Toxins Proposed for Evaluation by JECFA ... 164 – 169
Other Business and Future Work ... 170 – 178
Date and Place of Next Session ... 179
Ave Atque Vale ... 180

LIST OF APPENDICES

Appendix I:	List of Participants .. 33 - 63
Appendix II:	Proposed Draft (Step 5/8) and Draft (Step 5) Amendments to Table 1 of the Codex General Standard for Food Additives ... 64 - 67
Appendix III:	Proposed Draft (Step 3) and Draft (Step 6) Amendments to Table 1 of the Codex General Standard for Food Additives ... 68 - 71
Appendix IV:	Proposed Draft Amendments to Food Categories or Individual Food Items Excluded from the General Conditions of Table 3 (Annex to Table 3) ... 72
Appendix V:	Proposed Draft Recommended International Code of Practice For Radiation Processing of Food ... 73 - 79
Appendix VI:	Specifications for the Identity and Purity of Food Additives Arising from the 57th Meeting of the Joint FAO/WHO Expert Committee on Food Additives ... 80 - 84
Appendix VII:	Proposed Draft (Step 5) and Draft (Step 5/8, Step 5 – Accelerated) to the International Numbering System for Food Additives ... 85
Appendix VIII:	Proposed Draft Principles for Exposure Assessment of Contaminants and Toxins in Foods ... 86 - 89
Appendix IX:	Draft Maximum Level for Ochratoxin A in Raw Wheat, Barley and Rye and Derived Products ... 90
Appendix X:	Draft Maximum Level for Patulin ... 91
Appendix XI:	Proposed Draft Code of Practice for the Reduction of Patulin Contamination in Apple Juice and Apple Juice Ingredients in Other Beverages ... 92 - 99
Appendix XII:	Proposed Draft Code of Practice for the Prevention (Reduction) of Mycotoxin Contamination in Cereals, Including Annexes on Ochratoxin A, Zearalenone, Fumonisins and Tricothecenes ... 100 - 108
Appendix XIII:	Draft Maximum Levels for Lead ... 109
Appendix XIV:	Proposed Draft Maximum Levels for Cadmium ... 110
Appendix XV:	Proposed Draft Maximum Levels for Tin ... 111
Appendix XVI:	Priority List of Food Additives, Contaminants and Naturally Occurring Toxins Proposed for Evaluation by JECFA ... 112
Appendix XVII:	Methods of Analysis for the Determination of Food Additives and Contaminants in Foods ... 113 - 114
Appendix XVIII:	Action Required as a Result of Changes in Acceptable Daily Intake (ADI) and Other Toxicological Recommendations ... 115 - 116
Appendix XIX:	Endorsement and/or Revision of Maximum Levels for Food Additives in the Draft Standard for Chocolate and Chocolate Products ... 117 - 120
Appendix XX:	Request for Data Submission for the Establishment of a Maximum Level for Lead in Fish ... 121 - 122
INTRODUCTION

1. The 34th session of the Codex Committee on Food Additives and Contaminants was held in Rotterdam, The Netherlands, from 11-15 March 2002, at the kind invitation of the Government of The Netherlands. Mr. Edwin Hecker, Netherlands Ministry of Agriculture, Nature Management and Fisheries, chaired the meeting. The meeting was attended by 308 participants representing 48 Member Countries and 48 International Organizations. The List of Participants is attached at Appendix I.

OPENING OF THE SESSION

2. The session was opened by Mr. Laurens Jan Brinkhorst, Netherlands Minister of Agriculture, Nature Management and Fisheries. Mr. Brinkhorst informed the Committee of recent developments in the area of food safety and their consequences on government structures in the Netherlands and Europe. He also noted the importance of developing food safety requirements on a global scale as well as the role of international organizations in capacity building efforts towards this end.

ADOPTION OF THE AGENDA (Agenda Item 1)

3. The Committee adopted the Provisional Agenda as proposed. The Committee agreed to discuss the maximum level for lead in butter and milk fat under Agenda Item 16(a). The Committee agreed to hold the informal ad hoc Working Groups on the International Numbering System (INS) (Agenda Item 12) and on JECFA Priorities (Agenda Item 17) under the chairmanship of Finland and the Netherlands, respectively.

APPOINTMENT OF RAPPORTEUR (Agenda Item 2)

4. The Committee agreed with the suggestion of the Chairman to appoint Dr. Bruce Lauer (Canada) as Rapporteur for the Session.

MATTERS REFERRED FROM THE CODEX ALIMENTARIUS COMMISSION AND OTHER CODEX COMMITTEES (Agenda Item 3)

5. The Committee noted matters arising from the 24th Session (July 2001) of the Codex Alimentarius Commission and the most recent 49th Session (September 2001) of the Executive Committee of the Codex Alimentarius Commission. These matters included a Report on the Financial Situation of the Joint FAO/WHO Food Standards Programme; the Consideration of the draft Strategic Framework, Proposed Draft Medium Term Plan 2003-2007 and the Chairperson’s Action Plan; the Risk Analysis Policies of the Codex Alimentarius Commission; Consideration of Amendments to the Procedural Manual of the Codex Alimentarius Commission; the Consideration of Proposed Draft and Draft Standards; and, the Consideration of Proposals for New Work.

OFFICE INTERNATIONAL DU VIN ET DE LA VIGNE (OIV)

6. In follow-up to Commission discussions on a Report by the Secretariat on Relations Between the Codex Alimentarius Commission and Other International Intergovernmental Organizations3 the Representative of the OIV, referring to the Agreement between FAO and the OIV of 1948, explained that it had been impossible to obtain a copy of the aforesaid Agreement although it had been published in the official OIV Bulletin 221 of July 1949. He reminded the Committee that the Codex Alimentarius Commission, at its 10th Session, had already decided not to undertake the elaboration of Codex standards for wine4. Similarly, the 31st Session of the CCFAC had noted the necessity for the Codex General Standard for Food Additives (GSFA) to be consistent with the OIV standards for wine5. The Representative of the OIV stressed that Codex and the OIV should continue to strengthen the links that already existed between

1 CX/FAC 02/1
2 CX/FAC 02/2
3 ALINORM 01/41, paras. 29-30
4 ALINORM 74/44 para. 363
5 ALINORM 99/12A para. 51
both organizations in order to effectively coordinate work while awaiting the completion of the Guidelines for Cooperation with other International Intergovernmental Organizations that the 24th Session of the Commission had entrusted to the Codex Committee on General Principles (CCGP).

7. The Codex Secretariat referred to Article I of the Statutes of the Codex Alimentarius Procedural Manual, which provided that one of the purposes of the Codex Alimentarius Commission was “promoting coordination of all food standards work undertaken by international governmental and non-governmental organizations”. The Codex Secretariat also noted that the Codex Alimentarius Commission Strategic Framework 2003-2007 included the Promotion of Linkages Between Codex and Other Multilateral Regulatory Instruments and Conventions (Objective 3) so that the Commission worked closely with other relevant international standard setting and regulatory bodies to promote close cooperation and dialogue on matters of common interest so as to minimize duplication of efforts.

PROPOSED DRAFT STANDARD FOR INFANT FORMULA

8. The Committee noted the concern expressed at the 23rd Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses (CCNFSDU) on the large number of additives and levels of use proposed for infant formula and foods for infants and children in the draft sections of the General Standard for Food Additives (GSFA), and asked the CCFAC to defer finalization of those GSFA additive levels until the CCNFSDU had carried out a thorough review of the additives listed in both the proposed draft Standards for Infant Formula and for Processed Cereal-Based Foods for Infants and Young Children. Switzerland and the representative of the European Community supported the request of the CCNFSDU. The delegation of Switzerland also clarified that there were inconsistencies between both the GSFA and the two aforesaid Standards, particularly in regard to the use of certain colours, sweeteners and thickeners and in this regard, the CCNFSDU had established a Working Group to examine the food additive provisions in these Standards.

9. The Committee noted that the Procedural Manual specified that in any case, “all provisions in respect of food additives contained in Codex commodity standards should be referred to the CCFAC, preferably after the standards had been advanced to Step 5” and that the aforementioned Standards were at Step 3 of the Codex Step procedure. It was also noted that comments from Codex member countries and international organizations were requested during both the endorsement and/or elaboration of levels within the GSFA and furthermore, the Food Category System (FCS) was being thoroughly revised by the Working Group on the GSFA in order to avoid inconsistencies between the GSFA and individual Codex standards.

SUMMARY REPORT OF THE FIFTY-SEVENTH MEETING OF THE JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITIVES (JECFA) (Agenda item 4a)

10. The Expert Committee evaluated toxicologically approximately 20 food additives and 200 flavouring agents. Two chloropropanols and a large number of polychlorinated dibenzodioxins, polychlorinated dibenzofurans, and dioxin-like coplanar polychlorinated biphenyls were also evaluated.

11. The evaluations of some of the flavouring agents were not finalized because it was not clear whether they were in current use as flavouring agents or whether they had some other function in the formulation, such as use as a solvent, emulsifier, or preservative. The Committee stressed that the Procedure for the Safety Evaluation of Flavouring Agents should be used only for substances that impart flavour to food and not to non-flavour uses or to other chemicals that may be used in flavouring formulations.

6 ALINORM 01/41 para. 31
8 ALINORM 01/41, Appendix II
9 ALINORM 03/26, paras. 63-69
11 Summary and Conclusions of the 57th Meeting of the Joint FAO/WHO Expert Committee on Food Additives (Unnumbered)
12. A total of 342 specifications were prepared, 317 of them for flavouring agents and 25 for food additives other than flavouring agents; two specifications were withdrawn. In addition fifty food additives (anticaking agents, flavouring agents, sweetening agents, thickening agents) were revised for heavy metal contents and new levels for those were proposed.

13. The Committee could not assess 13 food additives that had been referred to it from CCFAC because their use could not be verified.

14. The Committee discussed and modified considerably the General Specifications and Considerations for Enzyme Preparations, taking note of the necessity to issue in the future more comprehensive guidelines for the evaluation of enzymes used in food processing. The Committee once again recommended the revision of the *Guide to Specifications* (FAO FNP 5). In response to this recommendation, the Joint Secretariat had prepared a plan for the revision and is seeking sponsors, preferably Codex delegations, to provide funds to enable the revision of this document. The new edition of the *Guide to Specifications* will be revised in close co-ordination with the re-publication of FNP 52 (addendum 10 shall be the last of the current series).

15. The Committee established a provisional maximum tolerable daily intake (PMTDI) of 2 µg/kg bw for 3-chloro-1,2-propanediol. Based on the limited information available, the estimated mean intake of this contaminant by consumers of soya sauce would be at or above the PMTDI. The Committee noted that a regulatory limit on the concentration of 3-chloro-1,2-propanediol in soya sauce could markedly reduce intake by soya sauce consumers.

16. The limited information available on 1,3-dichloro-2-propanol indicated that it is genotoxic in vitro, hepatotoxic, and induces a variety of tumours in various organs in rats. The Committee concluded that the estimation of a tolerable intake was inappropriate because of the nature of the toxicity. However, it was noted that the dose that caused tumours in rats was about 20000 times the highest estimated intake of 1,3-dichloro-2-propanol by consumers of soya sauce. The evidence suggests that this contaminant is associated with high concentrations of 3-chloro-1,2-propanediol in food. Regulatory control of the latter would obviate the need for specific controls on the dichloro contaminant.

17. The Committee performed a comprehensive review of PCDDs, PCDFs, and dioxin-like coplanar PCBs, relying upon the literature reviewed by the WHO Consultation that evaluated these substances in 1998 and information that had become available since that time. The Committee established a tolerable intake, which it expressed on a monthly basis to emphasize the long half-times of these contaminants in the body. The provisional tolerable monthly intake (PTMI) that the Committee established was 70 pg of toxic equivalents (TEQ), which is in the range of the tolerable daily intake of 1-4 pg/kg bw that was established by the 1998 WHO Consultation. Median and 90th percentile intakes may approach or exceed this value. The Committee identified a number of uncertainties in the assessment and some of the difficulties associated with regulatory limits.

18. A number of general items were considered. Among these is reference to a project to update principles for the risk assessment of chemicals in food, which FAO and WHO have initiated. A planning meeting was held in November of last year and a plan of work is being developed. This is a comprehensive project that will review the principles and procedures used by JECFA and the Joint FAO/WHO Meeting on Pesticide Residues (IMPR), facilitate the incorporation of new scientific tools, and harmonize risk assessment procedures for different classes of chemicals with other scientific assessment bodies. Comments will be solicited on various papers throughout the project; it is extremely important that feedback be received from the risk managers in Codex. The project plan and call for experts are on both the FAO and WHO web sites12.

ACTION REQUIRED AS A RESULT OF CHANGES IN ADI STATUS AND OTHER TOXICOLOGICAL RECOMMENDATIONS (Agenda Item 4b)13

19. The Committee noted action required by the CCFAC as a result of changes to existing acceptable daily intakes (ADIs) and/or the establishment of new ADIs for food additives, or other toxicological recommendations for contaminants, as recommended by the 57th JECFA meeting.

20. The Committee agreed with the following recommendations and requests for information on those additives considered by the 57th JECFA in the context of the GSFA:

- In view of the numerical ADI assigned to hydrogenated poly-1-decene (907), information on the use of the additive should be requested for inclusion in Table 1.
- Calcium dihydrogen diphosphate (INS 450vii), monomagnesium phosphate (343i), Sodium calcium polyphosphate (452iii) and Trisodium diphosphate (450ii) should be included in the heading for phosphates in the GSFA upon receipt of information on use levels and food categories where these additives were used.
- The following additives have been assigned an ADI of “not specified” and therefore:
 - Acetylated oxidized starch (1451) should be included in Table 3 and information on the use of the additive in the food categories listed in the Annex to Table 3 should be requested;
 - alpha-cyclodextrin (458), curdlan (424), sodium sulfate (514), erythritol (968), polyglycitol syrup (964) and Sodium carboxy methyl cellulose, enzymatically hydrolyzed (469) are included in Table 3 and information on the use of these additives in the food categories listed in the Annex to Table 3 should be requested.
- For additives Invertase from \textit{Saccharomyces cerevisiae}, \textit{β}-carotene from \textit{Blakeslea trispora} and D-tagatose information should be requested on their use for inclusion in Table 1.
- As the ADI for tartaric, acetic and fatty acid esters of glycerol, mixed (472f), was withdrawn due to its specifications being combined with diacetyltartaric and fatty acid esters of glycerol (472e), the listing for this additive (472f) in Table 3 should be deleted. Information should be requested on the use of diacetyltartaric and fatty acid esters of glycerol with respect to its listing in Tables 1 and 2.

21. On the recommendation of the Codex Secretariat, the Committee noted that future versions of the document on Action Required as a Result of Changes in ADI Status Other Toxicological Recommendations should be considered by the \textit{ad hoc} Working Group on the Codex General Standard for Food Additives when considering amendments to the General Standard on Food Additives. It was noted that information in the document would include previous and current ADIs (or equivalent), Substance Name, INS Number and Secretariat Notes indicating the potential impact of the changes.

22. The table summarizing “Action Required as a Result of Changes in Acceptable Daily Intake (ADI) Status and Other Toxicological Recommendations Arising from the 57th JECFA Meeting” is attached to this report at Appendix XVIII.

DISCUSSION PAPER ON THE APPLICATION OF RISK ANALYSIS PRINCIPLES FOR FOOD ADDITIVES AND CONTAMINANTS (Agenda Item 5)14

23. The 33rd CCFAC agreed15 that the Discussion Paper on the Application of Risk Analysis Principles for Food Additives and Contaminants should be revised by a drafting group led by the United States on the basis of written comments submitted and the Committee’s discussions for circulation, comment and further consideration at its current meeting.

24. The Committee was reminded that the Commission recommended16 that relevant Codex Committees should continue to develop and document the application of risk analysis in their work and that the risk

13 CX/FAC 02/3
14 CX/FAC 02/4 and comments submitted by Denmark (CX/FAC 02/4-Add. 1) and the EC (CRD 4)
15 ALINORM 01/12A, para. 29
16 ALINORM 01/41, para. 85
analysis policies developed by the Committees would be presented in a single document to the next Session of the Commission.

25. The delegation of the United States informed the Committee that the document was intended to strengthen the standard-setting activities of the CCFAC by clarifying the respective roles of the Committee and JECFA in risk analysis and to improve risk communication between both bodies. It was noted that these goals could be achieved through the further development of the proposed risk assessment policy statement.

26. The delegation of Spain, speaking on behalf of the European Community, reiterated remarks made at the 33rd Session of the CCFAC, including that the work of the commodity committees should be reflected in the Policy Statement and that it should be determined under what conditions input on the technological need for additives proposed by commodity committees was taken into account. It was also noted that the prioritization of additives by JECFA for evaluation might need further discussion.

27. It was also stated by the delegation of Morocco that CCFAC efforts to obtain scientific information necessary for JECFA to perform its risk assessment should be flexible while at the same time recognizing that the request for data and the information requested should be as precise as possible. It was also stressed that risk communication from JECFA to the CCFAC should be improved and in this regard, the Committee noted that the Commission was in the process of examining increased coordination in these areas.

28. The delegation of the United States noted that the intent of the Policy Statement was to improve communication between the CCFAC and JECFA and in this regard, the strict independence and scientific integrity of JECFA, including FAO and WHO procedures for the selection of experts, should be respected. In this regard, it was stated that the extent to which non-scientific factors were taken into account by JECFA needed to be clarified.

29. The WHO and FAO Secretaries to JECFA clarified that an earlier draft of the document was examined by JECFA, as reported in Section 2.2 of the report of the 53rd JECFA meeting. It was noted that the prioritization of compounds for JECFA review was a responsibility of the CCFAC while at the same time recognizing that JECFA was also accountable to other priority concerns raised outside the Codex system. In any case, it was stressed that the commitment to provide data was the responsibility of the CCFAC and in this regard, the importance of providing clear and concise priorities and questions to the JECFA was stressed.

Status of the Discussion Paper on the Application of Risk Analysis Principles for Food Additives and Contaminants

30. The Committee agreed to circulate the Proposed Risk Assessment Policy Statement for the Application of Risk Analysis Principles to the Standard Setting Activities of the Codex Committee on Food Additives and Contaminants (CCFAC) in Conjunction with Risk Assessments Performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) for comments at Step 3 and further consideration at its next meeting (see Appendix XXI), with the understanding that the Executive Committee and the Codex Committee on General Principles would be informed.

31. It was noted that although the Policy Statement was developed at the request of the Commission for internal Codex guidance, the Committee would consider its inclusion in the Codex General Standards for Food Additives and for Contaminants and Toxins in Foods at its next meeting.

32. The Committee also agreed that document CX/FAC 02/4 would be revised by the United States on the basis of the above discussions and written comments submitted for forwarding to the 59th Meeting of JECFA for review and comment.
33. The Committee considered food additive provisions of the draft Standard for Chocolate and Chocolate Products18, which was forwarded by the 19th Session of Committee on Cocoa Products and Chocolate (CCCPC) to the 25th Session of the Commission for adoption at Step 8.

34. The Committee endorsed the food additive provisions as proposed. However, the Committee did not endorse the proposed level of 100 mg/kg for Neohesperidine dihydrochalcone (959) as the additive had not been evaluated by JECFA. The Committee also did not endorse the GMP level for Carnauba wax (903) in view of its numerical ADI. The Committee grouped the use level for Tertiary butylhydroquinone (319), Butylated hydroxyanisole (320), Butylated hydroxytoluene (INS 321) and Propylgallate (310) as “200 mg/kg, singly or in combination”. The delegation of the United States objected to the inclusion of cyclamates in the standard due to unresolved questions as to its safety.

35. The Committee attached the revised and endorsed food additive provisions for the draft Standard for Chocolate and Chocolate Products to its report as Appendix XIX.

CONSIDERATION OF THE CODEX GENERAL STANDARD FOR FOOD ADDITIVES
(Agenda Item 7)

REPORT OF THE AD HOC WORKING GROUP ON THE CODEX GENERAL STANDARD FOR FOOD ADDITIVES (Agenda Item 7a)19

36. The 33rd Session of the CCFAC decided20 to reconvene the ad hoc Working Group on the Codex General Standard for Food Additives prior to the 34th Session under the chairmanship of the United States. The ad hoc Working Group was chaired by Dr. D. Keefe (USA) and Mr. N. Kildemark (DK) acted as rapporteur.

37. The Chairman of the Working Group briefly summarised its discussions and proposed several general recommendations to the Committee as follows:

PRIORITY ADDITIVES FOR THE 35TH CCFAC AD HOC WORKING GROUP ON THE GSFA

38. The Committee agreed that the additives listed in Appendix 1 of the Working Group report should be given priority for discussion at its 35th session and that the source data and the recommendations of the Quality Control Working Group for these additives should be circulated well in advance of the 35th CCFAC.

TABLES TO THE GSFA

39. The Committee agreed that a revised Table 1 of the GSFA with all food additive provisions, including final provisions as well as those that are in the step process, should be circulated for the information of the Committee well in advance of the 35th CCFAC.

40. In addition, the Committee recommended that electronic versions of the revised Tables 1, 2 and the source data for priority additives for the 35th CCFAC should be made available. In this regard, the Codex Secretariat indicated that work was underway to make the final version of the GSFA accessible through the Internet and CD-ROM in its entirety.

17 CX/FAC 02/5
18 ALINORM 03/14, Appendix II
19 CRD 1
20 ALINORM 01/12A, para. 55.
Future Status of the Ad Hoc Working Group on the Codex General Standard for Food Additives

41. The Committee decided to reconvene the ad hoc Working Group on the Codex General Standard for Food Additives prior to its next Session under the chairmanship of the United States and expressed its appreciation to the Working Group and its Chairman, Dr. D. Keefe, for their diligent work.

DISCUSSION PAPER ON THE RELATIONSHIP BETWEEN CODEX COMMODITY STANDARDS AND THE CODEX GENERAL STANDARD FOR FOOD ADDITIVES, INCLUDING CONSIDERATION OF THE FOOD CATEGORY SYSTEM (Agenda Item 7b)21

42. The 33rd CCFAC accepted the offer of the United States, assisted by a drafting group, to prepare a discussion paper on the relationship between Codex commodity standards and the Codex General Standard for Food Additives, including consideration of the Food Category System, for circulation, comment and consideration at its 34th Session. The Committee also agreed that the document should contain a full analysis of the differences between pastas and noodles22. The Chairman of the Working Group gave a brief introduction to the discussion paper.

COMMISSION’S MEDIUM TERM PLAN 1998 - 2002

43. The Committee reaffirmed support for the General Approaches and Issues contained in the Commission’s Medium Term Plan for 1998 to 2002, as follows:

a. that continued priority should be given to the Commission’s horizontal science based work in the areas of food additives, contaminants, etc.
b. that the Commission should continue to reduce its work on commodity-specific (i.e., vertical) standards in favor of horizontal or general standards.
c. that the modernization of current commodity standards, and the transfer of material from commodity standards to applicable general standards, should be completed in this period.

GENERAL PRINCIPLES OF THE CODEX GSFA

44. The Committee reaffirmed the following general principles of the Codex GSFA:

a. Only food additives that have been evaluated by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and found acceptable for use in foods are included in the GSFA.
b. The food additives covered by the GSFA and their maximum levels of use are based in part on the food additive provisions of Codex commodity standards or upon the request of Codex Member States.
c. Regardless of the maximum level specified for an additive in the GSFA, the use of the additive is limited by the principles of good manufacturing practices as specified in the Preamble to the Standard. Application of good manufacturing principles may well result in a level of use below the maximum level specified, the latter of which has been established on a health and safety basis and technologically justified.
d. The format of the GSFA is based on the INS food additive functional class titles and also on a hierarchical food category system.
e. The GSFA covers all foods, whether standardized or not.
f. The food additive provisions of Codex commodity standards shall be included in the GSFA.
g. The food additive section of Codex commodity standards should refer to the GSFA.
h. When Codex commodity committees are of the opinion that the food additive provisions in a food category in the GSFA are not applicable to a commodity standard, the Codex commodity committee may request the CCFAC to endorse deviations from the GSFA. Such requests should be fully justified and supported by available scientific evidence and other relevant information. Such a

21 CX/FAC 02/6 and comments submitted by Canada, Denmark, Israel, Japan, Poland, AAC, CPIV, ENCA, FOSFA, IBFAN, IFMA, IFU (CX/FAC 02/6-Add. 1), Korea, EC, IDF, IMACE/IFMA, CEFS (CRD 5) and India (CRD 6).

22 ALINORM 01/12A, paras. 57 and 62
decision on the part of a Codex commodity committee should not affect permission to otherwise use the additive in non-standardized foods falling under the same food category in which the excluded standardized food lies.

i. The primary objective for establishing maximum permitted levels of use of food additives in various food categories is to ensure that the intake of additives does not exceed their acceptable daily intake.

j. The use of food additives is justified only when such use has an advantage, does not present a hazard to health of and does not mislead the consumer, and only where these objectives cannot be achieved by other means that are economically and technologically practicable.

k. Priority for establishing maximum permitted levels of use for additives during elaboration of the GSFA should not be given to any group of additives based on functional class or to additives with “low” ADIs.

45. In addition, the Committee agreed to include the principle that “The CCFAC will consider relevant technological justification and need provided by commodity committees when endorsing food additive provisions given in Codex Standards. This information might also be taken into account when considering food additive provisions in similar non-standardized foods”.

46. There was some discussion about possible contradiction between points f) and g), and about i) with respect to potential need to invoke methodologies to ensure intakes for food additives do not exceed their ADIs. The Committee retained f) and g) without change because f) was a responsibility of the CCFAC whereas g) was a responsibility of commodity committees. It agreed that members should be made aware of processes to request placement of additives requiring exposure assessment on the JECFA priority list, apart from those additives for which exposure assessment have already been undertaken. Finally it was agreed that, if possible, ADIs would be entered next to entries in the GSFA Working Group worksheets to assist members in future deliberations.

THE ROLE OF THE CODEX SECRETARIAT

47. In regard to the role of the Codex Secretariat, the Committee agreed that:

a. The Codex Secretariat should provide commodity committees with guidance on the GSFA food category in which their commodity standard falls.

b. The Codex Secretariat should encourage commodity committees to develop standards that fall within a single GSFA Food Category to avoid confusion in the interpretation of food additive provisions in the GSFA.

c. The Codex Secretariat should require commodity committees to identify the INS additive functional classes that meet the technological needs of the commodity and include them in the food additive section of their commodity standard. For example, the food additive section of a commodity standard for a commodity that falls under the food category 12.5 (soups and broth) could state: “Any acidity regulators listed in Table 3 of the General Standard for Food Additives” and “Any acidity regulators listed in Tables 1 and 2 of the General Standard for Food Additives in Food Category 12.5 (Soups and broths).

d. The Codex Secretariat should provide commodity committees with Annex C (Cross-reference of Codex commodity standards and the Food Category System) of the Preamble of the GSFA and a full description of the FCS to assist commodity committees in the development of their standards.

THE ROLE OF CODEX COMMODITY COMMITTEES

48. In regard to the role of Codex commodity committees, the Committee agreed that:

a. When elaborating standards, commodity committees should only consider additives that have been assigned a full ADI by JECFA and have an assigned INS number. The technical effects assigned by the INS (i.e., those described in the list of added functional classes) and technological functions should be used for identifying the food additive use.

b. When elaborating standards, Codex commodity committees should provide the CCFAC with a list of all food additives, including the individual INS number (including any suffixes), within a particular functional class for which the technological need has been justified and may choose to recommend
their appropriate level of use. The CCFAC will incorporate this information in the Draft GSFA for further consideration by the Codex commodity committee.

c. If equivalency between a Codex commodity standard and a single GSFA food category is unavoidable, then the Codex commodity committee should provide the CCFAC with a list of technical effects consistent with those listed in the INS for which technological need has been justified and whose use will not mislead the consumer. The commodity committee, if appropriate, may recommend to the CCFAC levels of use for specific additives that achieve the identified intended technical effects. The CCFAC will incorporate this information in the draft GSFA for further consideration by the Codex commodity committee.

THE ROLE OF CCFAC

49. In regard to the role of the CCFAC, the Committee agreed that:

a. If food additive provisions are contained in a commodity standard, the CCFAC should consider revising the titles of the food category system to avoid having the same name as a commodity standard.

b. The CCFAC should propose the following amendment to the guidance in the Procedural Manual for the standard format of commodity standards:

i) The food additive section should contain the names of the functional classes of additives consistent with those listed in the INS for which a technological need has been justified for the promotion of fair trade practices. The food additive section should be prepared in accordance with guidance given on page 79 of the Codex Alimentarius Procedural Manual concerning the format for Codex Commodity Standards.

ii) Then should follow the name of the INS “additive functional class” or “technological function” (e.g., acidity regulator, emulsifier), the appropriate Table of the GSFA (e.g., 1 & 2, or 3), and the appropriate GSFA food category.

c. Once adopted at Step 8 by the Commission, all food additive provisions in commodity standards will be automatically included in the GSFA in the appropriate tables and food category. Recommendations to amend additive usage in standardized foods should be submitted to the respective Codex committee for technological justification and the commodity committee should refer these amendments to the CCFAC for endorsement. If endorsed, the additive provision would be included in the GSFA. Recommendations to amend additive usage in non-standardized foods should be submitted directly to the CCFAC.

PREAMBLE OF THE GSFA

50. The Committee noted the opinion of several delegations, including Spain, on behalf of the European Community, that two of the principles for inclusion of an additive provision in the GSFA might need to be reexamined in the context of a revision to the Preamble of the GSFA. These two principles were:

- The reporting of the use of an additive by a member state in a food category is prima facie evidence for the technological need for the use of an additive.
- If at least two Codex member states permit the use of the additive up to the maximum level proposed in Table 1 and 2 in foods representative of the category, this is evidence of trade of these foods.

51. The Committee decided to install a drafting group under the direction of France/USA, with the assistance of Australia, Brazil, Canada, Italy, Japan, Netherlands, New Zealand, Norway and Switzerland, to elaborate a proposed draft revision to the Preamble of the GSFA as follows:

- Clarify the relationship between the GSFA and Codex commodity Standards
- Elaborate on appropriate criteria in the Preamble for establishing additive provisions in the GSFA
- Reconsider the criterion that reporting of the use of an additive by a member state in a food category is prima facia evidence for the technological need for the use of an additive.
• Reconsider the principle that if at least two Codex member states permit the use of the additive up to the maximum level proposed in Tables 1 and 2 in foods representative of the category, that is evidence of trade of these foods, taking into account the requirements for additives provisions in the Procedural Manual as regards Codex commodity standards.

FOOD CATEGORY SYSTEM AND THE GSFA

52. The Committee reaffirmed the following points to promote the consistent interpretation of the GSFA food category system (FCS):

a. The FCS is an integral component of the draft GSFA.
b. The FCS was developed as a tool to simplify the reporting of food additive uses for constructing and elaborating the draft GSFA.
c. The FCS should allow for the assignment of all foods to a food category, both standardized and non-standardized.
d. The FCS is intended to be applicable to foods internationally.
e. The FCS is intended as a basis for identifying food categories for additive intake assessment for the purpose of elaborating the draft GSFA.
f. The FCS is hierarchical, meaning that when the use of an additive is permitted in a general category, it is automatically permitted in all its sub-categories, unless specific provisions are included.
g. The FCS food category descriptors are not intended to be legal product designations, sales descriptions nor are they intended for labeling purposes.
h. The FCS should be revised only to accommodate:
 i. Foods that do not fit into existing categories.
 ii. Foods that require the use of new or different food additive functional effects from those reported in existing categories.
 iii. Foods that require different food additive use levels or restrictions from levels reported in existing categories.
 iv. Foods for which there are different food consumption patterns; for example, due to differences in processing (e.g., dried vs. ready-to-eat) or in the consuming populations (e.g., infants and children vs. adults).

53. The Committee also reaffirmed that the Codex GSFA does not cover the use of additives in additives or flavors.

54. The Committee agreed to the amended Food Category System as presented in Appendix III of the Report of the Ad Hoc Working Group (CRD 1). However, in view of additional proposals for revisions to the Food Category System, the Committee agreed that a drafting group under the direction of the United States, with the assistance of Australia, India, Japan, Switzerland, Thailand, CEFS, IBFAN, IDF, IFMA, IOCCC, ISDI, OIV, would review the written comments submitted and the above discussions with a view towards elaborating an amended version of the FCS for circulation, comment and further consideration at its next meeting.

PASTAS AND NOODLES

55. With the understanding that there would be few, if any, additives needed in the dried pasta and noodle category, the Committee agreed that Food Category 06.4 “Pasta and Noodles and like products” would be revised by creating three subcategories as follows:

06.4.1 FRESH PASTAS AND NOODLES AND LIKE PRODUCTS:
Pasta and noodle products that are untreated (i.e., not heated, cooked, pre-gelatinated or frozen) and not dehydrated. These products are intended to be consumed soon after preparation. Examples include: unboiled noodles, and "skins" or crusts for spring rolls, wontons, and shuo mai.
06.4.2 DRIED PASTAS AND NOODLES AND LIKE PRODUCTS:
Pasta and noodle products that are untreated (i.e., not heated, cooked, pre-gelatinated or frozen) and are dehydrated. Examples include dried forms of: spaghetti, bean vermicelli, rice vermicelli, macaroni, and rice noodles.

06.4.3 PRE-COOKED PASTAS AND NOODLES AND LIKE PRODUCTS:
Pasta and noodle products that are treated (i.e., heated cooked, pre-gelatinated, or frozen). These products may be sold directly to the consumer (e.g., pre-cooked, chilled gnocchi to be heated prior to consumption), or may be the starch component of prepared meals (e.g., heat-and-serve frozen dinner entrees containing spaghetti, macaroni or noodles; canned spaghetti and meatballs entrée). Also includes Oriental instant noodles (ramen, sokuseki-men and rice noodles) that are pre-gelatinated and heated prior to sale to the consumer.

COMMENTS ON TABLE 1 OF THE DRAFT CODEX GENERAL STANDARD FOR FOOD ADDITIVES (Agenda Item 7c) 23

56. The 33rd CCFAC forwarded24 all proposed draft food additive provisions at Step 3 to the 24th Session of the Commission for adoption at Step 5. The 49th Session of the Executive Committee adopted25 the proposed draft food additive provisions at Step 5. The CCFAC also agreed26 that several draft maximum levels for food additives in specific food categories be held at Step 6 for additional comment and consideration at the 34th CCFAC.

57. The Committee agreed that aluminium should be included on the JECFA priority list for intake assessment from all food additive uses under consideration and from other dietary sources, and for a full toxicological evaluation.

58. Beeswax (901) and Candelilla wax (902), are both assigned acceptable uses by JECFA as carriers for flavors. Their use in water-based flavored drinks, including “sport” or “electrolyte” drinks and particulated drinks (14.1.4) should be examined since the intake of these additives through carry-over has not been assessed by JECFA. The Committee decided to request JECFA to do this intake assessment.

59. Spain, speaking on behalf of the European Community and supported by several other countries, raised concerns about the limit of 1000 mg/kg benzoates in Category 14.1.4 (water-based flavoured drinks, including “sport” or “electrolyte” drinks and particulated drinks) should be examined since the intake of these additives through carry-over has not been assessed by JECFA. The Committee decided to return this entry to Step 6 for further consideration at the 35th Session of CCFAC as to the technological need in different regions. The data required includes information on climatic differences and specific types of soft drinks requiring higher levels.

Status of Revisions to Table 1 of the Codex General Standard for Food Additives

60. The Committee agreed that as a matter of principle, all food additives assigned a numerical ADI by JECFA should have a numerical limitation on their use in the GSFA. In this regard, the Committee agreed to hold all GMP provisions for these additives (i.e., with numerical ADIs) at Steps 3 or 6 so that specific numeric levels of use could be provided before its 35th Session. The Committee also agreed to hold food additive provisions with specific numeric levels at Steps 3 and 6 and to request additional information, including technological need and justification, for their use (see Appendix III). In both cases above, if this information was not provided by the 35th Session, the Committee agreed that these provisions would be

23 Comments submitted in response to CL 2001/13-FAC and CL 2001/34-FAC from Australia, Brazil, Canada, Cuba, Japan, Poland, Spain, EC, ENCA, IADSA, IBFAN, IFAC (CX/FAC 02/7), Cuba, EC, CEFS, IFCGA, IFU (CRD 6).

24 ALINORM 01/12A, para. 64 and Appendix III

25 ALINORM 03/3, para. 18 and Appendix II

26 ALINORM 01/12A, para. 65 and Appendix IV
deleted from the GSFA. In correlation to this decision, Switzerland asked when Table 1 adopted additives with numerical ADIs assigned with GMP proposals would be discussed. The Committee also agreed to apply these principles to already adopted additives at a future meeting.

61. The Committee also agreed to forward the provisions listed in Appendix II to the Commission for final adoption at Step 5/8 or 8 as amendments to the Standard.

COMMENTS ON THE DRAFT REVISED ANNEX TO TABLE 3 OF THE CODEX GENERAL STANDARD FOR FOOD ADDITIVES (Agenda Item 7d)

62. The 33rd CCFAC forwarded amendments to the Annex to Table 3 (Food Categories or Individual Food Items Excluded from the General Conditions of Table 3) of the Codex General Standard for Food Additives to the 24th Session of the Commission for adoption at Step 5/8. The Commission adopted all proposed revisions to the Annex to Table 3 at Step 5 only.

63. The Committee noted concerns expressed by IBFAN and the OIV as to the excessive use of additives in categories 13.1/13.2 and 14.2.3, respectively and decided that these concerns would be discussed in the Working Group at the 35th CCFAC.

64. The Committee agreed to revisions to the Annex to Table 3 as proposed by the Working Group and decided to request additional comments at Step 6 for further consideration at its next meeting (see Appendix IV).

DISCUSSION PAPER ON PROCESSING AIDS AND CARRIERS (Agenda Item 8)

65. The 33rd Session of the CCFAC agreed that a drafting group lead by New Zealand would prepare a discussion paper on the consideration of processing aids and carriers in the context of the Codex General Standard on Food Additives for circulation, comment and further consideration at its next meeting. The Committee also agreed that comments would be requested on document CX/FAC 01/10 by Circular Letter (CL 2001/13-FAC) to the 33rd CCFAC report for consideration by the drafting group.

66. The delegation of New Zealand gave a short introduction to the discussion paper by highlighting the main issues: definitions of processing aids, the definition and inclusion of carriers, consideration of a horizontal approach to processing aids and the role of the existing Inventory of Processing Aids.

67. Several delegations felt that the definition of a processing aid could be clarified and distinguished from a food additive by adding an indication that it has no technological effect in the final product. Many delegations felt that the Inventory of Processing Aids was a useful tool as an internal document provided the information in it was correct. There was general support for a horizontal approach to processing aids, however several delegations felt also that the Committee should focus on the GSFA and that processing aids and carriers should have a lower priority.

Status of the Discussion Paper on Processing Aids and Carriers

68. As comments were not requested on document CX/FAC 02/9, the Committee decided to request comments on the current paper by means of the Circular Letter to this report. It was agreed that comments submitted would be further considered at the next meeting.

27. Comments submitted in response to CL 2001/34-FAC from Argentina, Japan, EC and ISPI (CX/FAC 02/8).
28. ALINORM 01/12A, para. 50 and Appendix VI
29. ALINORM 01/41, paras. 135-136 and Appendix IV
30. CX/FAC 02/9 and CX/FAX 02/9-Add. 1 (not issued)
31. ALINORM 01/12A, paras. 67 and 71.
DISCUSSION PAPER ON THE USE OF ACTIVE CHLORINE (Agenda Item 9)

69. The 33rd Session of the Codex Committee on Food Additives and Contaminants agreed that Denmark, in cooperation with Finland, Israel, Norway and WHO, would prepare a Discussion Paper on the Use of Active Chlorine for consideration by the next CCFAC in view of the potential adverse effects of this chemical on health.

70. The Committee noted that active chlorine was commonly utilised as a food additive or decontaminating/disinfecting agent in water treatment or surface treatment of foodstuffs. In this regard, a number of delegations pointed out that safety problems that might be associated with the use of this compound were mainly related to inappropriate handling or misuse. It was noted that the work of CCFAC in this respect should not prevent countries from using this chemical in the prevention of microbial contamination that might occur in water or food. Other delegations indicated that the CCFAC should take account of the work being done in other Codex Committees and, in this regard, suggested that the Committee could work together with the Codex Committee on Food Hygiene in addressing this issue.

71. The Committee recognised the need for active chlorine to be assessed on a global basis by JECFA. In this regard, it was indicated that any risk assessment should take into account different uses of this compound including by-products of reactions between active chlorine and organic materials in food or water for food processing. The JECFA secretariat indicated that any question put to JECFA on the issue must be clear as to just exactly what aspect(s) are to be assessed. The delegation of the United States stated that both the microbiological and chemical risks must be considered and this could best be done by a FAO/WHO expert consultation.

72. The Representative of WHO indicated that the WHO Guidelines for Drinking Water Quality recommended a maximum level of 5 ppm of active chlorine and indicated that this level was both safe and protective of consumer’s health. He drew the attention of the Committee to the fact that restrictions on the use of active chlorine in water treatment in food processing might compromise the benefits of reducing microbial contamination and public health. He strongly suggested that the CCFAC continue to study this issue so that all public health risk/benefits be considered in order that the health of consumers not be put at risk.

Status of the Discussion Paper on the Use of Active Chlorine

73. In view of the above discussion, the Committee agreed that the Discussion Paper should be revised by Denmark, in cooperation with Finland, Israel, Norway and WHO, in light of the above discussion and comments to be submitted in response to a Circular Letter appended to this report, for circulation, comment and further consideration at its next meeting.

DRAFT REVISED CODEX GENERAL STANDARD FOR IRRADIATED FOODS (Agenda Item 10a)

74. The 33rd CCFAC forwarded the proposed draft revised Codex General Standard for Irradiated Foods to the 24th Session of the Commission for adoption at Step 5. The 49th Session of the Executive Committee adopted the proposed draft revised Standard at Step 5. The Committee considered Appendix VII of ALINORM 01/12A as the basis for its discussions.

75. The Committee agreed to revise the first sentence of Section 1 - Scope to read “This standard applies to food processed by ionizing radiation that is used in conjunction with applicable hygienic codes, food

32 CX/FAC 02/10
33 ALINORM 01/12A, para. 204.
34 Comments submitted in response to CL 2001/34-FAC from Argentina, Poland, USA, CI, EC, IAEA (CX/FAC 02/11), India (CRD 7) and Philippines (CRD 20).
35 ALINORM 01/12A, para. 85 and Appendix VII
36 ALINORM 03/3, para. 19 and Appendix II
standards and transportation codes”. After some discussion, the Committee decided to retain the second sentence in its current form.

76. Despite the opposition of the delegation of Spain, speaking on behalf of the EC, several countries had indicated that they were using or were planning to use Cesium-137 as a radiation source. The Committee therefore agreed to amend Section 2.1 - Radiation Sources, Subsection (a) to include Cesium-137 (137Cs), so that Section (a) reads as “Gamma rays from the radionuclides 60Co or 137Cs”.

77. The delegate of the Philippines proposed to delete the reference to an upper limit of 10 kGy, which appeared in square brackets in Section 2.2 - Absorbed Dose. She stated that such a limit was not necessary in the light of the report of the FAO/IAEA/WHO Study Group on high dose irradiation. This recommendation was supported by Argentina, Australia, Brazil, China, India and ICGFI. The delegate of Spain, on behalf of the EC, proposed to retain the reference without square brackets because of toxicity concerns for 2-alkylcyclobutanones. An assessment being undertaken by the Scientific Committee for Food is not yet complete and while the representative of the EC was unable to give a date when the final report would be available, it will be published, made available to all concerned, and the data can be used by JECFA for further assessment.

78. Sweden questioned the need to delete the overall average dose of 10 as there were no applications known above 10 which would have an effect on international trade. However, the delegate of Australia noted that they had recently approved irradiation of herbs and spices up to a dose of 20 kGy. Consumers International suggested that it would be useful if countries could provide more information on their use of high dose food irradiation in order to facilitate the justification of technological need.

79. The WHO Representative noted that the FAO/IAEA/WHO Study Group conclusion that food irradiated to any dose appropriate to achieve the intended technical objective was both safe to consume and nutritionally adequate was still valid as no credible scientific evidence has been provided to the contrary. He noted that concerns about the safety of alkylcyclobutanones reported in a recent EC-supported study could not be substantiated because the three organizations could not obtain a copy of the report for review. However, he emphasized that WHO was willing to re-open any risk assessment if new evidence indicated a public health risk. He informed the Committee that JECFA would be able to consider the study at its meeting in June 2002 if it could be made available in the near future.

Status of the Draft Revised Codex General Standard for Irradiated Foods

80. To facilitate the revision of the Standard, the delegate of the Philippines requested that the question of the need for a limit of 10 kGy be linked to the results of the EC-supported study on the toxicity of 2-alkylcyclobutanones and that the EC provide the report of the study to JECFA for evaluation (see Agenda Item 17).

81. Because of the volume of comments received, the Committee agreed to suspend further discussion and to request a drafting group led by the Philippines and assisted by Australia, China, France, Germany, India, Japan, Korea, Poland, Sweden, Thailand, United Kingdom, United States, CI, EC, ICGFI, FAO and WHO to revise the current Standard on the basis of the written comments submitted and the committee’s discussions for circulation, additional comment and further consideration at its next meeting.

PROPOSED DRAFT REVISED RECOMMENDED INTERNATIONAL CODE OF PRACTICE FOR RADIATION PROCESSING OF FOOD (Agenda Item 10b)38

82. The 33rd CCFAC decided39 that the Recommended International Code of Practice for Radiation Processing of Food would be revised by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture based on the Committee’s discussions and written comments submitted for circulation, comment and further consideration at its next Session. The 49th Session of the Executive Committee approved40 the elaboration of the proposed draft revised Code of Practice as new work. The Committee considered CX/FAC 01/12 as a basis for its discussions.

83. The representative of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture introduced the comments submitted by the EC and the USA. She noted that the comments improved the text and were mainly editorial in nature except for proposed changes in Sections 5.3.5 and 6.3 as discussed below. In addition, she noted that a proposal by the EC to amend Section 8 Labelling could only be made after agreement was reached on labelling requirements in the General Standard for Irradiated Food and in consultation with the Codex Committee on Food Labelling.

84. The Committee agreed to include the following new first paragraph to Section 5.3.5:

“An adequate system should be in place so that specific consignments of food products can be traced back both to the irradiation facility and the source from which they were received for processing.”

85. The Committee also agreed to revise the second sentence of the second paragraph in Section 6.3 to read:

“Relevant ISO/ASTM Standard Practices and Guides for dosimetry in food irradiation facilities have been developed and should be consulted”.

86. The Committee also agreed to revise footnote 5 to the above sentence to read:

87. The Committee reached the following conclusions concerning the Code:

- Paragraph 2 of Section 2.1 - Scope was amended so that “primary production and harvesting” read as “primary production and/or harvesting”. This change was also made to the title and text of Section 3.1 – Primary Production and/or harvesting.
- Sentence 1 of Section 2.3 – Definitions was amended to delete the words “and expressions”.
- In Section 2.3 – Definitions the phrase “electron beams” was revised to “accelerated electrons” in the definition for Food Irradiation.
- Paragraph 9 of Section 2.3 – Definitions, the term and definition for Authorization of Facility to Irradiate Food was moved to Section 5.
- Sentence 2 of paragraph 3 of Section 5.1 - Design and Layout was revised to insert the word “dose” before the word “uniformity”.
- Sentence 2 in Section 5.3.1 - Legislation was amended to insert the phrase “like any other food processing plant” after “A food irradiation facility”.
- The last sentence in paragraph 2 of Section 6.5 - Dosimetry and process control was deleted.

38 CX/FAC 01/12 and comments submitted by the United States (CX/FAC 01/12 - Add. 1) and the EC (CX/FAC 01/12 – Add. 2).
39 ALINORM 01/12A, para. 89
40 ALINORM 03/3, Appendix III
• Section 9 - Competency was deleted and footnote 10 was moved to Section 5.3.2 - Requirements for staff.
• Footnote 5 was revised.
• Footnote 6 was revised to read “ISO/ASTM 51261 – Standard Guide for Selection and Calibration of Dosimetry Systems for Radiation Processing”.
• Footnote 7 was revised.
• Footnote 8 was revised to read “ISO/ASTM 51204 – Standard Practice or Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431 – Standard Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing”.

Status of the Proposed Draft Revised Recommended International Code of Practice for Radiation Processing of Food

88. The Committee forwarded the proposed draft revised Recommended International Code of Practice for Radiation Processing of Food (see Appendix V) to the Commission for adoption at Step 5/8 (with the omission of Steps 6 and 7).

REPORT OF THE AD-HOC WORKING GROUP ON SPECIFICATIONS (Agenda Item 11a)41

89. The 33rd Session of the CCFAC decided42 to reconvene the ad hoc Working Group on Specifications prior to its current session under the Chairmanship of the USA. The ad hoc Working Group was chaired by Dr. P. Kuznesof (USA), Mrs. H. Wallin (Finland) acted as Rapporteur and Mrs. I. Meyland (Denmark) acted as Category Monitor. The recommendations of the report of the ad hoc Working Group (CRD 2) were considered by the Committee under Agenda Item 11(b).

90. The Committee was informed that 12 additives which had been removed from the draft GSFA and referred by the Committee to JECFA for evaluation, were removed from the agenda of the 57th meeting of JECFA in 2001 because there was no information that these additives were currently used and available data did not permit establishment of an ADI and specifications.

91. The Committee was informed that the Working Group discussed and provided feedback to the Joint Secretariat on general matters published in Section C of FNP 52 Add.9 as outlined in CRD 2. The Committee took notice of the information provided to the Working Group by the representative of the European Commission, which related to ongoing work within the European Union on the safety evaluation and establishment of purity criteria of approximately 2700 flavouring agents. The representative of the European Commission noted that the EC programme intended to avoid duplication of work with JECFA.

92. The Committee thanked the ad hoc Working Group for its efforts, and agreed to re-establish the ad hoc Working Group on Specifications to meet, under the Chairmanship of the USA, prior to the 35th Session of the CCFAC.

SPECIFICATIONS FOR THE IDENTITY AND PURITY OF FOOD ADDITIVES ARISING FROM THE 57th MEETING OF THE JECFA (Agenda Item 11b)43

93. The Committee forwarded 60 food additive specifications and 276 flavouring agent specifications in Category I to the Commission for adoption at Step 5/8 as Codex Advisory Specifications. Of the 60 food additive specifications, 42 specifications for anticaking agents (6), flavour enhancers (17), sweetening agents (11), and thickening agents (8) were forwarded for adoption of new limits for specific heavy metals like lead and arsenic. The limits for Heavy Metals (as lead) were deleted.

41 CRD 2
42 ALINORM 01/12A, para 94
43 Comments submitted in response to CX/FAC 02/13 from AAC, AMFEP (CX/FAC 02/13-Add. 1), Denmark, ESI and ISA (CRD 8).
94. The Committee agreed to forward one food additive specification in Category II to the Commission for adoption as a Codex Advisory Specification after editorial changes, and to refer back to JECFA for further revision. The General Specifications and Considerations for Enzyme Preparations used in Food Processing The Committee was informed that JECFA had withdrawn the tentative specifications for two food additives (oxystearin and tartaric, acetic, and fatty acid esters of glycerol, mixed).

Status of the Specifications for the Identity and Purity of Food Additives Arising from the 57th JECFA Meeting

95. Specifications in Categories I and II that were forwarded to the Commission for adoption as Codex Advisory Specifications at Step 5/8 are attached at Appendix VI.

PROPOSED AMENDMENTS TO THE INTERNATIONAL NUMBERING SYSTEM (Agenda Item 12)

96. The 33rd CCFAC agreed to request comments for additional revisions to the INS System on a standing basis. The Committee also agreed to circulate INS Number 452 (vi) for Sodium Potassium Tripolyphosphate as an emulsifier, stabilizer, acidity regulator, raising agent, sequesterant and water retention agent at Step 3 of the accelerated procedure for comments, subject to approval by the Executive Committee. The 49th Session of the Executive Committee approved the use of the Accelerated Procedure in regard to Sodium Potassium Tripolyphosphate.

97. The Committee agreed to the recommendations of the ad hoc Informal Working Group on the International Numbering System, which was chaired by H. Wallin (Finland), as follows:

- Forwarded INS 452(vi) for Sodium potassium tripolyphosphate as an emulsifier, stabilizer, acidity regulator, raising agent, sequesterant and water retention agent to the Commission for final adoption at Step 5 of the Accelerated Procedure.
- Forwarded various new INS Numbers or revised text for compounds 163(iv), 163(v), 165, 407, 445, 650, 949 and 961 to the Commission for final adoption at Step 5/8.
- Forwarded various amendments to INS numbers for Mineral Oil to the Executive Committee for preliminary adoption at Step 5.
- The Codex Secretariat would prepare a Discussion Paper on the Harmonization of Terms Used by Codex and JECFA for Functional Sub-Classes and Technological Functions for consideration at the next CCFAC meeting.
- A substance consisting of chemical reaction products of INS numbered compounds (e.g. acesulfame-aspartame salt) should be assigned a new INS number.

98. The Committee also noted that the assignment of INS numbers to Invertase from Saccharomyces cerevisiae, Beta-carotene from Blakeslea trispora and D-tagatose would be considered at its next meeting.

Status of Amendments to the International Numbering System for Food Additives

99. The Committee forwarded draft and proposed draft amendments to the International Numbering System for Food Additives to the Executive Committee and the Codex Alimentarius Commission for preliminary or final adoption as indicated above (see Appendix VII).

44 Comments submitted in response to CL 2001/13-FAC from Brazil, Canada, Israel, Spain, USA, EC, ISDC (CX/FAC 02/14), Cuba, Japan, ISA (CRD 9).
45 ALINORM 01/12A, para. 96-99 and Appendix IX
46 ALINORM 03/3, Appendix III
ENDORSEMENT AND/OR REVISION OF MAXIMUM LEVELS FOR CONTAMINANTS IN CODEX STANDARDS (Agenda Item 13)47

100. The Committee noted that no maximum levels for contaminants had been submitted for endorsement since its 33rd Session and therefore, no action was required.

CODEX GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOODS (GSCT) (Agenda item 14)

REPORT OF THE AD HOC WORKING GROUP ON CONTAMINANTS AND TOXINS (Agenda item 14a)48

101. The 33rd Session of the CCFAC decided49 to reconvene the ad hoc Working Group on Contaminants and Toxins prior to its 34th Session. The Working Group was chaired by Dr. Torsten Berg (Denmark); Dr. Cecilia Toledo (Brazil) acted as Vice-Chair and Dr. Luba Tomaska (Australia), Ms. Frederique Heering (the Netherlands) and Ms. Nathalie Scheidegger (the Netherlands) acted as rapporteurs.

Future Status of the Ad Hoc Working Group on Contaminants and Toxins

102. The Committee decided to reconvene the ad hoc Working Group on Contaminants and Toxins prior to its next Session under the Chairmanship of Denmark.

SCHEDULE 1 OF THE PROPOSED DRAFT CODEX GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOODS (Agenda item 14b)50

103. The 33rd CCFAC reiterated51 its recommendation that the Netherlands should elaborate Schedule 1 to the Codex General Standard for Contaminants and Toxins in Foods for consideration at its current meeting.

104. The Committee agreed that the Netherlands would update and present Schedule 1 every year. Schedule 1 would contain two lists, i.e. List 1 with MLs for contaminants and toxins already adopted as final texts and List 2 with MLs for contaminant and toxins under discussion at different steps of the Codex procedure. It was understood that Schedule 1 would be used as a working document during the Working Group and the plenary sessions.

105. The Codex Secretariat was also requested to investigate the feasibility of providing an updated version of Schedule 1 in electronic form.

PROPOSED DRAFT PRINCIPLES FOR EXPOSURE ASSESSMENT OF CONTAMINANTS AND TOXINS IN FOODS (Agenda Item 14c) 52

106. The 33rd CCFAC decided53 that a drafting group led by Australia and France would elaborate proposed draft Principles for Exposure Assessment of Contaminants and Toxins in Foods for circulation, comment and further consideration at its 34th Session, with the understanding that the proposal would need to be approved as new work by the Commission. The 49th Session of the Executive Committee approved54 the elaboration of the proposed draft Principles as new work.

47 CX/FAC 02/15
48 CRD 3
49 CX/FAC 01/12A, para. 113.
50 CX/FAC 02/16
51 ALINORM 01/12A, para. 118
52 CX/FAC 02/17 and comments submitted by Canada (CX/FAC 02/17-Add.1), France and the European Community (CRD 10).
53 ALINORM 01/12A, paras. 122 and 126
54 ALINORM 03/3, Appendix III
107. The Committee was informed that the Principles proposed criteria to determine when food/food groups are considered to be a significant contributor to exposure to a contaminant or toxin through food. Annex 1 to the paper proposed components of exposure assessment performed by JECFA for a transparent, consistent and science-based risk assessment for contaminants and toxins in food. Annex 2 and 3 of the paper proposed the CCFAC policy for the different activities of the JECFA, CCFAC and member states in the risk analysis procedure.

108. The Committee agreed to change the title of Annex 1 to read as the “CCFAC Principles for Exposure Assessment of Contaminants and Toxins in Food or Food Groups”.

Status of the Proposed Draft Principles for Exposure Assessment of Contaminants and Toxins in Foods

109. The Committee agreed that the CCFAC Principles for Exposure Assessment of Contaminants and Toxins in Foods (Annexes I, II and III of CX/FAC 02/17) would be circulated for comments at Step 3 (see Appendix VIII). The Committee further agreed that the Principles would be revised by the drafting group for circulation, additional comment and further consideration at the next Session.

110. The Committee also agreed to forward the entire Proposed Draft Principles for Exposure Assessment of Contaminants and Toxins in Foods to JECFA (CX/FAC 02/17) for comments.

MYCOTOXINS IN FOOD AND FEED (Agenda item 15)

COMMENTS ON THE DRAFT MAXIMUM LEVEL FOR OCHRATOXIN A IN WHEAT, BARLEY AND RYE AND DERIVED PRODUCTS (Agenda item 15a) 56

111. The 33rd CCFAC forwarded the proposed draft maximum level of 5 µg/kg Ochratoxin A in Wheat, Barley and Rye and Derived Products to the Commission for adoption at Step 5. The 49th Session of the Executive Committee adopted the proposed draft maximum level at Step 5.

112. The delegations of India and Argentina, supported by several other delegations, indicated that, as the JECFA evaluation at its 56th meeting (February 2001) had showed that the difference in health risk between the two limits of 5 µg/kg and 20 µg/kg was negligible, a level of 20 µg/kg could be adequate in terms of food safety.

113. Other delegations indicated that, as the principle of setting MLs within the CCFAC should be based on the ALARA (As Low As Reasonable Achievable) principle, a level of 5 µg/kg was justified. Moreover, the French delegation, supported by the EC and other delegations, indicated that the JECFA in its 56th meeting (February 2001) stated that the mean contamination value of raw cereals found was 1 µg/kg, clearly indicating that a value of 5 µg/kg seemed to be reasonably achievable. These delegations also indicated that there seems to be no problem in international trade with the 5 µg/kg level.

Status of the Draft Maximum Level for Ochratoxin A in Raw Wheat, Barley and Rye and Derived Products

114. After an extensive discussion, the Committee agreed to forward the draft maximum level of 5 µg/kg for Ochratoxin A in raw wheat, barley and rye and derived products to the Commission for final adoption at Step 8, with the understanding that the level will eventually be incorporated into the Codex General Standard for Contaminants and Toxins in Foods (see Appendix IX). The delegation of India expressed its reservation to this decision.

55 Led by Australia and France, with the assistance of China, Denmark, Ireland, Italy, Japan, the Netherlands, Norway, the Philippines, Spain, Thailand, The United Kingdom, the United States and the IFT.
56 Comments submitted in response to CL 2001/34-FAC by Argentina (CX/FAC 02/18), India and the EC (CRD 11).
57 ALINORM 01/12A, para. 145 and Appendix XII
58 ALINORM 03/3, Appendix II
COMMENTS ON THE DRAFT MAXIMUM LEVEL FOR PATULIN IN APPLE JUICE AND APPLE JUICE INGREDIENTS IN OTHER BEVERAGES (Agenda Item 15b)

115. The 32nd CCFAC forwarded the draft maximum level of 50 µg/kg for Patulin in Apple Juice and Apple Juice Ingredients in Other Beverages to the Commission for adoption at Step 8. As consensus could not be reached, the 24th Session of the Commission returned the draft maximum level to Step 6 for further consideration by the CCFAC.

116. Several delegations and the representative of CI expressed their concern with the level of 50 µg/kg patulin due to the relatively high intake of apple juice by young children and the possibility that this vulnerable group of consumers might exceed the tolerable daily intake. These delegations and the representative of CI indicated that several surveys showed that the mean value of 6-8 µg/kg of patulin indicated that a level of 25 µg/kg seemed to be reasonably achievable.

117. Other delegations indicated that the level of 50 µg/kg patulin would give sufficient protection to the vulnerable consumers, including young children. The delegation of the United States pointed out that the preliminary results of the EC survey indicated that the TDI was not exceeded for any European population groups. Moreover, these delegations indicated that a level of 50 µg/kg seemed to be at this moment not yet reasonably achievable for all regions in the world, even with the use of Good Agricultural Practices.

Status of the Draft Maximum Level for Patulin in Apple Juice and Apple Juice Ingredients in Other Beverages

118. The Committee agreed to forward the draft Maximum Level of 50 µg/kg for Patulin in Apple Juice and Apple Juice Ingredients in Other Beverages to the Commission for adoption at Step 8 (see Appendix X). The delegations of Denmark, Germany, Norway, Spain, CI and IACFO expressed their reservation to this decision.

119. The Committee also agreed that the Code of Practice for the Reduction of Patulin Contamination in Apple Juice and Apple Juice Ingredients in Other Beverages should be finalized as soon as possible. Moreover, the Committee agreed to request more data on the level of patulin in apple juice and apple juice ingredients for other beverages in the Circular Letter to this report, and to reconsider the possible reduction of the maximum level of 50 µg/kg to 25 µg/kg once the Code of Practice had been implemented (i.e., after four years).

PROPOSED DRAFT CODE OF PRACTICE FOR THE PREVENTION OF PATULIN CONTAMINATION IN APPLE JUICE AND APPLE JUICE INGREDIENTS IN OTHER BEVERAGES (Agenda Item 15c)

120. The 33rd CCFAC agreed that the delegation of the United Kingdom would revise the proposed draft Code of Practice for the Prevention of Patulin Contamination in Apple Juice and Apple Juice Ingredients in Other Beverages for circulation, comment and consideration at the 34th CCFAC.

121. The Committee agreed to change the term “prevention” to “reduction” in the Title.

59 Comments submitted in response to CL 2001/42-FAC by Argentina, Denmark, Poland, South Africa, USA, IFU, ISDU (CX/FAC 02/19), France, Thailand, United Kingdom (CRD 12) and Thailand (CRD 20).
60 ALINORM 01/12, para. 104 and Appendix X
61 ALINORM 01/41, para. 118
62 CX/FAC 02/20 and CX/FAC 02/20-Add. 1 (not issued).
63 ALINORM 01/12A, para 147
Status of the Proposed Draft Code of Practice for the Reduction of Patulin Contamination in Apple Juice and Apple Juice ingredients in Other Beverages

122. The Committee agreed to forward the proposed draft Code of Practice for the Reduction of Patulin Contamination in Apple Juice and Apple Juice Ingredients in Other Beverages to the Executive Committee for preliminary adoption at Step 5 (see Appendix XI).

PROPOSED DRAFT CODE OF PRACTICE FOR THE PREVENTION OF MYCOTOXIN CONTAMINATION IN CEREALS, INCLUDING ANNEXES ON OCHRATOXIN A, ZEARALENONE, FUMONISINS AND TRICOTHECENES (Agenda item 15d)

123. The 33rd CCFAC agreed to return the proposed draft Code of Practice for the Prevention of Mycotoxin Contamination in Cereals, including Annexes on Ochratoxin A, Zearalenone, Fumonisin and Tricothecenes, for redrafting by a Drafting Group under the direction of the United States for circulation, comment and consideration at the 34th CCFAC.

124. The Committee agreed to amend the text on the basis of the comments submitted by Canada and Sweden.

Status of the Proposed Draft Code of Practice for the Prevention (Reduction) of Mycotoxin Contamination in Cereals, including Annexes on Ochratoxin A, Zearalenone, Fumonisin and Tricothecenes

125. The Committee agreed to forward the revised proposed draft Code of Practice for the Prevention (Reduction) of Mycotoxin Contamination in Cereals, including Annexes on Ochratoxin A, Zearalenone, Fumonisin and Tricothecenes, to the Executive Committee for preliminary adoption at Step 5 (see Appendix XII).

DISCUSSION PAPER ON AFLATOXINS IN PISTACHIOS (Agenda Item 15 e)

126. The 33rd CCFAC agreed that the delegation of Iran, in collaboration with Sweden, would prepare a discussion paper on aflatoxins in pistachios for consideration at the 34th CCFAC.

Status of the Discussion Paper on Aflatoxins in Pistachios

127. The Committee agreed to broaden the scope of the Discussion Paper to Aflatoxins in Tree Nuts. The Committee decided that a drafting group led by Iran, with the assistance of Brazil, India, Netherlands, South Africa, Sweden, Thailand, the United Kingdom, the United States, the INC, the WHO and the EC, would revise the Discussion Paper on Aflatoxins in Tree Nuts for circulation, comment and further consideration at its next Session. It was also agreed that information on aflatoxin contamination in tree nuts as well as methods of analysis for the determination of aflatoxins in tree nuts would be requested by circular letter to this report.

128. The Committee also agreed that China, with the assistance of Brazil, Iran, Sweden, Thailand, the UK, the USA and the INC, would elaborate a proposed draft Code of Practice for the Reduction of Aflatoxin Contamination in Tree Nuts for circulation, comment and further consideration at its next meeting. It was understood that this proposal was subject as approval for new work by the Executive Committee.

64 CX/FAC 02/21 and comments submitted by Canada and Sweden (CX/FAC 02/21-Add. 1)
65 ALINORM 01/12A, para. 151
66 CX/FAC 02/22
67 ALINORM 01/12A, para. 198
129. The 33rd CCFAC agreed to return the draft maximum levels for lead in fish, crustaceans and bivalve molluscs to Step 6 for additional comment and further consideration at its 34th Session (ALINORM 01/12A, para. 162 and Appendix XIV). As decided under Agenda Item 1, the Committee also agreed to discuss the maximum level for lead in butter and milk fat under this agenda item.

DRAFT MAXIMUM LEVELS FOR LEAD IN BIVALVE MOLLUSCS, CRUSTACEANS AND FISH

130. The Committee decided that since lead exposure from bivalve molluscs and crustaceans did not significantly contribute to the total dietary lead exposure, the elaboration of maximum levels for bivalve molluscs (1.0 mg/kg) and crustaceans (0.5 mg/kg) should be discontinued, and the Executive Committee should be so informed.

131. Considerable discussion took place on the ML for lead in fish. Many delegations noted that the level of 0.2 mg/kg for fish was too low for several fish species. In view of the many fish species worldwide, it was suggested by the Netherlands to make a list of fish species for which the maximum level would apply. The delegation of the Philippines also noted that the establishment of maximum levels by species would create problems in trade as it was not possible to gather data for all species. The delegation of the Philippines also stated there were no problems in international trade due to lead in fish. Several member states felt that criteria should be developed to determine when lead was considered to be a significant contributor to exposure, as it was not evident that exposure to lead through fish consumption leads to health risks and that more information should be gathered on analytical methods and detection limits. Other delegations expressed the need for low levels since lead was a serious hazard to health, especially for children.

132. The Committee agreed that the discussion on MLs for lead in fish should be continued as there was a potential health risk for consumers (especially for children), consumption of fish took place worldwide and there was extensive trade in fish.

Status of the Draft Maximum Level for Lead in Fish

133. The Committee decided that the proposed level of 0.2 mg/kg, as well as certain species for which the level might not apply, should be returned to Step 6 with a request for comments by Circular Letter to this report on the following issues (see Appendices XIII and XX):

- Data on actual lead levels in fish (per specie and per treatment, e.g., canned, cooked and fresh fish) and species that should be included in the list of fish species not being able to meet the proposed maximum level for lead of 0.2 mg/kg;
- Information on analytical methods including detection limits
- Information on known or expected problems in trade and data on the relationship between lead exposure through fish consumption and health risks.

134. The delegate of Denmark offered to compile the above data into three annexes for next year's session. The delegates from Australia, France, Italy, Korea, Norway, Philippines, Spain, Thailand, United Kingdom, and the EC offered to support Denmark in this work. The Committee also agreed that a discussion paper would not be prepared.

68 Comments submitted in response to CL 2001/13-FAC by Australia, Brazil, Canada, Malaysia, Philippines, Spain, USA, EC (CX/FAC 02/23), Cuba, Denmark, India, Korea, EC (CRD 13), Morocco and the Philippines (CRD 20).

69 ALINORM 01/12A, para. 162 and Appendix XIV.
MAXIMUM LEVEL FOR LEAD IN BUTTER

135. The Committee recalled that at its 33rd Session the Delegation of India had expressed\(^{70}\) the view that there was no need for a maximum level of 0.05 mg/kg for lead in the Codex Standard for Butter and therefore, the Committee had agreed to request comments on the necessity of such a level. The Committee noted that since butter did not significantly contribute to total dietary intake, the maximum level of 0.05 mg/kg for lead in the Codex Standard for Butter (CODEX STAN A-1 1971, Rev. 1 – 1999) should be deleted, and the Codex Committee on Milk and Milk Products and the Codex Alimentarius Commission should be so informed.

MAXIMUM LEVELS FOR LEAD IN MILK AND MILK FAT

136. The Committee recalled that maximum levels for lead in milk (0.02 mg/kg) and milk fat (0.1 mg/kg) were adopted\(^{71}\) by the Commission as proposed, and requested the CCFAC to reevaluate the levels. The Delegation of India expressed the opinion that since the maximum level for lead in milk has a footnote that “a concentration factor applies”, there was no need for a separate maximum level for lead in milk fat, as it may very often lead to two different values in milk fat products.

137. The Committee decided that comments should be requested, by Circular Letter appended to this Report, on the maximum levels of lead in milk (0.02 mg/kg) and milk fat (0.1 mg/kg) for further consideration at the next meeting.

ELABORATION OF A PROPOSED DRAFT CODE OF PRACTICE FOR THE PREVENTION AND REDUCTION OF LEAD IN FOOD

138. The Committee was informed that the Commission had agreed\(^{72}\) that the CCFAC should develop a Code of Practice on the Prevention and Reduction of Lead Contamination in Food. In view of this request, the Committee decided that a drafting group under the direction of the United States, with the assistance of Australia, Brazil, Canada, Denmark, India, Italy, United Kingdom, Philippines, Thailand, and OIV would elaborate a proposed draft Code of Practice for the Prevention and Reduction of Lead in Food, subject to confirmation by the Executive Committee.

COMMENTS ON THE DRAFT MAXIMUM LEVELS FOR CADMIUM (Agenda Item 16b)\(^{73}\)

139. The 33rd CCFAC forwarded\(^{74}\) proposed draft maximum levels for cadmium in various commodities to the Commission for adoption at Step 5. The 49th Session of the Executive Committee decided\(^{75}\) to return all of the above (ALINORM 01/12A, Appendix XV) proposed draft maximum levels to Step 4 in view of the need to consider overall dietary intake data, in particular from staple foodstuffs. The 33rd CCFAC also returned\(^{76}\) proposed draft maximum levels for various commodities (ALINORM 01/12A, para. 170) to Step 3 for circulation, comments and further consideration at its 34th Session.

140. The delegation of Japan indicated that epidemiological studies were being undertaken on cadmium and that the results of these studies would be available October 2002. The delegation of the United States, supported by several other delegations, was of the opinion that maximum limits should only be set for the major food groups that contribute to cadmium exposure. These delegations indicated that it would be useful for the CCFAC, before taking decisions on the maximum levels, to request JECFA to perform an exposure and risk assessment of different possible maximum levels of cadmium from the major contributors. In its 55th meeting, JECFA had indicated that the main contributors to cadmium exposure were cereals, fruits,

\(^{70}\) ALINORM 01/12A, para. 159.
\(^{71}\) ALINORM 01/41, 121
\(^{72}\) ALINORM 01/41, para. 124.
\(^{73}\) Comments submitted in response to CL 2001/13-FAC by Australia, Brazil, Canada, USA (CX/FAC 02/24), Cuba, India, Japan, Thailand, EC (CRD 14), Morocco and Thailand (CRD 20).
\(^{74}\) ALINORM 01/12A, paras. 168-169 and Appendix XV
\(^{75}\) ALINORM 03/3, para. 20 and Appendix II
\(^{76}\) ALINORM 01/12A, para. 170.
vegetables, meat and molluscs. The delegation of JECFA indicated that the exposure and risk assessment of different possible maximum levels and several food groups would be a very complex and time-consuming activity.

141. The Committee agreed with the opinion of the delegation of Japan that any consideration of setting a maximum level for cadmium in rice should apply to milled rice, as this commodity was the category of rice traded internationally in significant amounts. The Committee agreed that in order to prevent misunderstandings, the codes contained in the Codex Classification of Foods and Animal Feed/Food Categorization System of the Codex General Standard for Contaminants and Toxins in Foods should be added to the list of maximum levels.

Status of the Proposed Draft Maximum Levels for Cadmium

142. The Committee decided to discontinue the setting of maximum levels for crustaceans, liver (cattle, poultry, pig and sheep) and kidney (cattle, poultry, pig and sheep) as these food groups were minor contributors to exposure from cadmium. The Executive Committee would be informed of this decision.

143. The Committee returned the proposed draft maximum levels for fruit; wheat grain; milled rice; soybean and peanuts; meat of cattle, poultry, pig and sheep; meat of horse; vegetables; peeled potatoes, stem and root vegetables; leafy vegetables, fresh herbs, fungi and celeriac and molluscs to Step 3, for circulation, comments and further consideration at its next Session (see Appendix XIV). The Committee agreed to request JECFA to 1) to give distribution curves for the cadmium contamination levels for the food groups mentioned above and, 2) to perform an exposure and risk assessment for cadmium resulting from consumption of foods in the above mentioned food groups taking into account three different levels, i.e., the draft maximum levels presently at step 3, one level lower and one level higher than the proposed draft maximum levels.

PROPOSED DRAFT MAXIMUM LEVELS FOR TIN (Agenda Item 16c)

144. The 31st CCFAC (March 1999) advanced the proposed draft maximum levels for tin (200 mg/kg in liquid canned foods, 250 mg/kg in solid canned foods) to the Commission for adoption at Step 5. The 23rd Session (July 1999) of the Commission decided to hold the proposed draft maximum levels at Step 5 pending the reevaluation of the acute toxicity of tin by the JECFA. The 55th JECFA meeting (June 2000) maintained the provisional tolerable weekly intake (PTWI) of 14 mg/kg. JECFA reiterated the conclusion reached at its 33rd meeting (1989) that the limited human data available indicated that concentrations of 150 mg/kg in canned beverages and 250 mg/kg in other canned foods may produce acute manifestations of gastric irritation in certain individuals. The 33rd CCFAC (March 2001) agreed to reexamine the proposed draft levels for tin at its current meeting.

145. The delegation of Thailand, supported by other delegations, indicated that the JECFA had based its conclusion on very limited data, so that more data should be available before taking any decisions on maximum levels. The delegation of Spain, speaking on behalf of the European Community, indicated that the European Scientific Committee on Foods had agreed with the JECFA opinion on the possible acute toxicity of 150 mg/kg in canned beverages and 250 mg/kg in other canned foods, but that in any case, the proposed draft maximum levels for tin were too high. This delegation indicated the need to establish maximum levels as soon as possible, and possibly to set separate levels for canned foods for young children. The delegation of the United Kingdom reported on several possible incidences of tin intoxication in the United Kingdom at levels in the range of 250 mg/kg. The delegation of the United States indicated that more data was needed on levels, the key features causing high tin levels, and also on the technological aspects of using uncoated tin cans.

77 CX/FAC 02/25
78 ALINORM 99/12A, para. 131 and Appendix IX
79 ALINORM 99/37, paras. 185-186.
81 ALINORM 01/12A, para. 112
Status of the Proposed Draft Maximum Levels for Tin

146. The Committee returned the maximum levels for tin (200 mg/kg in liquid canned foods and 250 mg/kg in solid canned foods) to Step 3 for circulation, comments and further consideration at its 35th Session (see Appendix XV). The Committee agreed to request information on acute toxicity, the levels in liquid canned foods and solid canned foods and the technological aspects in regard to the use of lacquered and non-lacquered cans in the Circular letter to this report.

147. The Committee also agreed that the delegation of Australia would revise the Discussion Paper on Tin for circulation, comments and further consideration at its 35th Session.

POSITION PAPER ON DIOXINS AND DIOXIN LIKE PCBs, INCLUDING METHODS OF ANALYSIS FOR DIOXINS AND DIOXIN LIKE PCBs (Agenda item 16d)

148. The 33rd CCFAC agreed that the Netherlands would revise the Position Paper on Dioxins and Dioxin Like PCBs for circulation, comment and consideration at the 34th CCFAC. The Committee also requested governments to submit all available information on methods of analysis for dioxins and dioxin like PCBs in foods and feedingstuffs to the delegation of the Netherlands.

149. The Committee was informed that the revised Position Paper took account of the results of the 57th JECFA meeting (June 2001) and that the data on levels and regulations in several member states were included.

150. The delegation of the WHO informed the meeting that the Stockholm Convention on Persistent Organic Pollutants (POPs), which included dioxins and dioxin-like PCBs, contained useful information for the CCFAC. This delegation also informed the meeting about a third survey of dioxin-levels in breast milk as an indicator of general dioxin-contamination in the environment, and invited member states to participate in this ongoing survey. The delegation of IBFAN indicated concern about the risk of prenatal and postnatal exposure of infants who are at the end of the food chain and suggested that it was therefore important to reduce dioxin-levels in breast milk.

151. Many delegations indicated that the Position Paper should be kept on the agenda of the CCFAC, as it was important to reduce global dioxin levels in the environment and in food. They recognized the lack of data on dioxins in foods and feedingstuffs from most regions of the world. These delegations indicated that it was important to reduce dioxin levels by a combination of source directed measures and the setting of maximum levels in the future for dioxins and dioxin-like PCBs in foods and feedingstuffs, as it might be possible that in some countries or regions, the lifelong median intake will exceed the PTMI as set by the JECFA. Other delegations argued that the CCFAC should focus only on source directed measures as the most effective tool to reduce dioxin levels on a global level.

152. Several delegations indicated that there was a need for inexpensive, practical and validated analytical (screening) methods to determine dioxins and dioxin-like PCBs, especially for use by developing countries. The Committee was informed that the CCMAS was considering analytical methods for dioxins and dioxin-like PCBs and that the next Session of the CCMAS would take place in November 2002 (see Agenda Item 18a).

Status of the Position Paper on Dioxins and Dioxin-Like PCBs, Including Methods of Analysis for Dioxins and Dioxin Like PCBs

153. The Committee agreed that it should focus its discussions on dioxins and dioxin-like PCBs only and that non-dioxin like PCBs should not be considered at present. The Committee agreed that it should not draft maximum levels at this time. The Committee agreed that the Netherlands, assisted by Argentina, Belgium, Brazil, Canada, Iceland, Japan, Korea, Norway, the United Kingdom, the United States, the EC and the FEFAC, would revise the Position Paper on Dioxins and Dioxin Like PCBs, including Methods of Analysis for Dioxins and Dioxin Like PCBs, to take account of the above discussions and the comments received for circulation.

82 CX/FAC 02/26 and comments submitted by Australia, Brazil, Germany, EC (CX/FAC 02/26-Add.1), Argentina, Cuba, India, USA, CIAA, EC (CRD 15), Canada, Japan, Philippines (CRD 20)
83 ALINORM 01/12A, paras. 176-177.
additional comments and further consideration at its next Session. The Committee stressed the need of collecting data on dioxin levels in foods and feedingstuffs as well as exposure data from regions outside Europe. The Committee also agreed to request information on actual dioxin and dioxin-like PCB levels and information on inexpensive, quick and validated analytical (screening, confirmation) methods in the Circular Letter to this report.

PROPOSED DRAFT CODE OF PRACTICE FOR SOURCE DIRECTED MEASURES TO REDUCE DIOXIN CONTAMINATION OF FOODS (Agenda item 16e)\(^{84}\)

154. The 33rd CCFAC agreed\(^{85}\) to return the proposed draft Code of Practice for Source Directed Measures to Reduce Dioxin and Dioxin Like PCB Contamination of Foods to Step 2 for revision under a drafting group led by Germany for circulation, comment and consideration at the 34th CCFAC.

155. The delegations of the United States and Canada indicated that the text on the reduction of chlorine dioxide as a bleaching agent in paper pulp production by chlorine-free bleaching in paragraph 10 should be deleted as the use of chlorine dioxide in pulp and paper manufacturing, as a substitute for chlorine, had led to a marked reduction of emissions of dioxins in the environment.

Status of the Proposed Draft Code of Practice for Source Directed Measures to Reduce Dioxin and Dioxin-like PCB Contamination of Foods

156. The Committee agreed to request comments on the proposed draft Code of Practice for Source Directed Measures to Reduce Dioxin and Dioxin Like PCB Contamination of Foods (CX/FAC 02/27) in the Circular Letter to this report. On the basis of the comments submitted, the proposed draft Code of Practice for Source Directed Measures to Reduce Dioxin and Dioxin Like PCB Contamination of Foods would be revised by the drafting group led by Germany, with the assistance of Canada, Finland, Japan, the Netherlands, the United States and the CEFC, for circulation, additional comments and further consideration at its next Session.

POSITION PAPER ON CHLOROPROPANOLS (Agenda item 16 f)\(^{86}\)

157. The 33rd CCFAC requested\(^{87}\) the drafting group led by the United Kingdom to revise the Position Paper on Chloropropanols for circulation, comment and consideration at the 34th CCFAC.

158. The delegation of Thailand pointed out that industries and government of Thailand have worked on the process of production of soy sauce made from acid-HVP and have been able to reduce 3-MCPD down to the level of 1 mg/kg. At this level, it is sufficient to protect consumers health and technologically achievable, therefore, setting the maximum level for 3-MCPD in soy sauce made from acid-VP at 1 mg/kg was proposed. Most delegations and the representative of the IHPC were in favour of setting maximum levels for chloropropanols in non-naturally fermented soy-sauce and hydrolyzed vegetable protein (HVP) as soon as possible as international trade problems existed at the moment. Some delegations indicated that limits should only be set for non-naturally fermented soy sauces. The delegation of the United Kingdom indicated that also other food groups like bread and meat might contribute to the chloropropanol exposure in food, but that more data was needed.

159. The 57th JECFA meeting (June 2001) had indicated that 1,3-DCP could be considered controllable by controlling the levels of its precursor, 3-MCPD, based on the fixed ratio found on the basis of the data available to JECFA at that moment. The delegation of the United Kingdom indicated that recent surveys showed that the ratio between 3-MCPD and 1,3 DCP was not as fixed as was reported by the JECFA meeting.

\(^{84}\) CX/FAC 02/27 and CX/FAC 02/27-Add. 1 (not issued)
\(^{85}\) ALINORM 01/12A, para. 180
\(^{86}\) CX/FAC 02/28 and comments submitted by Australia (CX/FAC 02/28-Add. 1), Australia, Japan, Thailand, CIAA, EC, IHPC (CRD 16) and the Philippines (CRD 20)
\(^{87}\) ALINORM 01/12A, para. 182
Status of the Position Paper on Chloropropanols

160. The Committee agreed that the United Kingdom, with the assistance of Canada and the United States, would revise the Position Paper on Chloropropanols, taking into account the comments received, including a proposal for maximum levels for chloropropanols in relevant foodstuffs, for circulation, additional comments and further consideration at its next Session.

DISCUSSION PAPER ON DEOXYNIVALENOL (Agenda Item 16g) 88

161. The 33rd CCFAC agreed 89 that a drafting group under the direction of Belgium would elaborate a Discussion Paper on Deoxynivalenol for consideration at its current meeting.

162. The delegation of Belgium, supported by several other delegations, indicated that the analytical methods for Deoxynivalenol and mean intakes from 4 out 5 regions were available. It was stressed that the presence of Deoxynivalenol in cereals was affected by Good Agricultural Practices and levels may vary dramatically from year to year, but also that levels are highly dependent on climatic conditions. Moreover, it was stated that exposure of young children sometimes exceeded the TDI. The delegation of the United States indicated that more information was needed on DON levels worldwide and on the influence of processing on the removal of Deoxynivalenol. The Committee deleted paragraph 50 from the discussion paper.

Status of the Discussion Paper on Deoxynivalenol

163. The Committee agreed that the drafting group led by Belgium, with the assistance of Canada, Denmark, Germany, the Netherlands, Switzerland, the United States and the EC, would revise the Discussion Paper on Deoxynivalenol while introducing, if possible, a proposal for a maximum limit for Deoxynivalenol in cereals for circulation, comment and further consideration at its next meeting. The Committee also agreed to request additional information and data on the occurrence of deoxynivalenol in cereals, as well as the results of any studies on the effects of processing, in the Circular Letter to this report.

COMMENTS ON THE PRIORITY LIST OF FOOD ADDITIVES, CONTAMINANTS AND NATURALLY OCCURRING TOXICANTS PROPOSED FOR EVALUATION BY JECFA (Agenda item 17) 90

164. The 33rd Session of the CCFAC agreed to request 91 additional comments for additions or amendments to its Priority List for consideration at the current meeting. Mr J. Dornseiffen (Netherlands) introduced the report of the Informal ad hoc Working Group on Priorities.

165. The Committee agreed to add several food additives and contaminants to the priority list. Information was required on the availability of relevant data on beeswax, candelilla wax, and aluminium, which were added to the priority list on the basis of their consideration for inclusion in the General Standard for Food Additives, especially as no country or international organization had offered to provide data. This information, as well as information on the distribution of contamination of relevant commodities by cadmium, would be solicited by means of the circular letter to this report.

166. The Delegation of the Netherlands informed the Committee that a two-year toxicity study on benzo[a]pyrene had been completed and could be made available to JECFA at any time. The Committee confirmed that other polycyclic aromatic hydrocarbons should be included in the review of benz[a]pyrene.

88 CX/FAC 02/29
89 ALINORM 01/12A, para. 197
90 Comments submitted in response to CL 2001/13-FAC and CL 2001/41-FAC from Australia, Brazil, Canada, Czech Republic (CX/FAC 02/30), Cuba, Denmark, Japan (CRD 17), Iceland, USA (CRD 19), and Report of the Informal ad hoc Working Group on Priorities (CRD 21).
91 ALINORM 01/12A, para. 187 and Appendix XVI
167. Recognizing the need for long-term planning in view of the large number of substances that have been placed on the priority list, the Committee agreed that it would begin developing tentative schedules for more than one year in the future. To assist in this process, information would be solicited on when data could be made available on the substances on the priority list. Delegations and international organizations that propose more than one substance to be placed on the priority list in the future would be asked to prioritize them, which would also assist the Committee in establishing its priorities.

168. The Committee agreed on the Priority List of Food Additives, Contaminants, and Naturally Occurring Toxicants Proposed for Evaluation by JECFA as presented in Appendix XVI. The substances of highest priority were indicated with a footnote. The JECFA Secretariat stated that it might not be possible to include all of the substances given high priority on the agenda of the sixty-first meeting of JECFA in 2003.

169. The Committee agreed to request additional comments for additions or amendments to its Priority List for consideration at its next Session.

OTHER BUSINESS AND FUTURE WORK (Agenda Item 18)

COMMENTS ON METHODS OF ANALYSIS FOR THE DETERMINATION OF FOOD ADDITIVES AND CONTAMINANTS IN FOODS (Agenda Item 18a)

170. The 33rd Session of the CCFAC agreed to request information on all available analytical methods for dioxins and dioxin like PCBs in food and feedingstuffs as well as sampling plans when recommending methods of analysis for the determination of food additives and contaminants in foods.

Endorsement of Methods of Analysis by the Codex Committee on Methods of Analysis and Sampling

171. The Committee noted that the 23rd Session of the CCMAS endorsed methods of analysis for the determination of cadmium, copper, iron, lead and zinc in all foods as well as methods of analysis for the detection of irradiated foods. It was also noted that the CCMAS felt that it would not be procedurally correct to endorse a method before relevant Codex provisions had been established.

Methods of Analysis Forwarded for Endorsement to the Codex Committee on Methods of Analysis and Sampling

172. The Committee agreed to forward methods of analysis for the determination of food additives and contaminants in foods, as contained in working document CX/FAC 01/31-Add.1, with the exception of analytical methods for the determination of vitamins as they did not fall under the Terms of Reference of the CCFAC (see Appendix XVII), to the 24th Session of the CCMAS for endorsement.

173. With regard to methods of analysis for the determination of dioxins and dioxin like PCBs, the CCFAC noted that the next CCMAS would consider a paper in which information on methodologies for the determination of these compounds was being compiled. In view of this, the Committee agreed that comments should be submitted directly to the CCMAS and in this regard, the Secretariat would provide a report to the next Session of the CCFAC as to the outcome of the CCMAS discussions.

Methods of Analysis for the Determination of Contaminants

174. At the suggestion of the delegation of France, the Committee agreed to request clarification from the CCGP as to point (d) of the CCFAC terms of reference which state that the Committee considers methods of analysis for their determination in food. The Committee requested clarification as to whether or not the

92 Comments submitted in response to CL 2001/13-FAC by Brazil, EC (CX/FAC 02/31), Germany (CX/FAC 02/31-Add.1) and Cuba (CRD18).
93 ALINORM 01/12A, paras. 176 and 194
94 ALINORM 01/23 paras. 86-87, 100-106 and Appendix IV-Part III.
95 ALINORM 01/23 paras. 13-15
term of reference allowed the consideration of analytical methods for both food additives and contaminants by the CCFAC. This was felt to be especially important because of apparent inconsistencies with point (d) of the CCMAS terms of reference\(^{97}\) in that exemptions from the consideration of methods of analysis by the CCMAS appeared to only apply to the assessment of food additive specifications.

175. In addition, the section concerning Relations Between Commodity Committees and General Committees in regard to methods of analysis and sampling\(^{98}\) apparently only exempts methods of analysis for food additive specifications in that “Methods of Analysis included in Codex Advisory Food Additives Specifications, for the purpose of verifying the criteria of purity and identity of the food additive, need not be referred to the Codex Committee on Methods of Analysis and Sampling for endorsement. The Codex Committee on Food Additives and Contaminants is responsible for carrying out the steps of the Procedure.”

FUTURE WORK

Discussion Paper on the Development of a Code of Practice for the Reduction of Aflatoxin Contamination in Peanuts

176. The Committee agreed that South Africa, with the assistance of Australia, Brazil, India, Thailand, United Kingdom and the USA, would prepare a Discussion Paper on the Development of a Code of Practice for the Reduction of Aflatoxin Contamination in Peanuts for circulation, comment and further consideration at its next meeting.

Inclusion of Sorghum in the Proposed Draft Code of Practice for the Prevention (Reduction) of Mycotoxin Contamination in Cereals, including Annexes on Ochratoxin A, Zearalenone, Fumonisins and Tricothecenes

177. The delegation of Sudan, supported by Ghana, referred to the need for establishing MRLs for Ochratoxin A and Aflatoxins in sorghum as this was an important commodity in the African Region affected by mycotoxin contamination. The Committee recalled that the proposed ML for Ochratoxin A in raw wheat, barley and rye and derived products was already put forward for adoption at Step 8 by the Commission. The Committee therefore agreed that Sudan would send comments on the potential inclusion of sorghum in the Proposed Draft Code of Practice for the Prevention (Reduction) of Mycotoxin Contamination in Cereals, including Annexes on Ochratoxin A, Zearalenone, Fumonisins and Tricothecenes for consideration at the next CCFAC.

Toxic Seed Contamination in Grains

178. The Committee also considered a proposal from South Africa to examine toxic seed contamination in grain as an item for discussion at its next meeting. In this regard, the Committee was reminded that the Codex Committee on Cereals, Pulses, Legumes (CCCPL) had already considered this matter under the contaminants section in several of its commodity standards and therefore, no action was required at present by the CCFAC in this respect. The Committee agreed however that South Africa might raise this issue again at the next CCFAC session after reviewing the adequacy of the CCCPL texts.

DATE AND PLACE OF NEXT SESSION (Agenda Item 19)

179. The Committee was informed that the 35th Session of the Codex Committee on Food Additives and Contaminants was tentatively scheduled to be held in the Netherlands from 17-21 March 2003, subject to discussions between the Dutch and Codex Secretariats.

AVE ATQUE VALE

180. The Committee noted the pending retirement of Dr. John Herrman, WHO Secretary to JECFA, after over more than ten years of contribution to the work of CCFAC. The Committee expressed its sincere appreciation for the work and devotion of Dr. Herrman to the goals of the CCFAC and wished him good health and long life in his retirement.
<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>STEP</th>
<th>FOR ACTION BY:</th>
<th>DOCUMENT REFERENCE (ALINORM 03/12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Draft and Draft Revisions to Table 1 of the Codex General Standard for Food Additives</td>
<td>5/8</td>
<td>25<sup>th</sup> CAC</td>
<td>Para. 61 and Appendix II</td>
</tr>
<tr>
<td>Draft Revision to the INS for Food Additives (Sodium potassium tripolyphosphate – INS 452(vi))</td>
<td>5(Accel)</td>
<td>25<sup>th</sup> CAC</td>
<td>Para. 97 and Appendix VII</td>
</tr>
<tr>
<td>Draft Maximum Level for Ochratoxin A in Raw Wheat, Barley and Rye and Derived Products</td>
<td>8</td>
<td>25<sup>th</sup> CAC</td>
<td>Para. 114 and Appendix IX</td>
</tr>
<tr>
<td>Draft Maximum Level for Patulin in Apple Juice and Apple Juice Ingredients in Other Beverages</td>
<td>8</td>
<td>25<sup>th</sup> CAC</td>
<td>Para. 118 and Appendix X</td>
</tr>
<tr>
<td>Proposed Draft Revised Recommended International Code of Practice for Radiation Processing of Food</td>
<td>5/8</td>
<td>25<sup>th</sup> CAC</td>
<td>Para. 88 and Appendix V</td>
</tr>
<tr>
<td>Specifications for the Identity and Purity of Food Additives</td>
<td>5/8</td>
<td>25<sup>th</sup> CAC</td>
<td>Para. 95 and Appendix VI</td>
</tr>
<tr>
<td>Proposed Draft Revisions to the INS for Food Additives (163(iv), 163(v), 165, 407, 445, 650, 949, 961)</td>
<td>5/8</td>
<td>25<sup>th</sup> CAC</td>
<td>Para. 97 and Appendix VII</td>
</tr>
<tr>
<td>Proposed Draft and Draft Revisions to Table 1 of the Codex General Standard for Food Additives</td>
<td>3 and 6</td>
<td>Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 60 and Appendix III</td>
</tr>
<tr>
<td>Draft Revisions to the Annex to Table 3 of the Codex General Standard for Food Additives</td>
<td>6</td>
<td>Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 64 and Appendix IV</td>
</tr>
<tr>
<td>Draft Revised Codex General Standard for Irradiated Foods</td>
<td>6</td>
<td>Comments Philippines Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 81</td>
</tr>
<tr>
<td>Draft Maximum Level for Lead in Fish</td>
<td>6</td>
<td>Comments Denmark 35<sup>th</sup> CCFAC</td>
<td>Paras. 133-134 and Appendices XIII and XX</td>
</tr>
<tr>
<td>Proposed Draft Revisions to the INS for Food Additives (Mineral Oil – INS 905)</td>
<td>5</td>
<td>50<sup>th</sup> CCEEXEC Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 97 and Appendix VII</td>
</tr>
<tr>
<td>Proposed Draft Code of Practice for the Prevention of Patulin Contamination in Apple Juice and Apple Juice Ingredients in Other Beverages</td>
<td>5</td>
<td>50<sup>th</sup> CCEEXEC Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 122 and Appendix XI</td>
</tr>
<tr>
<td>Proposed Draft Code of Practice for the Prevention (Reduction) of Mycotoxin Contamination in Cereals, Including Annexes on Ochratoxin A, Zearalenone, Fumonisins and Tricothecenes</td>
<td>5</td>
<td>50<sup>th</sup> CCEEXEC Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 125 and Appendix XII</td>
</tr>
<tr>
<td>Proposed Risk Assessment Policy Statement for the Application of Risk Analysis Principles to the Standard Setting Activities of the CCFAC in Conjunction with Risk Assessments Performed by JECFA</td>
<td>3</td>
<td>Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 30 and Appendix XXI</td>
</tr>
<tr>
<td>Proposed Draft Principles for Exposure Assessment of Contaminants and Toxins in Foods</td>
<td>3</td>
<td>Comments Australia/FRA Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 109 and Appendix VIII</td>
</tr>
<tr>
<td>Proposed Draft Maximum Levels for Cadmium</td>
<td>3</td>
<td>Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 143 and Appendix XIV</td>
</tr>
<tr>
<td>Proposed Draft Maximum Levels for Tin</td>
<td>3</td>
<td>Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 146 and Appendix XV</td>
</tr>
<tr>
<td>Proposed Draft Code of Practice for Source Directed Measures to Reduce Dioxin and Dioxin Like PCB Contamination of Foods</td>
<td>2/3</td>
<td>Germany Comments 35<sup>th</sup> CCFAC</td>
<td>Para. 156</td>
</tr>
<tr>
<td>Title</td>
<td>Source/Comments</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Proposed Draft Revised Preamble to the Codex General Standard for Food Additives</td>
<td>France/USA Comments 35th CCFAC</td>
<td>Para. 51</td>
<td></td>
</tr>
<tr>
<td>Proposed Draft Revised Food Category System of the Codex General Standard for Food Additives</td>
<td>USA Comments 35th CCFAC</td>
<td>Para. 54</td>
<td></td>
</tr>
<tr>
<td>Proposed Draft Code of Practice for the Reduction of Aflatoxin Contamination in Tree Nuts</td>
<td>50th CCEXEC China Comments 35th CCFAC</td>
<td>Para. 128</td>
<td></td>
</tr>
<tr>
<td>Proposed Draft Code of Practice for the Prevention and Reduction of Lead in Food</td>
<td>50th CCEXEC USA Comments 35th CCFAC</td>
<td>Para. 138</td>
<td></td>
</tr>
<tr>
<td>Discussion Paper on Processing Aids and Carriers</td>
<td>Comments 35th CCFAC</td>
<td>Para. 68</td>
<td></td>
</tr>
<tr>
<td>Discussion Paper on the Use of Active Chlorine</td>
<td>Denmark Comments 35th CCFAC</td>
<td>Para. 73</td>
<td></td>
</tr>
<tr>
<td>Discussion Paper on the Harmonization of Terms Used by Codex and JECFA for Sub-Classes and Technological Functions</td>
<td>Codex Comments 35th CCFAC</td>
<td>Para. 97</td>
<td></td>
</tr>
<tr>
<td>Schedule 1 of the Codex General Standard for Contaminants and Toxins in Foods</td>
<td>NL/Codex 35th CCFAC</td>
<td>Para. 104 - 105</td>
<td></td>
</tr>
<tr>
<td>Maximum Level for Patulin in Apple Juice and Apple Juice Ingredients in Other Beverages</td>
<td>Comments 35th CCFAC</td>
<td>Para. 119</td>
<td></td>
</tr>
<tr>
<td>Discussion Paper on Aflatoxins in Tree Nuts</td>
<td>Iran Comments 35th CCFAC</td>
<td>Para. 127</td>
<td></td>
</tr>
<tr>
<td>Information on Aflatoxin Contamination in Tree Nuts, including Methods of Analysis for the Determination of Aflatoxins in Tree Nuts</td>
<td>Comments 35th CCFAC</td>
<td>Para. 127</td>
<td></td>
</tr>
<tr>
<td>Maximum Levels for Lead in Milk and Milk Fat</td>
<td>Comments 35th CCFAC</td>
<td>Para. 137</td>
<td></td>
</tr>
<tr>
<td>Discussion Paper on Tin</td>
<td>Australia Comments 35th CCFAC</td>
<td>Para. 147</td>
<td></td>
</tr>
<tr>
<td>Position Paper on Dioxins and Dioxin Like PCBs, Including Methods of Analysis for Dioxins and Dioxin-Like PCBs</td>
<td>Netherlands Comments 35th CCFAC</td>
<td>Para. 153</td>
<td></td>
</tr>
<tr>
<td>Position Paper on Chloropropanols</td>
<td>United Kingdom Comments 35th CCFAC</td>
<td>Para. 160</td>
<td></td>
</tr>
<tr>
<td>Discussion Paper on Deoxynivalenol</td>
<td>Belgium Comments 35th CCFAC</td>
<td>Para. 163</td>
<td></td>
</tr>
<tr>
<td>Priority List of Food Additives, Contaminants and Naturally Occurring Toxicants Proposed for Evaluation by JECFA</td>
<td>Comments 35th CCFAC</td>
<td>Para. 168 – 169 and Appendix XVI</td>
<td></td>
</tr>
<tr>
<td>Methods of Analysis for the Determination of Food Additives and Contaminants in Foods</td>
<td>24th CCMAS</td>
<td>Para. 172 and Appendix XVII</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF PARTICIPANTS
LISTE DES PARTICIPANTS
LISTA DE PARTICIPANTES

Chairman of the Session: Mr. Edwin F.F. Hecker
Président de la Session: Ministry of Agriculture, Nature Management and Fisheries
Presidente de la Reunión: P.O. Box 20401
The Hague
The Netherlands
Tel.: +31.70.378.5686
Fax: +31.70.378.6141
E-mail: E.F.F.Hecker@vva.agro.nl

ALGERIA
Mr. Noureddine Bendi
Inspecteur Régional des Enquêtes Economiques et de la Répression des Fraudes d'Alger
Ministère de la Commerce
Boulevard Mohamed V
ALGERIA
Tel: +21321-210989
Fax: +21321-210992

Mrs. Nihed Bourbia
Docteur Vétérinaire
Ministere du Commerce
Inspectrice Principale de la Qualité, DCP de Blida
ALGERIA
Tel: +21 321 12 0989
Fax: +21 321 12 0992

Mr. M. Boukhemis
Counsellor Diplomatique
Embassy of Algeria
Ahcène
ALGERIA
Tel: +31 70 352 2954
Fax: +31 70 3540222

Mr. M. El-Hacène El Bey
Secrétaire Diplomatique
L’Ambassade feront
ALGERIA
Tel: +39.06.5705.4601
Fax: +398.06.5705.4593

ARGENTINA
Ms. Silvia Raiola
Counsellor of Argentina Embassy
Javastraat 20
2585 AN The Hague
The Netherlands
Tel: +31 70 3654836
E-mail: sar@mrecic.gov.ar

AUSTRALIA
Dr. Paul Brent
Manager Biotechnology
Australia & New Zealand Food Authority
P.O. Box 7186
Canberra, Act 2601
AUSTRALIA
Tel: +61.2.62558005
Fax: +61.2.6271.2278
E-mail: Paul.brent@anzfa.gov.au

1 Participants are listed in alphabetical order, Heads of delegations are listed first
Mr. James Gruber
Principal Food Technologist
Australia New Zealand Food Authority
P.O.Box 7186 Blakaustreet 55
Canberra, Act 2610
Barton
AUSTRALIA
Tel: +61.2.62712226
Fax: +61.2.62712278
E-mail: jim.gruber@anzfa.gov.au

Ms. Rose Hockham
Assistant Manager - Codex Australia
Agriculture, Fisheries and Forestry - Australia
P.O.Box 858
Canberra, Act 2601
AUSTRALIA
Tel: +61.2.62725060
Fax: +61.2.62723103
E-mail: rose.hockham@affa.gov.au

Dr. Melanie O’Flynn
Director Residues & Standards Branch
Agriculture Fisheries Forestry Australia
P.O. Box 858,
Canberra, Act 2601
AUSTRALIA
Tel: +61.2.62724549
Fax: +61.2.62724023
E-mail: melanie.oflynn@affa.gov.au

Dr. Luba Tomaska
Program Manager, Food Safety Standards
Australia New Zealand Food Authority
PO BOX 7186
Canberra, Act 2601
Tel: +61. 2 6271 2259
Fax: +61. 2 6271 2278
e-mail: Luba.tomaska@anzfa.gov.au

Mr. Tony Battaglene
Director
Canberra Wine Bureau
P.O. Box 1322
Canberra, Act 2601
AUSTRALIA
Tel: +61.2.62497162
Fax: +61.2.62498653
E-mail: tbatagglene@ozmail.com.au

Dr. Simon Brooke-Taylor
Director/Principal Consultant
Brooke-Taylor Pty. Ltd.
Suite 34 4 Goulburn Street
Sydney, NSW 2000
AUSTRALIA
Tel: +61.411.156.773/+61.2.9266.0630 Fax: +61.2.9266.0650
E-mail: simon@brooketaylor.com.au

Mr. Ted Loveday
Managing Director
Seafood Services Australia
39 Upper Lancaster Road
Ascot 4007, Queensland
AUSTRALIA
Tel: +61.7.3314.8777
Fax: +61.7.3862.4718
E-mail: tedloveday@seafoodservices.com.au

AUSTRIA

Dr. Michael Sulzner
Federal Ministry for Social Security and Generations
Radetzkystrasse 2
1031 Vienna
AUSTRIA
Tel: +4317.1100.4793
Fax: +4317.1379.52
E-mail: michael.sulzner@bmsg.gv.et

BELGIUM

Dr. Christine Vinkx
Health Inspector
Ministry of Health
Boulevard Pachêco, 19 Bte5
B-1010 Brussel
BELGIUM
Tel: + 32.2.210.4837
Fax: + 32.2.210.4816
E-mail: Christine.vinkx@health.fgov.be

Ms. Sylvie Nangniot
Health Inspector
Ministry of Health
Boulevard Pachêco , 19 Bte 5
B-1010 Brussel
BELGIUM
Tel: +00.32.2.210.63.78
Fax: +00.32.2.210.4816
E-mail: Sylvie.nangniot@health.fgov.be
BRAZIL

Flávio S. Damico
First Secretary
Ministry of Foreign Relations
17-B Ancienne Route
1218 Gd Taconnex
Geneva
BRAZIL
Tel: +4122.9290913
Fax:+4122.7882505

Mrs. Fabiana Reis
Manager on Food and Science Technology
National Agency of Sanitary Surveillance
Ministry of Health
SEPN 515, Bloco B, Edificio Ômega
BRAZIL
Tel: +55.61.448.1116
Fax:+55.61.448.1080
e-mail: fabiana.reis@anvisa.gov.br

Eugênia Azevedo Vargas
Ministry of Agriculture
Av. Raja gabaglia 245
Cidade Jardim
BRAZIL
Tel: +55 31 3250 0398
Fax: +55 31 3250 0399
e-mail: gena@cdlnet.com.br

Maria Cecilia Figueiredo Toledo
Professor
Faculty of Food Engineering
University of Campinas
13081-970 Campinas
CP6121
BRAZIL
Tel: +55.19.37882170
Fax:+55.19.37882170/
+55.19.32891513
E-mail: macecil@fea.unicamp.br

Amélia Mitico Nishikawa Barbosa
Ministry of Agriculture
Chefe da Seção de Fisico-quimica
Rodovia Heistor Penteado km 3,5
Rua Raul Ferrari s/n
BRAZIL
Tel: +55 19 3252 0155
Fax: +55 193252 4835
E-mail: jrcsb@terra.com.br

CANADA

Mr. John Salminen
Chief Chemical Health Hazard Assessment
Division
Bureau of Chemical Safety, Health Products Food
Branch/Sir Frederick Banting Building 2201B1
Tunney’s Pasture
K1A OL2 Ottawa, Ontario
CANADA
Tel: + 1 613 957 1700
Fax: + 1 613 990 1543
E-mail: john_salminen@hc-sc.gc.ca

Dr. Bruce H. Lauer
Head of Food Additives and Contaminants
Chemical Health Hazard Assessment Division
Bureau of Chemical Safety/Health Products Food
Branch/Sir Frederick Banting Building
2201B1
K1A OL2 Ottawa, Ontario
CANADA
Tel: + 1 613 957 1696
Fax: + 1 613 990 1543
E-mail: bruce_lauer@hc-sc.gc.ca

CHINA

Zhou Dan Tang
Director YoYi Road No33
Hexi Dist. Tianjia P.R.C.
CHINA
Tel: 0086 22 28335856
Fax: 0086 22 28375856
E-mail: tdzwh@163.com

Dr. Junshi Chen
Academy, Institute of Nutrition and Food Hygiene,
Chinese of Preventive Medicine
CHINA
Tel: +8610.6318.7585
Fax: +8610.6301.1875
E-mail: Jshchen@95777.com

Dr. Zhutian Wang
Institute of Food Control and Inspection, Ministry
of Health P.R. China
CHINA
Tel: +8610.87780693
Fax: +8610.67711813
e-mail: fooding@263.net.cn
Mr. Jianrong Wang
Ministry of Health, P.R. China
NOI X, Zhimenwai
Nanki Peijing
CHINA
Tel: +861068797520
Fax: +861068792387
e-mail: wjr2510@263.net

Mr. Philip Ho Yuk-yin
Consultant
Food and Environmental Hygiene Department
RM 4309
43F Queenway Government Offices
Hong Kong
CHINA
Tel: +852.28675.5600
Fax: +852.2526.8279
E-mail: yyho@fehd.gov.hk

Mr. Wai-on Lee
Senior Chemist
Government Offices
43/F Queensway
66 Queensway
Hong Kong
CHINA
Tel: +852.28675400
Fax: +852.8933547
e-mail: wolee@fehd.gov.hk

Chu Xiaogang
Food Inspection & Research Center
China I/E Commodity Inspection Technology Institute
Director Researcher
No3 Gaobeidian
North Road
Chaoyong District
Beijing, 100025
CHINA
Tel: +0086.10.85771629/85791012
Fax:+3186.10.8575596/85752995
e-mail:xgangchu@163.com /
cxg0909@hotmail.com

CÔTE D’IVOIRE
Dr. Barry Oumou
Sous-Directrice de l’alimentation à la direction de l’alimentation et de la qualité
Ministère de l’agriculture et des ressources animales
B.P.V. 84
Abidjan
CÔTE D’IVOIRE
Tel: +225.2021.9085
Fax: 225.2021.9071
E-mail: osbarry@hotmail.com/
Dag@africaonline.co

CZECH REPUBLIC
Dr. Bohumil Turek
Head of National Centre for Toxic Substances in Food
National institute of Public Health
Srobarova 48
CZ 100 42 Prague 10
CZECH REPUBLIC
Tel: +42.12.67.082317
Fax: +42.12.67.082346/+42.12.67.310291
E-mail: turek@szu.cz

DENMARK
Dr. Dorthe Licht
Scientific Advisor
Danish Veterinary and Food Administration
Moerkroj Bygade 19
DK 2860 Soborg
DENMARK
Tel: +45.33.95.6202
Fax: +45.33.95.6001
E-mail: DLI@FDIR.DK

Ms. Inger Billeskov
Master of Science Msc (Pharmacy)
Danish Dairy Board
Fredenks Alle 22
Aarhus
DENMARK
Tel: +45.87.31.21.91
Fax: +45.87.31.00.01
E-mail: ibi@mejeri.dk
FRANCE

Mrs. Paule Escargueil
Inspecteur Principal, DGCCRF
Ministère de l’Economie, des Finances et de l’Industrie
Boulevard Vincent Auriol 59
75703 Paris, Cedex 13
FRANCE
Tel: +33.1.44.97.32.05
Fax: +33.1.44.97.3043
E-mail: paule.escargueil@dgccrf.finances.gouv.fr

Ms. Marie Thisse
Ministère de l’Agriculture et de la Pêche DGAL,
Chargée de Mission
Rue de Vaugirard 251
75732 CEDEX 15, Paris
FRANCE
Tel: +33.1.49.55.50.07
Fax: +33.1.49.55.59.48
E-mail: marie.thisse@agriculture.gouv.fr

Mr. Hervé Lafforgue
Head of Chemical Risk Group
Danone -CSA
Avenue Galilee 15
92350 Le Plessis Robinson
FRANCE
Tel: +33.1.41.07.84.82
Fax: +33.1.41.07.8954
E-mail: hlafforg@danone.com

Ms. Nadine Josien
Sociéte Roquette Freres Affaires Reglementaires
62136 Lestrem
FRANCE
Tel: +33.3.21.63.3747
Fax: +33.3.21.63.38.50
E-mail: nadin.josien@roquette.com

Mr. Jean-Marc Fremy
AFSSA-LERQHA
rue Pierre Curie 10
F94704 Maisons-Alfort
FRANCE
Tel: +33.(0)1.49.77.27.51
Fax: +33.(0)1.49.77.26.95
E-mail: j.fremy@afssa.fr

Mrs. Christine Guittard
Director Scientific & Regulatory Affairs
Nutrasweet AG.
Impasse des Deux Cousins 6-8
75017 Paris
FRANCE
Tel: +33.156.997.062
Fax: +33.156.997.066
E-mail: christine.guittard@nutrasweet.com

Mr. Jean Charles Leblanc
INRA/DSNHSA
16rue Claude Bernard
75005 Paris
FRANCE
Tel: +33.01.44.08.72.72
Fax: +33.01.44.08.72.76
E-mail: jleblanc@inapg.inra.fr

Mrs. Nelly Delfaut
Chargee de Mission
ATLA
Rue de Chateaudun 42
75314 Paris Cedex 09
FRANCE
Tel: +33.1.49.70.72.72
Fax: +33.1.42.80.63.62
E-mail: trs@atla.asso.fr

Mr. Bernard André
Inspecteur principal, DGCCRF
Ministere de l’Economie et des Finances,
DGCCRF
Boulevard Vincent Auriol 59
75703 Paris Cedex 13
FRANCE
Tel: +33.1.449.73201 Fax: +33.1.449.72486
E-mail: Bernard.andre@dgccrf.finances.gouv.fr

Mr. Pascal Audebert
Charge de mission (Codex Alimentarius)
SCGI- Secteur AGRAP
boulevard Diderot Carré Austerlitz 2
75314 Paris, Cedex 12
FRANCE
Tel: +33.1.44.87.16.03
Fax: +33.1.44.87.16.04
E-mail: pascal.audebert@sgci.finances.gouv.fr
Mr. Hermann Brei
Regierungsdirektor
Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft
Rochusstrasse 1
D-53121 Bonn
GERMANY
Tel: +49.228.529.4655
Fax: +49.228.529.4842
E-mail: Hermann.Brei@BMVEL.Bund.de

Mr. Jörg-Helge Kroke
Member
Bundesministerium für Wirtschaft und Technologie
Villemombler Strasse 76
53123 Bonn
GERMANY
Tel: +49.0.1888.615.4221
Fax: +49.0.1888.615.2765

Dr. Lutz Dehne
Member
Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin
Thielallee 88-92
D-14195 Berlin
GERMANY
Tel: +49.0.308.412.3612/ +49.0.1888.412.3612
Fax: +19.0.1888.412.4741
E-mail: L.dehne@bgvv.de

Dr. Gernot Henseler
Member
Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin
Thielallee 88-92
D-12205 Berlin
GERMANY
Tel: +49.308412.3303
Fax: +49.1888.412.3003
E-mail: g.henseler@bgvv.de

Ms. Carola Schenzler
Advisor
DIN Deutsches Institut für Normung, Normenausschuss Lebensmittel und landwirtschaftliche Produkte (NAL)
D-10772 Berlin
GERMANY
Tel: +49.30.2601.2198
Fax: +49.30.2601.42198
E-mail: carola.schenzler@din.de

Dr. Michael Packert
Advisor
Südzucker AG Mannheim/Ochsenfurt, Forchheimer strasse 2
D-90409 Nuremberg
GERMANY
Tel: +49.911.9344465
Fax: +49.911.9344560
E-mail: mpackert@schoeller.de

Dr. Sandra Dickert
Advisor
Masterfoods GmbH
P.O.Box 110463
D-41728 Viersen
GERMANY
Tel: +49.2.228.375069
E-mail: sandra.dickert@eu.effem.com

Dr. Günther Bruche
member
Staatliches Medizinal-, Lebensmittel-und Veterinärun tersuchungsamt Südessen
Hasengartenstrasse 24
D-65189 Wiesbaden
GERMANY
Tel: +49.0.611.7608137
Fax: +49.0.611.713515
E-mail: g.bruche@uaw.hessen.de

Dr. Heino Rosner
Member
Federal Institute for Health Protection of Consumers and Veterinary Medicine
Thielallee 88-92
BERLIN
GERMANY
Tel: +49.30.8412.4812
Fax: +49.30.8412.3374
E-mail: h.rosner@bgvv.de

Mrs. Anke Sentko
Consultant International Regulatory Affairs
Bund für Lebensmittelrecht und Lebensmittelkunde e. V.
Strasserweg 13
D-77830 Buehlertal
GERMANY
Tel: +49.7223.7768
Fax: +49.7223.74528
E-mail: sentko@aol.com
GHANA
Mrs. Isabella Mansa Agra
Senior Scientific Officer
Ghana Standardss Board
P.O.Box MB 245
Accra
GHANA
Tel: +233.21.500065/6
Fax: 233.21.500092
E-mail: isabelmansa@yahoo.com

Mr. Jonathan Yaw Martey
Principal Regulatory officer
Food and Drug Board
P.O. Box CT 2783
Cantonments Accra
GHANA
Tel: +233.21.661248/673090
Fax: +233.21.660389
E-mail: fdb@ghana.com

HUNGARY
Dr. Judit Sohár
Head of Department of Food Additives and Contaminants
National Institute of Food Hygiene and Nutrition “Fodor József” National Centre of Public Health
P.O.Box 52
H-1476 Budapest
HUNGARY
Tel: +36.1.215.5293
Fax: +36.1.215.1545
E-mail: h13114soh@ella.hu

T. Szerdahelyi
Senior Officer
Ministry of Agriculture and Regional Development
P.O.Box 55
1860 Budapest
HUNGARY
Tel: +36.1.301.411
Fax: +36.1.301.4808
E-mail: tanya.szerdahelyi@fvm.hu

ICELAND
Dorothea Johannsdottir
Economist
Skúlagata 4
150 Reykjavik
ICELAND
Tel: +3545609670
Fax:+3545621853
e-mail: dora@hafro.is

INDIA
Mrs. Vibha Puri Das
Joint Secretary
Ministry of Food Processing Industries
Punchsheel Bhavan, Khel Gaon Marg.
1100049 New Delhi
INDIA
Tel: +011.64.92476
Fax:+011.6493228
E-mail: vibhapuri@nic.in

Dr. N.N. Varshney
(Specialist IV)
National Dairy Development Board
388001 Anand
INDIA
Tel: +91 269226252
Fax: +91.2692.60157
E-mail: nnv@anand.nddb.ernet.in

Dr. Mrs. Rekha Bhargava
Joint Secretary
Ministry of Human Resource Development
Department of Woman and Child Development
Shastri Bhavan
New Delhi-110001
Tel: +011.3386227
Fax:+011.3381800
e-mail: r_bhargava@nic.in
Mr. Surendra Singh
Assistant Director (consultancy)
Ministry of Food Processing
Industries
Panchsheel Bhavan
Aufust Kranti Marg
New Delhi-110049
Tel:+011.6493224
Fax:+011.6493228
e-mail: tarkar2002@yahoo.co.uk

INDONESIA

Dr. Andriyono Kilat Adhi
Agricultural Counsellor
Indonesian Mission to EC
Boulevard de la Woluwe 38
1200 Brussels
Tel:+32 2 799 0915
Fax:+32 2 772 8190
e-mail: attani@primebxl.be

IRAN

Dr. Hassan Yazdanpanah
Assistant Professor of Toxicology
School of Pharmacy, Shaheed Beheshti Univ. Med. Sci.
P.O.Box. 14155 -6153
Tehran
IRAN
Tel: +98.21.877.42.83
Fax: +98.21.879.50.08
E-mail: hasyazdan@yahoo.com

Mr. Mohammad Hossein Shahrokh Hassanpour
Head of Food Dep.
ISIRI
P.O. Box 31585 163
Karaj
IRAN
Tel: +98.261.2803889
Fax: +98.261.2803889
E-mail: Msh_55@yahoo.com

Dr. A.Majid Cheraghali
General Director, Food and Drug Control labs
Ministry of Health
Teharan
IRAN
Tel: +9821.6406174
Fax: +9821.6404330
E-mail: m.cheraghali@BMSU.AC.IR

IRELAND

Dr. Iona Pratt
Chief Specialist in Toxicology
Food Safety Authority of Ireland
Abbey Court, Lower Abbey Street
Dublin
IRELAND
Tel: +353.1.8171 355
Fax: +353.1.8171 301
E-mail: ipratt@fsai_ie

Mr. Jim Quigley
Senior Chemist
State Laboratory
Abbotstown
Dublin 15
IRELAND
Tel: 353.1.802.5800
Fax: 353.1.821.7320
E-mail: jquigley@statelab.ie

ISRAEL

Dr. Anna Shapiro
Regulatory Officer
Department Food control Administration Ministry of Health
Food Control
Haarbah Street 12
64739 Tel-Aviv
ISRAEL
Tel: +972.3.568.4605
Fax: +972.3.568.4603
E-mail: anna.shapiro@fcs.health.gov.il

ITALY

Dr. Paolo Stacchini
Researcher
Ist Sve. Sanita
Viale Regina Elena 299
Rome
ITALY
Tel: +39.06.4902533
Fax: +39.06.49387101
E-mail: pstacchi@iss.it

Dr. SSA Brunella Lo Turco
Codex Contact Point
Ministry of Agriculture
Via Saustiana 10
Rome
ITALY
Tel: +39.06.4665.5012
Fax: +39.06.4880273
Dr. Yukiko Yamada
Director for International Affairs
National Food Research Institute
2-1-12 Kasumigaseki
Tsunluba 305-8642
JAPAN
Tel: +81.298388017
Fax: +81.2973880025
E-mail: yamadayk@nfri.affrc.go.jp

Mr. Yasunori Yoshida
Deputy Director, Standardss Division
Department of Food Safety, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare
Kasumigaseki 1-2-2
Chiyoda-ku, Tokyo, 100-8916
JAPAN
Tel: +81.3.3595.2341
Fax: +81.3.3501.4868
E-mail: yoshida-yasunori@mhlw.go.jp

Dr. Ota Hiroyuki
Deputy Director, Standardss Division
Department of Food Safety, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare
Kasumigaseki 1-2-2
Chiyoda-Ku, Tokyo, 100-8950
JAPAN
Tel: +81.3.35253-1111 (ext.2484)
Fax: +81.3.3501.4868
E-mail: ota-hiroyuki@mhlw.go.jp

Mr. Kenji Urakami
Technical Officer
Standardss Division, Department of Food Safety, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare
Kasumigaseki 1-2-2, 100-8816
Chiyoda-ku, Tokyo
JAPAN
Tel: +81.3.3595.2341
Fax: +81.3.3501.4868
E-mail: uragami-kenji@mhlw.go.jp

Dr. Fujio Kayama
Professor, Division of Environmental Immunology and Toxicology
Department of Health Science, Jichi Medical School
Kawachi-Gun
329-0498 Tochigi
JAPAN
Tel: +81.285.58.7335
Fax: +81.285.44.8465
E-mail: kayamaf@jichi.ac.jp

Mr. Kazuo Yuji
Deputy Director
Standardss and Labeling Division, General Food Policy Bureau, Ministry of Agriculture, Forestry and Fisheries
Kasumigaseki 1-2-1
Chiyoda-Ku, Tokyo, 100-8950
JAPAN
Tel: +81.3.5512.1571
Fax: +81.3.3501.0580
E-mail: kazuo_yuji@nm.maff.go.jp

Mr. Kenji Asakura
Deputy Director
Ministry of Agriculture, Forestry and Fisheries
Kasumigaseki 1-2-1
Chiyoda-ku, Tokyo, 100-8950
JAPAN
Tel: +81.3.3591.4958
Fax: +81.3.3502.0869
E-mail: kenji_asakura@nm.maff.go.jp

Ms. Yayoi Tsujiyama
Deputy Director
Vegetable Division, Agricultural Production Bureau, Ministry of Agriculture, Forestry and Fisheries
Kasumigaseki 1-2-1
Chiyoda-ku, Tokyo, 100-8950
JAPAN
Tel: +81.3.3501.0984
Fax: +81.3.3502.4133
E-mail: yayoi_tsujiyama@nm.maff.go.jp
Mr. Makoto Takeuchi
Deputy Director
Processed Food Division, Marketing Department, Food Agency
Kasumigaseki 1-2-1
Chiyoda-ku, Tokyo, 100-8950
JAPAN
Tel: +81.3.3501.3812
Fax: +81.3.3591.1692
E-mail: makoto.takeuchi@FA/SYOKURY@SYOKURYO

Ms. Kazuko Takabatake
Section Chief
Soil Monitoring, Soil Environment Management Division, Water Environment Department, Environmental Management Bureau, Ministry of the Environment
Kasumigaseki 1-2-2
Chiyoda-ku, Tokyo, 100-8975
JAPAN
Tel: +81.3.5521.8321
Fax: +81.3.3501.2717
E-mail: Kazuko_Takabatake@env.go.jp

Dr. Kenji Ishii
Technical Advisor
Japan Food Hygiene Association
Jinguumae 2-6-1
150-0001 Shibuya-Ku Tokyo
JAPAN
Tel: +81.3.3403.2111
Fax: +81.3.3478.0059
E-mail: ke-ishii@jafa.gr.jp

Ph D. Takeo Inoue
Technical Advisor
Japan Food Hygiene Association
Jinguumae 2-6-1
150-0001 Shibuya-ku, Tokyo
JAPAN
Tel: +81.3.3403.2112
Fax: +81.3.3478.0059
E-mail: tinoue@saneigenffi.co.jp

Mr. Hiroyuki Suzuki
Technical Advisor
Japan Food Hygiene Association
Jinguumae 2-6-1
150-0001 Shibuya-ku, Tokyo
JAPAN
Tel: +81.3.3403.2114
Fax: +81.3.3403 2734
E-mail: hiroyukia_suzuki@ajinomoto.com
Mr. Hiroyuki Okamura
Technical Advisor
Japan Food Hygiene Association
Jingumae 2-6-1
0001 Shibuya-ku
150-Tokyo
JAPAN
Tel: +81.3.3403.2114
Fax: +81.3.3403.2734
E-mail: Hiroyuki_Okamura@t-hasegawa.co.jp

Mr. Kensuke Watanabe
Technical Advisor
Japan Food Industry Center
Sankaido Building 7th FL. 9-13 Akasaka, 1-chome
Minato-ku, Tokyo, 107-0052
JAPAN
Tel: +81.3.3470.1170
Fax: +81.3.3470.6663
E-mail: kensuke_watanabe@suntory.co.jp

Mr. Koichiro Hosai
Technical Advisor
Japan Food Industry Center
Park Nova ICHIKAWA
ICHIUA CITY
CHIBA PRT
JAPAN
Tel: +090 2460 1664
Fax: +0417 324 2460
Fax: +81.3.3865.0815
E-mail: fvb8260@mb.infoweb.jp

Dr. Shinji Kawagoe
Asst. Secretary General
IRMA
Kimura building ¾
555 Asakusabash
Taito-ku Tokyo
JAPAN
Tel: +81.3.3865.0811
Fax: +81.3.3865.0815
E-mail: fvb8260@mb.infoweb.jp

Dr. Yoshio Hirose
Technical Advisor
Japan Food Industry Center
Sankaido Building 7th FL. 9-13 Akasaka, 1-chome
Minato-ku, Tokyo, 107-0052
JAPAN
Tel: +81.3.3865.0811
Fax: +81.3.3865.0815
E-mail: Fvb8260@mb.infoweb.jp

Mr. Koichi Toda

Technical Advisor
Japan Food Industry Center
Sankaido Building 7th FL. 9-13 Akasaka, 1-chome
Minato-ku, Tokyo, 107-0052
JAPAN
Tel: +81.3.3865.0811
Fax: +81.3.3865.0815
E-mail: fvb8260@mb.infoweb.jp

Dr. Rie Masho
Technical Advisor
Center for Environmental Information Science
4-7-24 Kudan-minami,
Chiyoda-ku, Tokyo, 102-0074
JAPAN
Tel: +81.3.3265.3916
Fax: 81.3.3234.5407
E-mail: masho@ceis-jp.org

KOREA, REPUBLIC OF

Dr. Haejung Yoon
Senior researcher
Department of Food Additive Evaluation Korea
Food and Drug Administration
Nokbun-Dong 5
Eunpyung-gu, Seoul, 122-704
KOREA
Tel: +82.02.380.1687
Fax: +82.02.354.1399
E-mail: hjyoon@kfda.go.kr

Dr. Yang-Hee Cho
Senior Researcher
Korea Health Industry Development Institute
Noryangjin-Dong 57-1
Dongjac-gu Seoul, 156-151
KOREA
Tel: +82.2.2194.7337
Fax: +82.2.2194.7449
E-mail: choyh@khidi.or.kr

Dr. Mia Park
Researcher
Food Sanitation Council, Food Safety Bureau,
Korea Food and Drug Administration
Nokbun-Dong 5
Eunpyung-gu, Seoul, 122-740
KOREA
Tel: +82.2.380.1559
Fax: +82.2.383.8321
E-mail: codexkorea@kfda.go.kr
Dr. Dong-Sul Kim
Senior Researcher
Dept. of Food Evaluation, Korea Food & Drug Administration
Nokbun-Dong 5
Eunpyung-gu, Seoul, 122-740
KOREA
Tel: +82.2.380.1666
Fax: +82.2.382.4892
E-mail: dongsulkim@hanmail.net

Dr. Meehye Kim
Senior Researcher Scientist
Dept. Of Food Evaluation, Korea Food and Drug Administration
Nokbun-Dong 5
Eunpyung-gu, Seoul, 122-740
KOREA
Tel: +82.2.380.1670
Fax: +82.2.382.4892
E-mail: meehkim@kfda.go.kr

Mr. Dong-Hyun Kim
General Manager
Korea Soysauce Industry Cooperative
Jamsilbon-dong 248-13
Songpa-gu, Seoul, 138-864
KOREA
Tel: +82.02.424.3144
Fax: +82.02.424.3145
E-mail: k-dh99@hanmail.net

Mr. Hwangoo Kang
Researcher
National Veterinary Research & Quarantine Service
Ministry of Agriculture & Forestry
Anyang 6-Dong
Anyang-Shi Kyeunggi-Do
Tel: +82 31 467 1838
Fax: +82 31467 1845
e-mail: kanghg@nvrqs.go.kr

MALAYSIA

Mr. Chin Cheow Keat
Food and Quality Control Division
Level Bloc E
Office Complex JLN. Dungun
Damansara Height
50490 Kuala Lumpur
MALAYSIA
Tel: +603.2540088 (ext. 242)
Fax: +603.2537804
E-mail: chin@dph.gov.my

Dr. Ainie Kuntom
Malaysian Palm Oil Board (MPOB)
P.O.Box 10620
50720 Kuala Lumpur
MALAYSIA
Tel: +603.89259155
Fax: +603.89259446
E-mail: ainie@mpob.gov.my

Ms. Rosnah Mohammad
Ministry of Health, Food Quality Control, level 4 , Bloc E
Damansara Height
50490 Kuala Lumpur
MALAYSIA
Tel: +03.2555943
Fax: +03.2537804
E-mail: Rosnah@dph.gov.my

Ms. Yeoh Quee Lan
Food Technology Center
P.O.Box 12301
50774 Kuala Lumpur
MALAYSIA
Tel: +603.89437743
Fax: +603.89422906
E-mail: qlyeoh@mardi.my

MOROCCO

Ms. Jemaa Bardach
Ingénieur d’Etat en agro Industrie
Ministere del’Agriculture du Developpement Rural et des Eaux et Forets DPVCTRFR
Station DBAGH
Avenue Hassan II
BP 4495
MOROCCO
Tel: +212 037 298150
Fax: +212 037 298150
e-mail: maldi@nomade.fr

Mr. Omar El Guermaz
Chef de la Division Technique
Laboratoire Officiel
Ministere de l’Agriculture du Developpement Rural et des Eaux et Forets
25, rue Nichakra Rahat Cascablanca
MOROCCO
Tel: +212 22 30 2196
Fax: +212 22 30 1972
e-mail: loarc@casanet.net.ma
Mr. Naijb Layachi
Chef du Département des produits transformés au sein de l’Établissement autonome de contrôle et de Coordination des Exportations
Casablanca
MOROCCO
Tel: +212 2244 2550
Fax: +212 2230 5168
e-mail: layachi@eacce.org.ma

Dr. Brahim Karfal
Chef du Bureau des Etudes Législatives
Division Vétérinaire de l’Hygiène Alimentaire
Direction de l’Elevage
Ministère de l’Agriculture, du Développement Rural et des Eaux et Forêts
MOROCCO
Tel: +212 377 68 417
Fax: +212 377 64 404
E-mail:Brahimkf@hotmail.com

Mr. Hammadi Chimi
Professeur Enseignant chercheur
Institut Agronomique and Veterinary Hassan II
Rabat
MOROCCO
Tel: +212 3768 2844
Fax: +212 3768 2844
e-mail:h.chimi@iav.ac.ma

Dr. Tika B. Karki
Director General
Department of Food Technology and Quality Control (DFTQC)
Ministry of Agriculture and Cooperatives
Banar Mahal
Katmandu
NEPAL
Tel: +977.1.262430
Fax: +977.1.262.377
E-mail: tika_bdr@tbk.wlink.com.np

Mr. Gerrit M. Koornneef
Food Legislation Officer
General Commodity Board for Arable Products
P.O. Box 29739
2502 LS The Hague
NETHERLANDS
Tel: +31.70.3708323
Fax: +31.70.370.8444
E-mail: g.m.koornneef@hpa.agro.nl

Mr. Joop W. Dornseiffen
Senior Policy Officer
Ministry of Health, Welfare and Sport, Directorate Nutrition and Health Protection
P.O. Box 20350
2500 EJ The Hague
NETHERLANDS
Tel: +31.70.3406961
Fax: +31.70.3405554
E-mail: jw.dornseiffen@minvws.nl

Mr. Jaap D. Kluifhooft
Regulatory Affairs Manager
DSM Food Specialties
P.O. Box 1
2600 MA Delft
NETHERLANDS
Tel: +31.15.279.3185
Fax: +31.15.279.3614
E-mail: jaap.kluifhooft@ds.com

Mr. Hans Jeuring
Senior Public Health Officer
Inspectorate for Health Protection
P.O. Box 16108
2500 BC The Hague
NETHERLANDS
Tel: +31.70.340.5060
Fax: +31.70.340.5435
E-mail: hans.jeuring@kvw.nl

Dr. G. Kleter
Senior Veterinary Public Health Inspector
P.O.Box 16108
2500 BC The Hague
NETHERLANDS
Tel: +31.70.340.6933
Fax: +31.70.340.5435
E-mail: gijs.kleter@kvw.nl

Dr. Rob M.C. Theelen
Policy Officer, Food Additives and Contaminants
Ministry of Agriculture, Nature Management and Fisheries
P.O.Box 20401
2500 EK The Hague
NETHERLANDS
Tel: +31.70.378.4091
Fax: +31.70.378.6141
E-mail: R.M.C.Theelen@vva.agro.nl
Mr. Harris J. Bixler
Chief Executive
Ingredient Solutions Inc.
Mt. Ephraim Rd. Searsport 33
ME-04974 USA
PHILIPPINES
Tel: +207.548.2636
Fax: +207.548.2921
E-mail: pbixler@isinc.to

POLAND

Dr. Kazimierz Karlowski
Head Department of Food Research
National Institute of Hygiene
Chocimska 24
00-791 Warsaw
POLAND
Tel: +48.22.84974.54
Fax: +48.22.849 3513
E-mail: kkarlowski@pzh.gov.pl

Mr. Sławomir Pietrzak
Deputy Director
Agricultural and Food Quality Inspection
Wspolna str. 30
00-930 Warsaw
POLAND
Tel: +48.22.621 64 21
Fax: +48.22.621.48.58
E-mail: spiertzak@cis.gov.pl

Prof. Dr. Barbara Szteke
Head, Department of Food Analysis
Institute of Agricultural and Food Biotechnology
Rakowiecka str. 36
02-532 Warsaw
POLAND
Tel: +48.22.606.3837
Fax: +48.22.848.0428
E-mail: szteke@ibprs.pl

PORTUGAL

Mr. Manuel Barreto Dias
Laboratory Director
Ministry of Agriculture, DGFCQA
Av. Conde de Valbom 98
1050 Lisbon
PORTUGAL
Tel: +351 217 983 701
Fax: +351 217 983 834
E-mail: barreto.dias@dgfcqa.min-agricultura.pt

RUSSIA

Dr. Konstantin Eller
Head of Department of the Institute of Nutrition
Russian Academy of Medical Sciences
Ustinsky proezd 2/14
109240 Moscow
RUSSIA
Tel: 7 095 298 1879
mob.+903.765.3242
Fax: +95.298.1883
E-mail: eller@ion.ru

SINGAPORE

Dr. Bosco Chen Bloodworth
Head, Food Laboratory, Center for Analytical Sciences
Institute of Science & Forensic Medicine, Ministry of Health, Health Sciences Authority
Outram Road 11
169078 Singapore
SINGAPORE
Tel: +65.229.0792
Fax: +65.229.0749
E-mail: bosco_chen_bloodworth@hsa.gov.sg

SLOVENIA

Dr. Marusa Adamic
Head Department Food/Nutrition
National Institute of Slovenia
Trubarjeva 2
1000 Ljubljana
SLOVENIA
Tel: +386.1.2441.492
Fax: +386.1.2441.447
E-mail: marusa.adamic@ivz-rs.si

SOUTH AFRICA

Mrs. Maryke Herbst
Principal Medical Natural Scientist
Directorate Food Control, Department of Health
Private Bag X828
0001 Pretoria
SOUTH AFRICA
Tel: +27.12.312.0164
Fax: +27.12.326.4374
E-mail: herbsm@health.gov.za
SPAIN

Mr. Jesús Campos Amado
Jefe de Area de Coordinacion Comunitaria
Ministerio de Agricultura, Pesca Y Alimentacion
Paseo Infanta Isabel 1
28071 Madrid
SPAIN
Tel: +34.91.3475314
Fax: +34.91.3475728
E-mail: jcamposa@mapya.es

Dr. Pedro A. Burdaspal Péres
Head of Chemical Area
Instituto de Salud Carlos III, Centronacional de Alimentacion
28220 Madrid
SPAIN
Tel: +34.91.5097931
Fax: +34.91.5097926
E-mail: pbudas@isciii.es

Ms. Lourdes Suarez Gonzalez
Jefe de seccion
Ministerio de Sanidad y Consumo
Paseo del Prado 18-20
28071 Madrid
SPAIN
Tel: +91.596.19.72
Fax: +91.596.44.87
E-mail: lsuarez@msc.es

Mr. Amparo Carbajo Sanchez
Jefa de Servicio de Normativa Tecnica
Ministerio de Sanidad Y Consumo
Paseo del Prado 18-20
28071 Madrid
SPAIN
Tel: +91.596.19.77
Fax: +91.596.44.87
E-mail: acarbados@msc.es

SUDAN

Prof. Suad Hassan Satti
Director, National Chemical Laboratories, and National Food Safety Coordinator Federal
Ministry of Health
P.O. Box 287
Khartoum
SUDAN
Tel: +249.11.779.789
Fax: +249.11.795.164
E-mail: satti10@hotmail.com

Prof. Muna Ahmed Agab
Director of Technical Administration
Sudanese Standards and Metrology Organization (SSMO)
Khartoum
SUDAN
Tel: +249.11 781443/775247
Fax:+249.11 774852

M.H. Jubara
Agric. Counselor
Sudan Embassy
L.C. van Calternburch 81
2585 EW The Hague
SUDAN
Tel: +31 70 3451841
Fax: +31 70 3617975
E-mail: mhjubara@wanadoo.nl

SWEDEN

Dr. Cajsa Elfverson
Ministry of Agriculture, Food and Fisheries
SE-103 33 Stockholm
SWEDEN
Tel: +46.8.405.40.83
Fax: +46.8.20.64.96
E-mail: cajsa.elfverson@agriculture.ministry.se

Mr. Östen Andersson
Principal Administrative Officer
National Food Administration
P.O. Box 622
SE-751 26 Uppsala
SWEDEN
Tel: +46.18.175500
Fax: +46.18.105848
E-mail: osan@slv.se

Ms. Evelyn Jansson Elfberg
B.Sc. Principal Administration Officer
National Food Administration
P.O.Box 622
SE-751 26 Uppsala
SWEDEN
Tel: +46.18.17.56.71
Fax: +46.18.10.58.48
E-mail: evelyn.jansson.elfberg@slv.se
SWITZERLAND

Mrs. Awilo Ochieng Pernet
Codex Alimentarius International Standards Unit
Swiss Federal Office of Public Health
CH-3003 Bern
SWITZERLAND
Tel: +41.31.322.0041
Fax: +41.31.322.9574
E-mail: awilo.ochieng@bag.admin.ch

Mr. Jörg Cselovszky
Roche Vitamins AG
Bldg. 241/823
4070 Basel
SWITZERLAND
Tel: +41.61.687.3276
Fax: +41.61.688.1635
E-mail: joerq.cselovszky@roche.com

Dr. Martin Brugger
Head, Authorizations Section
Food and Consumer Safety Unit, Swiss Federal
Office of Public Health
CH-3122 Kehrsatz
SWITZERLAND
Tel: +41.31.322.95.70
Fax: +41.31.322.95.74
E-mail: martin.bruegger@bag.admin.ch

Dr. Otto Raunhardt
Dr. Sc. Tech. Consultant, Federation des
Industries Alimentarius Suisses
Fial Postfach 16
CH-3003 Bern
SWITZERLAND
Tel: +41.01.767.0995
Fax: +41.01.768.26.19
E-mail: otto.raunhardt@bluewin.ch

Dr. S. Hank Ragetli
Givaudan-Roure Aromen AG
Ueberlandstrasse 138
8600 Dubendorf
SWITZERLAND
Tel: +41.1.824.25.92
Fax: +41.1.824.29.20
E-mail: hank.ragetli@givaudon.com

THAILAND

Dr. Ph.D. Carolyn Meduski
Regulatory Affairs
Nestec Ltd.
Avenue Nestle 55
CH-1800 Vevey
SWITZERLAND
Tel: +41.21.924.3982
Fax: +41.21.924.4548
E-mail: carolyn-judith.meduski@nestle.com

Mr. Herve Nordmann
Director Scientific & Regulatory Affairs
Ajinomoto Switzerland AG
En Crochet 1
SWITZERLAND
Tel: +41.21.800.37.63
Fax: +41.21.800.4087
Email: herve.nordmann@asg.ajinomoto.com

Dr. Orawan Ananvoranich
Royal Thai Embassy Belgium
Franklin Roosevelt Ave 188
B-1050 Brussel
Tel: 322 674 73 12
Fax: 322 673 44 25
E-mail: orawan200@yahoo.com

Mr. Chakorn Suchiva
Royal Thai Embassy the Hague
THAILAND
Tel: 070-3459703
Fax: 070-3451929

Mr. Wichien Chantayasakorn
President
6fl. Sathornthani bldg
Sathon
Bangkok
THAILAND
Tel: +66.2.235.5622
Fax: +66.2.235.5625

Ms. Saisanorm Anekpalin
Technical Manager
Thai Boiler Processing Exporter Association
Tower Silom Road 313 CP
10500 Bangkok
THAILAND
Tel: +66.2.638.2199
Fax: +66.2.638.2536
E-mail: saisanom@panuspoultry.co.th
Mr. Voranuch Kitsukchit
Standardss Officer
Thai Industrial Standardss Institute, Ministry of Industry
Rama VI Road
Bangkok 10400
THAILAND
Tel: +66.2.202.3442
Fax: +66.2.248.7987
E-mail: voranuch@tisi.go.th

Ms. Charuayporn Tantipipatpong
President
170 21-22 9th fl. Ocean Tower 1 Bld
New Ratchadapisek RD
Bangkok 10110
THAILAND
Tel: +66.2261 2684
Fax: +66.2.2261 2996
E-mail: thaifood@thaifood.org

Mrs. Pranee Srisomboon
General Manager
Thai Food Processors Association
170 21-22 9th FL. Ocean Tower 1 Building, Ratchadapisek Road
Bangkok 10110
THAILAND
Tel: +66.2.261.26845
Fax: +66.2.261.29967
E-mail: thaifood@thaifood.org

Dr. Songsak Srianujata
Director
Mahidol University, Institute of Nutrition
Salaya Putthamonthon
Nakhonpathom 73170
THAILAND
Tel: +66.2.44.19740
Fax: +66.2.44.19344
E-mail: rassn@mahidol.ac.th

Mrs. Laddawan Rojanapantip
Medical Scientist 8
Food Division Department of Medical Sciences, Ministry of Public Health
Nonthaburi
THAILAND
Tel: +66.2.951.1023
Fax: +66.2.951.1023
E-mail: laddawanl@dmsc.moph.go.th

Ms. Soontharee Pruengkarn
Scientist 8, Biological Science Division, Department of Science Service
Ministry of Science Technology and Environment
Rama VI road
Phaya-Thai, Racha-Tawi, Bangkok 10400
THAILAND
Tel: +6622017195
Fax: +6622017184
E-mail: stharee@hotmail.com

TUNISIA

Mr. Hammadi Dekhil
Chief Engineer
National Health and Environmental Control Agency
Immb, IDRISS. 3th etage
Les Berges du Lac
1053 Tunis
TUNESIA
Tel:00 216 71 960 222
Fax:00 216 71 960 146
E-mail: slaheddine.chniti@rns.tn

TURKEY

Mr. Ibrahim Ilbegi
Division Director
General Directorate of Protection and Control
Akay Cad. No 3
Bakanliklar
Ankara
TURKEY
Tel: +90.312.417.4176/3122
Fax: +90.312.418.65.23
E-mail: ibrahimi@kkgm.gov.tr

UNITED KINGDOM

Dr. David Watson
Head of Branch 4
Chemical Safety & Toxicology, Food Standards Agency
Room 516c, Aviation House, 125 Kingsway
WC2B 6 NH London
UNITED KINGDOM
Tel: +44.020.7276.8537
Fax: +44.020.7276.8514
E-mail: david.watson@foodstandardss.gsi.gov.uk
Mr. Roy Barret
International Trade Specialist
Foreign Agricultural Service, US Department of Agriculture
Independence Ave., SW 1400
20250 Washington DC
UNITED STATES OF AMERICA
Tel: +1.202.720.7054
Fax: +1.202.690.0677
E-mail: barrettroy@aoc.com

Mr. Kyd Brenner
dtb Associates, lp
1001 Pennsylvania Avenue, NW 6th Floor
20004 Washington DC
UNITED STATES OF AMERICA
Tel: +202.661.7098
Fax: +202.661.7093
E-mail: kbrenner@dtbassociates.com

Ms. Ellen Y. Matten
Staff Officer
U.S. Codex Office, U.S. Department of Agriculture
Room 4861 South Building, Independence Ave.
SW 1400
20250-3700 Washington DC
UNITED STATES OF AMERICA
Tel: +202 2057760
Fax: +202 720 3157
E-mail: ellen.matten@fsis.usda.gov

Dr. Ricardo A. Molins
Director
Food Chemicals Codex, Institute of Medicine (FO-3042), The National Academies
2101 Constitution Avenue, NW
20418 Washington DC
UNITED STATES OF AMERICA
Tel: +202.334.3807
Fax: +202.334.2316
E-mail: rmolins@nas.edu

Dr. Robert C. Post
Director
Labeling and Consumer Protection Staff, Food Safety & Inspection Service
Room 602, CAnnex Building, US Dep of Agriculture 1400 Independence Av. Sw.
DC 20250-3700 Washington DC
UNITED STATES OF AMERICA
Tel: +1.202.205.0279
Fax: +1.202.205.3625
E-mail: robert.post@usda.gov

INTERNATIONAL ORGANISATIONS
ORGANISATIONS INTERNATIONALES
ORGANIZACIONES INTERNATIONALES

AAC
Ms. Maryse Herve
Regulatory Affairs Manager
Av. Des Arts 43
B-1000 Brussels
BELGIUM
Tel:+32.2.289.67.60
Fax:+32.2.513.55.92
E-mail:m.herve@acc-eu.org

Ms. Anne Mette Jensen
Manager Scientific Regulatory Affairs
Av. de la Joyeuse Entree 1-5
B-1040 Brussels
BELGIUM
Tel:+32.02.230.9404
Fax:+32.02.031.43
E-mail:ajensen@be.cerester.com

AFCA
Dr. Roberto Xalabarder
Presidente de la Asociación de Fabricantes y Comercializadores de Aditivos y Complementos Alimentarios
Viladomat 174
08015 Barcelona
SPAIN
Tel: +93.454.84.05
Fax: +93.454.39.09
E-mail: afca@sefes.es

AMFEP
Mr. Jorn Mahler
Consultant
Jorn Mahler Consultancy ApS
Anekeret 12
3520 Farum
DENMARK
Tel:+45.44952672
E-mail:joern@mahler.net
Mrs. Mette Marie Ladegaard
Manager
Novozymes A/S
External Affairs
Krogshoejsvej 36
2880 Gagscvaerd
DENMARK
Tel:+45.44423073
Fax:+45.44584647
E-mail:mml@novozymes.com

Dr. Danielle P. Praaning
Observer
DSM-Regulatory Affairs
Postbus 1
2600 MA Delft
THE NETHERLANDS
Tel:+31.15.2793960
Fax:+31.15.2793614
E-mail:danielle.praaning@dsm.com

Biopolymer International

Ms. Isabelle Auger
Rhodia Food
40, Rue de la Haie – Coq
FRANCE
Tel: +33 153565202
Fax: +33 153565210
e-mail:isabelle.auger@eu.rhodia.com

CEFIC

Ms. Alexandra Hadjiyianni
Sector Group manager
Avenue Van Nieuwenhuyse 4
B-1160 Brussels
BELGIUM
Tel:+32.2.676.7289
Fax:+32.2.676.7432
E-mail:AHA@CEFIC.BE

Prof. Dr. Gert Von Raymon Lipinski
Chairman FRP (Food Regulations Panel)
C/o Nutrinova
Frankfurt am Main
D-65926 Frankfurt
GERMANY
Tel:+49.69.3053569
Fax:+49.69.30583520
E-mail:raymond@nutrinova.com

CEFS

Dr. Nathalie Henin
Scientific Counsellor
Ave.De Tervuren 182
1150 Brussels
BELGIUM
Tel:+32.2.7620760
Fax:+32.2.771.0026
E-mail:nathalie.henin@cefs.org

Mr. Vicente Ruiz de Larramendi
Director
Azucarera Ebro
Centro Industrial I+D
Esperanza, 10
Barbecho 29-8-B
47007 Valladolid
SPAIN
Tel:+34.983.27.94.00
Fax:+34.983.27.89.84
E-mail:vincente.larramendi@aeasa.com

CIAA

Mrs. Julia Martinez Sanchez
Manager Scientific & Regulatory Affairs
Ave des Arts 43
1040 Brussels
BELGIUM
Tel:+32.02.514.11.11
Fax:+32.02.511.29.05
E-mail:j.martinez@ciao.be

Dr. Dominique Taeymans
Director Scientific Regulatory Affairs
Ave. Des Arts 43
1040 Brussels
BELGIUM
Tel:+32.2.514.11.11
Fax:+32.2.511.29.05
E-mail:d.taeymans@ciao.be
COCERAL

Mr. J. de Keijzer
Expert Contaminants
P.O. Box 2743
3000 CS Rotterdam
THE NETHERLANDS
Tel:+31.10.2650580
Fax:+31.10.2650280
E-mail:j.dekeizer@graan.com

COFAG

Mrs. Yoko Ogiwara
Scientific Advisor
Ajinomoto EHO
rue de Courcelles 153
75817 Paris Cedex 17
FRANCE
Tel:+33.1.47.66.98.45 Fax:+33.1.47.66.98.56
E-mail: yoko_ogiwara@ehq.ajinomoto.com

Mr. Philippe Guion
Executive Secretary COFAG c/o Ajinomoto Eurolysine
rue de Courcelles 153
75817 Paris, Cedex 17
FRANCE
Tel:+33.1.44.40.1229
Fax:+33.1.44.40.1215
E-mail: Guion_Philippe@eli.ajinomoto.com

CONSUMERS INTERNATIONAL

Ms. Karin Groothuis
Consumentenbond
Postbus 1000
2500 BA The Hague
Tel:+31.70.4454367
Fax:+31.70.4454595
E-mail:
kgroothuis@consumentenbond.nl

Ms. Gitte Gross
Senior Food Advisor
Highbury Crescent 24
N1O 1RX London
UNITED KINGDOM
Tel:+44.207.226.6663 Fax:+44.207.354.0607
E-mail:adiaz@consint.org

COUNCIL OF THE EUROPEAN UNION

Mr. Andreas Lernhart
Administrator, Msc
Danish Consumers Council
Fiolstrade 17
1017 Kopenhagen K
Tel: +45.7741.7734
Fax: +45.7741.7742
E-mail: gg@fbr.dk

EFEMA

J. Thestrup
Regulatory Advisor
C/o Danisco
Edwin Rahrs Vej 38
8220 Brabrand
DENMARK
Tel:+45.89435123
Fax:45.86251077
E-mail:JETTE.THESTRUP@DANISCO.COM

EFFA

Mr. Dan Dils
Director
Square Marie-Louise 49
B-1000 Brussels
BELGIUM
Tel:+32.2.238.9905
Fax:+32.2.230.0265
E-mail:ddils@effaorg.org

EFLA

Mr. Conny Svensson
Member
Rue de l'Association 50
1000 Brussels
BELGIUM
Tel:+32.2.218.14.70
Fax:+32.2.219.73.42
E-mail:connysvensson@eas.be

Mr. Guy Valkenborg
Member of the Board
Rue de l'Association 50
1000 Brussels
BELGIUM
Tel:+32.2.218.14.70
Fax:+32.2.218.73.42
E-mail: guyvalkenborg@eas.be
ELC

Ms. Dionne Heijnen
General Secretary
Ave. Des Gaulois 9
1040 Brussels
BELGIUM
Tel:+32.2.736.53.54
Fax:+32.2.732.34.27
E-mail:dionne.heijnen@ecco.be

ESA

Dr. Ronald Verbruggen
Sint-Hubertuslaan 4a
B-3080 Tervuren
BELGIUM
Tel:32.2.3050436
Fax:32.2.7670220
E.mail:Bioresco@paritora.be

EUROPEAN COMMISSION

Mr. Sirkku Heinimaa
Administrator
Office B252-4/31
B-1049 Brussels
BELGIUM
Tel:+32.2.2956111
Fax:+32.2.2991856
E-mail:sirkku.heinimaa@cec.eu.int

Dr. Georg Schreiber
DG. Health and Consumer Protection
Office B232-435 Rue de la Loi 200
1049 Brussels
BELGIUM
Tel:+32.2.295.6540
Fax:+32.2.29.91856
E-mail:georg.schreiber@cec.eu.int

Dr. Martin Slayne
Office B232 4/65 Rue de la Loi 200
B-1049 Brussels
BELGIUM
Tel:+32.2.295.6329
Fax:+32.2.299.1856
E-mail:martin.slayne@cec.eu.int

Dr. Frans Verstraete
Health and Consumer Protection Directorate-
General
Office B232-4/67 Rue Belliard 232
B-1040 Brussels
BELGIUM
Tel:+32.2.295.6359
Fax:+32.2.299.1856
E-mail:Frans.Verstraete@cec.eu.int

FEFAC

Mr. Alexander Döring
Secretary General
Rue de la Loi 223, bte 3
B-1040 Brussels
BELGIUM
Tel:+32.2.285.0050 Fax:+32.2.230.5722
E-mail: adoring@fefac.org

Dr. Reinder Sijtsma
Stoffels 129
5403 NC Uden
The Netherlands
Mob.:+651561123
E-mail:reinder.sijtsma@nutrolo.com

IACFO

Ms. Mami Niida
Japan Offspring Fund
Koji-machi 2F 2-5-2
102-0083 Chiyoda, Tokyo
Japan
Tel:+11.81.3.5276.0256 Fax:+11.81.3.5276.0259
E-mail:nida@japan.email.ne.jp

Ms. Kaori Takise
Japan Offspring Fund
Koji-machi 2F 2-5-2
102-0083 Tokyo
JAPAN
Tel:+81.3.5276.0256
Fax:+81.3.5276.0259
E-mail: Ktakisse@japan.email.ne.jp

Ms. Merav Shub
Food Commission UK
White Lion street 94
N1 9PF London
UNITED KINGDOM
Tel:31.20.7837.9229
Fax:31.20.7837.1141
E-mail:merav@foodcomm.org.uk
IADSA
Mr. Simon Pettman
Executive Director
Rue de L’Association 50
1000 Brussels
BELGIUM
Tel:+32.2.209.1155
Fax:+32.2.223.3064
E-mail:simonpettman@eas.be

IBFAN
Ms. Maryse Lehners
Scientific Advisor
International Baby Food Action Network
Initiativ Lievensufank, Rue de Contern 20
L-5955 Itzig
LUXEMBURG
Tel:+0035.2.3605.9713 Fax:+0035.2.3661.34
E-mail: MARYSE.LEHNERS@CI.EDUC.LU

Ms. Sytske de Waart
WEMOS
P.O.Box 1693, Ellermanstraat 15
1000 BR Amsterdam
NETHERLANDS
Tel: +31.20.46.88.388
Fax: +31.20.46.86.008
E-mail: wemos@wemos.nl

ICA
Mr. Hiroshi Suzuki
Japanese Consumers Co-operative Union
Co-op Plaza,3-29-8,Shibuya, Shibuyaku
150-8913 Tokyo
JAPAN
Tel:+81.3.5778.8109
Fax:+81.3.5778.8008
E-mail:hiroshi.suzuki@jccu.co-op.or.jp

ICC
Ir. Willem J. de Koe
Food and Public Health Consultant
Haze kamp 2
6707 HG Wageningen
NETHERLANDS
Tel:+31.317.41.3106
Fax:+31.317.417372
E-mail:wjdeko@bird.nl

ICFI
J.G. Leemhorst
Chairman of AIII
Edeseweg 89
6721 JS Bennekom
THE NETHERLANDS
Tel:+31.318.418727
Fax:+31.318.639643
E.mail:leemhorst@zonnet.nl

ICGMA
Dr. Thomas Trautman
Sr. Principal Scientist
Toxicology and Regulatory Affairs, General Mills Inc.
9000 Plymouth Ave. N.
Minneapolis, Minnesota 55426
UNITED STATES OF AMERICA
Tel:763.764.7584
Fax:763.764.2109
E-mail:tom.trautman@genmills.com

Dr. Steve Sanders
Director Food Safety
Frito-Lay Inc.
7701 Legacy Drive
Plano, Texas 75024
UNITED STATES OF AMERICA
Tel:+972.334.4149
Fax:+972.334.6830
E-mail:steve.saunders@fritolay.com

Mrs. Julia C. Howel
President
J.C. Howel Consulting ,LLC
1681 Villa Rica Road, SW
Power Springg, Georgia 30127
UNITED STATES OF AMERICA
Tel:+770.439.6119
Fax:+770.439.7977
E-mail:jchowell@aol.com

Sue Ferenc, DVM Ph. D.
Vice President Scientific and Regulatory Policy
Grocery Manufacturers of America
1010 Wisconsin Ave. Suite 900
Washington, DC 20007
UNITED STATES OF AMERICA
Tel:+202.337.9400
Fax:+202.337.4508
E-mail:sferenc@gmabrands.com
International Dairy Federation

Dr. C.A.L. Bercht
Secretary for Legislative, Environmental and Farm Affairs
Dutch Diary Association (NZO)
P.O. Box 30
2280 AA Rijswijk
NETHERLANDS
Tel:+31.70.3953205
Fax:+31.70.3953220
E-mail:bercht@nzo.nl

Ir. P.J. Mathot
Secretary for Technological, Nutritional and QA Affairs
(Dutch Dairy Association) NZO
P.O.Box 30
2280 AA Rijswijk
NETHERLANDS
Tel:+31.70.395.3207 Fax:+31.70.395.3220
E-mail:mathot@nzo.nl

IDF (International Diabetic Federation)

Mr. John Byrne
Nutrition Advisor
No.1 Allee du Herisson
B-1070 Brussels
BELGIUM
Tel:+32.2.523.6184
Fax:+32.2.523.4477
E.mail:RQA BX:@SKYNET.BE

IFAC

Dr. Andrew G. Ebert Ph. D.
President IFAC
Peachtree Dunwoody Road 5775 - Suite 500-G
30342 Atlanta, Georgia
UNITED STATES OF AMERICA
Tel:+1.404.252.3663
Fax:+1.404.252.0774
E-mail:aebert@kellencompany.com

Mr. James T. Elfstrum
Manager, Regulatory Affairs Rhodia
CN7500 Prospect Plains Road
08512-7500 Cranbury, New Jersey
UNITED STATES OF AMERICA
Tel:+609.860.4653
Fax:+302.594.0350
E-mail:jim.elfstrum@us.rhodia.com

Mr. Christopher C. DeMerlis
Manager Regulatory Affairs
Colorcon, 415 Moy Boulevard
West Point
19486 Pennsylvania
UNITED STATES OF AMERICA
Tel:+215.661.2766
Fax:+215.661.2503
E-mail:cdemerlis@colorcon.com

Ms. Eunice Cuirle
Manager
Global Regulatory Affairs
Market street 1735
PA 19103 Philadelphia
UNITED STATES OF AMERICA
Tel:+215.299.6999
Fax:+215.299.6368
E-mail:eunice_cuirle@fmc.com

Dr. Jay Ansell Ph. D.
Vice President Regulatory Affairs
North Market Street 1313
DE 19894 Wilmington
UNITED STATES OF AMERICA
Tel:+302.594.6057
Fax:+302.594.6260
E-mail:jay.ansell@cpkelco.com

IFCGA

Mr. Jean Savigny
Counsel
Keller and Heckman
Rue Blanche 25
B-1060 Brussels
BELGIUM
Tel:+32.2.541.0570
Fax:+32.2.541.0580
E-mail:savigny@khlaw.be

IFMA

Ms. Helen Zegers de Beijl
Assistant to Secretary General
Rue de Tervuren 168
1150 Brussels
BELGIUM
Tel:+32.2.77.14.538
Fax:+32.2.77.14.753
E-mail:imace.ifma@pophost.eunet.be
IFU
Mr. Paul Zwiker
President
Postfach 45
CH-9220 Bischofszell
SWITZERLAND
Tel:+41.71.4200.644
Fax:+41.71.4200.643
E-mail:zwiker@bluewin.ch

IGTC
Mr. Hiroyuki Ishii
Chief Executive Officer
Kyobashi 1-15-1
Chuo-Ku 104 Tokyo
JAPAN
Tel:+81.3.525.8184
Fax:+81.3.525.8403
E-mail:IGTC@ASSNHQ.COM

IHPC
Mr. Ben Wilson
President
International Hydrolyzed Protein Council, Sentient
Flavors Inc.
W. Raymond street 5600
IN-46241 Indianapolis
UNITED STATES OF AMERICA
Tel:+317.240.1412
Fax:+317.240.1501
E-mail:ben.wilson@sensient-tech.com

ILSI
Ir. Valérie Rolland
Ave. E. Mounier 83 Box 6
B-1200 Brussels
BELGIUM
Tel:+32.2.771.0014
Fax:+32.2.762.0044
E-mail:vrollback@ilsieurope.be

Ms. Atsuko Sakiyama
Observer, Danisco Cultor Japan Ltd.
Park West 9 F 6-12-1 Nishi-Shinjuku,
106-0023 Shinjuku-Ku, Tokyo
JAPAN
Tel:+81.3.5381.3920
Fax:+81.3.5381.3951
E-mail:atsuko.sakiyama@danisco.com

Dr. Vichit Chiravachratikul
Division Scientific Regulatory Affairs Manager
Coca-Cola (Thailand) Limited
2nd-4th Thai Nam Thip Bldg. Vibhavadi Rangsit
Ro 214 Moo 5
10210 Laksi, Bangkok
THAILAND
Tel:+66.2.955.0777
Fax:+66.2.955.0708
E-mail:cvichit@apac.ko.com

INCI
Mrs. Julie G. Adams
Director, International Programs
Almond Board of California
1150 9th Street Suite 1500
Modesto, California 95354
UNITED STATES OF AMERICA
Tel:+209.343.3238
Fax:+209.549.8267
E-mail:jadams@almonboard.com

INEC/EFEMA
Mrs. Jette Thestrup
Regulatory Advisor
Danisco Cultor, Edwin Rahrs vej 38
DK-8220 Brabrand
DENMARK
Tel:+45.89.43.5123
Fax:+45.86.25.1077
E-mail:jette.thestrup@danisco.com

IOCCC
Ms. Penelope Alexandre
Manager Regulatory & Scientific Committee
CAOBISCO
Rue Defacqe 1
B-1000 Brussels
BELGIUM
Tel:+32.2.5391800
Fax:+32.2.539.15.75
E-mail:penelope.alexandre@caobisco.be
IOFI
Mr. Maurice Wagner
Executive Director
International Fragrance association IOFI
Square Marie-Louise 49
B-1000 Brussels
Tel:+32.2.238.9905
Fax:+32.2.230.02.65
E.mail:secretariat@effaorg.org

Dr. T.Cachet
International Fragrance association IOFI
Square Marie-Louise 49
B-1000 Brussels
Tel:+32.2.238.9903
Fax:+32.2.230.02.65
E.mail:tcachet@iofiorg.org

Ms. Marta Baffigo
Representative
Kraft Foods
Blv. International 55
B-1070 Brussels
BELGIUM
Tel:+32.2.526.9864
Fax:+32.2.526.9845
E-mail:mbaffigo@krafteurope.com

Mrs. Annie Loc'h
Food Law Director, Group Danone
Reu de Teheran 7
75008 Paris
FRANCE
Tel:+33.1.4435.2432
Fax:+33.1.4435.2445
E-mail:aloch@groupe.danone.com

Dr. T. Cachet
Scientific Director
Square Marie Louise 49
B-1000 Brussels
BELGIUM
Tel:+32.22.389.903
Fax:+32.22.300.265
E-mail:tcachet@iofiorg.org

IPPA (Int. Pectin Producers Association)
Mr. Colin D. May
Executive Secretary
P.O.Box 151
HR4 8YZ Hereford
UNITED KINGDOM
Tel:+44.1432.830.529 Fax:+44.1432.830.716
E-mail:mayca@lineone.net

ISA
Ms. Antonietta Corti
Secretary General
Ave. Du Four a Briques 1
B-1140 Brussels
BELGIUM
Tel:+32.02.72613.50
Fax:+32.02.72613.30
E-mail:a.corti@isabru.org

Dr. W. Wayne Stargel
Secretary General
c/o Ave. Du Four a Briques 1
1140 Brussels
BELGIUM
Tel:+32.2.726.13.50
Fax:+32.2.726.13.30

ISDC
Ms. Helen Benson
UNESDA
79 Boulevard Saint Michel
1040 Brussels
BELGIUM
Tel:+32.2.743.4052
Fax:+32.2.732.5102
E-mail:Hbenson@agep.be

Ms. Paivi Julkunen
Chairman ISDC Committee for Codex
Nihonbashi-Muromachi 3-3-3, Chuo-ward
103-0022 Tokyo
JAPAN
Tel:+81.3.3270.7300
Fax:+81.3.3270.7306

ISDI
Ms. Kathie Bolognese
194 Rue de Rivoli
75001 Paris
FRANCE
Tel:+33.01.5345.8787 Fax:+33.01.5345.8780
E-mail:Kathie.bolognese@kreab.com

Ms. Alice Gravereaux
Scientific and Regulatory Affairs
194 Rue de Rivoli
5001 Paris
FRANCE
Tel:+33.01.53.45.87.87 Fax:+33.01.53.45.87.80
E-mail:alice.gravereaux@wanadoo.fr
MARINALG INTERNATIONAL

Mr. Jean-Claude Attale
President
85 Boulevard Haussmann
F-75008 Paris
FRANCE
Tel:+33.1.47.1226.98
Fax:+33.1.47.1227.00

Mr. Pierre P. Kirsch
General Secretary
Boulevard Haussmann 85
75008 Paris
FRANCE
Tel:+33.1.42.65.41.58/06-0952.2137
Fax:+33.1.42.65.02.05
E-mail:marinolg@iway.fr

NATCOL

Dr. Mary O'Callagman
General Secretariat
P.O.Box 3255
Boycetown, Carrlgaline
IRELAND
Tel:+353.21.4919673
Fax:+353.21.4373020
E-mail:mocassoc@eircom.net or
Secretariat@natcol.org

NMPF

Mr. Johnie G. Nichols
Director, Technical Services
2101 Wilson Blvd., Suite 400
Arlington, VA 22201
Tel:+703.243.6111
Fax:+703.841.9328
E.mail:Jnichols@nmpf.org

OFCA

Dr. Evert Izeboud
Kerkweide 27
2265 DM Leidschendam
NETHERLANDS
Tel:+31.70.3209894
Fax:+31.70.3203759
E-mail:eizeboud@worldonline.nl

WHO PERSONNEL

Dr. John L. Herrman
WHO Joint Secretary of JECFA
International Programme on
Chemical Safety,
1211 Geneva 27
Switzerland
Tel.: + 41.22.791.3569
Fax: +41.22.791.4848
E-mail: herrmanj@who.int

Dr. Rodney J.H. Gray
Director Regulatory Affairs
Hercules Incorporated
Hercules Plaza 11333

DE 19894 Wilmington
UNITED STATES OF AMERICA
Tel:+1.302.594.5627
Fax:+1.302.594.6689
E-mail:rgray@herc.com

OIV

Yann Juban
Administrator Unité droit Reglementation
organizations Internationals
18, rue d’Agessea
F-75008 Paris
FRANCE
Tel:+33.1.4494.8095
Fax:+33.1.4266.9063
E-Mail:yjuban@oiv.int

Dr. Jean-Claude Ruf
Administrator Nutrition & Health Unit
18, rue d’Aguesseau
F-75008 Paris
FRANCE
Tel:33.01.4494.8094
Fax:33.01.4266.9063
E-mail: jruf@oiv.int

UFE

Dr. Jan.H. Lichenbelt
Avebeweg 1
9607 PT Foxhol
NETHERLANDS
Tel:+0598.662264
Fax:+0598.662913
E-mail:LichtenbeltJ@aveb.com
Dr. Gerald G. Moy
GEMS/Food Manager
Food Safety Programme
WHO
20 Avenue Appia
CH - 1211 Geneva 27
Switzerland
Tel.: +41.22.791.3698
Fax: +41.22.791.4807
E-mail: moyg@who.ch

Samuel W. Page
International Program on Chemical Safety
20, Avenue Appia
Ch-1211 Geneva 27
Switzerland
Tel: +41 22 791 35 73
Fax: +41 22 791 48 48
e-mail: pages@who.int

FAO PERSONNEL

Dr. Manfred Luetzow
Food Quality and Standards Service
Food and Nutrition Division
Food and Agriculture Organization
of the United Nations
Viale delle Terme di Caracalla
00100 Rome
ITALY
Tel:+0039.06.570.55425
Fax:+0039.06.570.54593
E-mail:manfred.luetzow@fao.org

CODEX SECRETARIAT

Mr. David Byron
Food Standards Officer
Joint FAO/WHO Food Standards Programme
FAO
Viale delle Terme di Caracalla
00100 Rome
ITALY
Tel:+39.6.5705.4419
Fax:+39.6.5705.4593
E-mail:david.byron@fao.org

Ms. Gracia Brisco
Food Standards Officer
Joint FAO/WHO Food Standards Programme
FAO
Viale delle Terme di Caracalla
00100 Rome
ITALY
Tel: +39.06.5705.27000
Fax: +39.06.5705.4593
e-mail: gracia.brisco@fao.org

Dr. Seoung Yong Lee
Associate Professional Officer
Joint FAO/WHO Food Standards Programme
Viale delle terme di Caracalla
00100 Rome
ITALY
Tel: +39.06.5705.6234
Fax: +39.06.5705.4594
e-mail: seoungyong.lee@fao.org

HOST GOVERNMENT COMMITTEE SECRETARIAT

Ms. Nathalie Scheidegger
HEAD TECHNICAL SECRETARIAT
Ministry of Agriculture, Nature Management and Fisheries
P.O. Box 20401
2500 EK The Hague
NETHERLANDS
Tel: +31.70.3784479
Fax:+31.70.3786141
E-mail:n.m.i.scheidegger@vva.Agro.nl

Ms. Frederique Heering
Royal Numico N.V.
Managing Director CLF GmbH
Bahnstrasse 14-30
61381 Friedrichsdorf
GERMANY
Tel.: +49.(0).61.72.99.1015
Fax: +49.(0).61.72.99.1967
Email: frederique.heering@milupa.de

Mrs Leoniek Robroch
Royal Numico
Corprorate Affairs
PO BOX 1
2700 MA ZOETREMEER
NETHERLANDS
Tel. +31.79.353.9018
Fax: +31.79.353.9050
Email: leoniek.robroch@numico.com
Ms. Elfriede E.E. Adriaansz
Codex Contact Point
Ministry of Agriculture, Nature Management and Fisheries
PO BOX 20401
2500 EK The Hague
NETHERLANDS
Tel: +31 70 378 4104
Fax:+ 31 70 378 6141
e-mail:E.E.E.Adriaansz@vva.agro.

Ms. Claudia Edoo
Secretariat
Ministry of Agriculture, Nature management and Fisheries
Bezuidenhoutseweg 73
2500 EK The Hague
NETHERLANDS
Tel: +31.70.378.4179
Fax:+31.70.378.6141
e-mail:C.Y.Edoo@vva.agro.nl

Ms. Sharida Sardar
Secretariat
Ministry of Agriculture, Nature management and Fisheries
Bezuidenhoutseweg 73
2500 EK The Hague
NETHERLANDS
Tel: +31.70.378.4426
Fax:+31.70.378.6141
e-mail:S.Sardar@vva.agro.nl

Mrs. Carmen Spaans
Secretariat
Ministry of Agriculture, Nature management and Fisheries
Bezuidenhoutseweg 73
2500 EK The Hague
NETHERLANDS
Tel:+31.70.378.5089
Fax:+31.70.378.6141
E-mail:C.Spaans@vva.agro.nl

Ms. Sandra Heumer
Communication Consultant
Ministry of Agriculture, Nature management and Fisheries
Bezuidenhoutseweg 73
2500 EK The Hague
NETHERLANDS
Tel:+31.70.378.4045
Fax:+31.70.378.6141
E-mail:s.heumer@vva.agro.nl
ALUMINUM AMMONIUM SULPHATE

Aluminium Ammonium Sulphate
INS: 523
Function: Firming Agent, Raising Agent, Stabilizer

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.2.2.3</td>
<td>Vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes [(including soybeans)], and aloe vera), seaweeds and seaweeds in vinegar, oil, brine, or soy sauce</td>
<td>35 mg/kg</td>
<td>Note 6</td>
<td>8</td>
</tr>
<tr>
<td>10.4</td>
<td>Egg-based desserts (e.g., custard)</td>
<td>380 mg/kg</td>
<td>Note 6</td>
<td>8</td>
</tr>
</tbody>
</table>

ASCORBYL ESTERS

Ascorbyl Palmitate
INS: 304
Ascorbyl Stearate
INS: 305
Function: Antioxidant

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.1</td>
<td>Fats and oils essentially free from water</td>
<td>500 mg/kg</td>
<td>Note 10</td>
<td>8</td>
</tr>
<tr>
<td>06.4.3</td>
<td>Pre-cooked pastas and noodles and like products</td>
<td>20 mg/kg</td>
<td>Note 10</td>
<td>8</td>
</tr>
<tr>
<td>07.0</td>
<td>Bakery wares</td>
<td>1000 mg/kg</td>
<td>Notes 10 & 15</td>
<td>8</td>
</tr>
<tr>
<td>11.4</td>
<td>Other sugars and syrups (e.g., xylose, maple syrup, sugar toppings)</td>
<td>200 mg/kg</td>
<td>Note 10</td>
<td>8</td>
</tr>
<tr>
<td>12.4</td>
<td>Mustards</td>
<td>500 mg/kg</td>
<td>Note 10</td>
<td>8</td>
</tr>
<tr>
<td>13.6</td>
<td>Food supplements</td>
<td>500 mg/kg</td>
<td>Note 10</td>
<td>8</td>
</tr>
</tbody>
</table>

BEEESWAX, WHITE AND YELLOW

Beeswax, White and Yellow
INS: 901
Function: Bulking Agent, Glazing Agent, Release Agent, Stabilizer

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.1.1.2</td>
<td>Surface-treated fresh fruit</td>
<td>GMP</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>04.2.1.2</td>
<td>Surface-treated fresh vegetables, (including mushrooms and fungi, roots and tubers, pulses and legumes [(including soybeans)], and aloe vera), seaweeds and nuts and seeds</td>
<td>GMP</td>
<td>Note 79</td>
<td>8</td>
</tr>
<tr>
<td>05.3</td>
<td>Chewing gum</td>
<td>GMP</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>05.4</td>
<td>Decorations (e.g., for fine bakery wares), toppings (non-fruit) and sweet sauces</td>
<td>GMP</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

CANDELILLA WAX

Candelilla Wax
INS: 902
Function: Bulking Agent, Carrier Solvent, Glazing Agent, Release Agent

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.1.1.2</td>
<td>Surface-treated fresh fruit</td>
<td>GMP</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>04.2.1.2</td>
<td>Surface-treated fresh vegetables, (including mushrooms and fungi, roots and tubers, pulses and legumes [(including soybeans)], and aloe vera), seaweeds and nuts and seeds</td>
<td>GMP</td>
<td>Note 79</td>
<td>8</td>
</tr>
<tr>
<td>05.3</td>
<td>Chewing gum</td>
<td>GMP</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>05.4</td>
<td>Decorations (e.g., for fine bakery wares), toppings (non-fruit) and sweet sauces</td>
<td>GMP</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
CARNAUBA WAX

Carnauba Wax

Function: Anticaking Agent, Adjuvant, Bulking Agent, Carrier Solvent, Glazing Agent, Release Agent

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.3</td>
<td>Chewing gum</td>
<td>1200 mg/kg</td>
<td>Note 3</td>
<td>8</td>
</tr>
<tr>
<td>14.1.4</td>
<td>Water-based flavoured drinks, including "sport" or "electrolyte" drinks and particulated drinks</td>
<td>200 mg/kg</td>
<td>Note 119</td>
<td>8</td>
</tr>
</tbody>
</table>

SHELLAC

Shellac

Function: Bulking Agent, Glazing Agent, Release Agent

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.1.1.2</td>
<td>Surface-treated fresh fruit</td>
<td>GMP</td>
<td>Note 79</td>
<td>8</td>
</tr>
<tr>
<td>04.2.1.2</td>
<td>Surface-treated fresh vegetables, (including mushrooms and fungi), roots and tubers, pulses and legumes [(including soybeans)], and aloe vera; seaweeds and nuts and seeds</td>
<td>GMP</td>
<td>Note 3</td>
<td>8</td>
</tr>
<tr>
<td>05.3</td>
<td>Chewing gum</td>
<td>GMP</td>
<td>Note 3</td>
<td>8</td>
</tr>
<tr>
<td>05.4</td>
<td>Decorations (e.g., for fine bakery wares), toppings (non-fruit) and sweet sauces</td>
<td>GMP</td>
<td>Note 3</td>
<td>8</td>
</tr>
</tbody>
</table>

BENZOATES

Benzoic Acid

INS: 210

Sodium Benzoate

INS: 211

Potassium Benzoate

INS: 212

Calcium Benzoate

INS: 213

Function: Preservative

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.1.2.2</td>
<td>Dried fruit</td>
<td>800 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>04.2.2.2</td>
<td>Dried vegetables, (including mushrooms and fungi, roots and tubers, pulses and legumes [(including soybeans)], and aloe vera), seaweeds, seaweeds, and nuts and seeds</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>05.1.3</td>
<td>Cocoa-based spreads, including fillings</td>
<td>1500 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>05.1.5</td>
<td>Imitation chocolate, chocolate substitute products</td>
<td>1500 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>05.2</td>
<td>Confectionery including hard and soft candy, nougat, etc., other than food categories 05.1, 05.3 and 05.4</td>
<td>1500 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>05.4</td>
<td>Decorations (e.g., for fine bakery wares), toppings (non-fruit) and sweet sauces</td>
<td>1500 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>06.5</td>
<td>Cereal and starch based desserts (e.g., rice pudding, tapioca pudding)</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>09.2.4.2</td>
<td>Cooked mollusks, crustaceans, and echinoderms</td>
<td>2000 mg/kg</td>
<td>Notes 13 & 82</td>
<td>8</td>
</tr>
<tr>
<td>09.3.</td>
<td>Semi-preserved fish and fish products, including mollusks, crustaceans, and echinoderms</td>
<td>2000 mg/kg</td>
<td>Note 13 & 120</td>
<td>8</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Liquid egg products</td>
<td>5000 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>10.4</td>
<td>Egg-based desserts (e.g., custard)</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>11.4</td>
<td>Other sugars and syrups (e.g., xylose, maple syrup, sugar toppings)</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>11.6</td>
<td>Table-top sweeteners, including those containing high intensity sweeteners</td>
<td>2000 mg/kg</td>
<td>Note 13</td>
<td>5/8</td>
</tr>
<tr>
<td>12.2</td>
<td>Herbs, spices, seasonings (including salt substitutes), and condiments (e.g., seasoning for instant noodles)</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>12.3</td>
<td>Vinegars</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>12.4</td>
<td>Mustards</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>12.6</td>
<td>Sauces and like products</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>12.7</td>
<td>Salads (e.g., macaroni salad, potato salad) and sandwich spreads excluding cocoa- and nut-based spreads of food categories 04.2.2.5 and 05.1.3</td>
<td>1500 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Dietetic foods for special medical purposes intended for adults</td>
<td>1500 mg/kg</td>
<td>Note 13</td>
<td>8</td>
</tr>
</tbody>
</table>
13.4 Dietetic formulae for slimming purposes and weight reduction 1500 mg/kg Note 13 8
13.5 Dietetic foods (e.g., supplementary foods for dietary use) excluding products of food categories 13.1 - 13.4 2000 mg/kg Note 13 8
13.6 Food supplements 2000 mg/kg Note 13 5/8
14.1.5 Coffee, coffee substitutes, tea, herbal infusions, and other hot cereal and grain beverages, excluding cocoa 600 mg/kg Note 13 8
14.2.4 Wines (other than grape) 1000 mg/kg Note 13 8
14.2.7 Aromatized alcoholic beverages (e.g., beer, wine and spirituous cooler-type beverages, low alcoholic refreshers) 1000 mg/kg Note 13 8

Notes to the Comments for the Revised Draft General Standard for Food Additives (34th CCFAC)

Note 1: As adipic acid.
Note 2: On dry ingredient, dry weight, dry mix or concentrate basis.
Note 3: Surface treatment.
Note 4: For decoration, stamping, marking or branding the product.
Note 5: Used in raw materials for manufacture of the finished food.
Note 6: As aluminium.
Note 7: Use level not in finished food.
Note 8: As bixin.
Note 9: As total bixin or norbixin.
Note 10: As ascorbyl stearate.
Note 11: Flour basis.
Note 12: Carryover from flavouring substances.
Note 13: As benzoic acid.
Note 14: Served at greater than 5-fold dilution.
Note 15: Fat or oil basis.
Note 16: For use in glaze, coatings or decorations for fruit, vegetables, meat or fish.
Note 17: As cyclamamic acid.
Note 18: Added level; residue not detected in ready-to-eat food.
Note 19: Used in cocoa fat; use level on ready-to-eat basis.
Note 20: On total amount of stabilizers, thickeners and/or gums.
Note 21: As anhydrous calcium disodium EDTA.
Note 22: For use in smoked fish products only.
Note 23: As iron.
Note 24: As anhydrous sodium ferrocyanide.
Note 25: As formic acid.
Note 26: For use in baking powder only.
Note 27: As p-hydroxybenzoic acid.
Note 28: ADI conversion: if a typical preparation contains 0.025 μg U, then the ADI of 33,000 U/kg bw becomes: \(\frac{33000 \text{ U/kg bw}}{0.025 \text{ μg U}} \times \frac{1 \text{ mg} \text{ U}}{1000 \text{ μg}} = 0.625 \text{ mg/kg bw} \)
Note 29: Reporting basis not specified.
Note 30: As residual NO3 ion.
Note 31: Of the mash used.
Note 32: As residual NO2 ion.
Note 33: As phosphorus.
Note 34: Anhydrous basis.
Note 35: Except for use in special formula at 20,000 mg/kg.
Note 36: Residual level.
Note 37: As phosphorus.
Note 38: Level in creaming mixture.
Note 39: Only when product contains butter or other fats and oils.
Note 40: Except for use in special formula at 200 mg/kg.
Note 41: Use in breading or batter coatings only.
Note 42: As sorbic acid.
Note 43: As tin.
Note 44: As residual SO2.
Note 45: As tartaric acid.
Note 46: As thiodipropionic acid.
Note 47: On egg yolk weight, dry basis.
Note 48: For olives only.
Note 49: For use on citrus fruits only.
Note 50: For use in fish roe only.
Note 51: For use in herbs and salt substitutes only.
Note 52: For use in butter only.
Note 53: For use in coatings only.
Note 54: For use in dried products only.
Note 55: Added level.
Note 56: Provided starch is not present.
Note 57: GMP is 1 part benzoyl peroxide and not more than 6 parts of the subject additive by weight.
Note 58: As calcium.
Note 59: Use as packing gas.
Note 60: If used as a carbonating agent, the CO2 in the finished wine shall not exceed 39.2 mg/kg.
Note 61: For use in minced fish only.
Note 62: As copper.
Note 63: On amount of dairy ingredients.
Note 64: Level added to dry beans; 200 mg/kg in ready-to-eat food, anhydrous basis.
Note 65: Carryover from nutrient preparations.
Note 66: As formaldehyde. For use in provolone cheese only.
Note 67: Carryover from use in casings.
Note 68: For use in natural mineral waters only.
Note 69: Use as carbonating agent.
Note 70: As the acid.
Note 71: Calcium, potassium and sodium salts only.
Note 72: Ready-to-eat basis.
Note 73: Except whole fish.
Note 74: Use level for deep orange coloured cheeses; 25 mg/kg for orange coloured cheeses; 10 mg/kg for normal coloured cheeses.
Note 75: Use in milk powder for vending machines only.
Note 76: Use in potatoes only.
Note 77: As mono-isopropyl citrate.
Note 78: For use in tocino (fresh, cured sausage) only.
Note 79: For use on nuts only.
Note 80: Equivalent to 2 mg/dm2 surface application to a maximum depth of 5 mm.
Note 81: Equivalent to 1 mg/dm2 surface application to a maximum depth of 5 mm.
Note 82: For use in shrimp; 6000 mg/kg for Crangon crangon and Crangon vulgaris.
Note 83: For use in sauce only.
Note 84: For use in special formula at 10,000 mg/kg.
Note 85: Excluding use in surimi and fish roe products at 500 mg/kg.
Note 86: Use in whipped dessert toppings other than cream only.
Note 87: Treatment level.
Note 88: Carryover from the ingredient.
Note 89: Except for use in dried tangle (KONBU) at 150 mg/kg.
Note 90: For use in milk-sucrose mixtures used in the finished product.
Note 91: For use in special formula only.
Note 92: On the weight of the protein before re-hydration.
Note 93: Except natural wine produced from Vitis Vinifera grapes.
Note 94: For use in loganiza (fresh, uncured sausage) only.
Note 95: For use in surimi and fish roe products only.
Note 96: Carryover from use in fats.
Note 97: In cocoa and chocolate products.
Note 98: For dust control.
Note 99: For use in fish fillets and minced fish only.
Note 100: For use as a dispersing agent in dill oil used in the final food.
Note 101: Level based on the maximum recommended daily dose of 475 mg/dose, assuming one 600 mg tablet is consumed per day.
Note 102: For use as a surfactant or wetting agent for colours in the food.
Note 103: Except for use in special white wines at 400 mg/kg.
Note 104: Maximum 5000 mg/kg residue in bread and yeast-leavened bakery products.
Note 105: Except for use in dried gourd strips (KAMYO) at 5000 mg/kg.
Note 106: Except for use in Dijon mustard at 500 mg/kg.
Note 107: Except for use in concentrated grape juice for home wine making at 2000 mg/kg.
Note 108: Excluding cocoa powder.
Note 109: Use level reported as 25 lbs/1000 gal x (0.45 kg/lb) x (1 gal/3.75 L) x (1 L/kg) x (1 mg/kg) = 3000 mg/kg
Note 110: Except for use in special formula at 12,000 mg/kg.
Note 111: For use in caviar at 2500 mg/kg
PROPOSED DRAFT (AT STEP 3) AND DRAFT (AT STEP 6) AMENDMENTS TO TABLE 1 OF THE CODEX GENERAL STANDARD FOR FOOD ADDITIVES

ALUMINIUM AMMONIUM SULPHATE

Aluminium Ammonium Sulphate INS: 523

Function: Firming Agent, Raising Agent, Stabilizer

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.2.2.7</td>
<td>Fermented vegetable (including mushrooms and fungi, roots and tubers, pulses and legumes [including soybeans], and aloe vera), seaweeds products</td>
<td>GMP</td>
<td>Note 6</td>
<td>3</td>
</tr>
<tr>
<td>06.2</td>
<td>Flours and starches</td>
<td>GMP</td>
<td>Notes 6 & 26</td>
<td>6</td>
</tr>
<tr>
<td>07.2.1</td>
<td>Cakes, cookies and pies (e.g., fruit-filled or custard types)</td>
<td>GMP</td>
<td>Note 6</td>
<td>3</td>
</tr>
<tr>
<td>12.2</td>
<td>Herbs, spices, seasonings (including salt substitutes), and condiments (e.g., seasoning for instant noodles)</td>
<td>GMP</td>
<td>Note 6</td>
<td>3</td>
</tr>
<tr>
<td>15.1</td>
<td>Snacks - potato, cereal, flour or starch based (from roots and tubers, pulses and legumes)</td>
<td>GMP</td>
<td>Note 6</td>
<td>3</td>
</tr>
</tbody>
</table>

ASCORBYL ESTERS

Ascorbyl Palmitate INS: 304 Ascorbyl Stearate INS: 305

Function: Antioxidant

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6.2</td>
<td>Non-emulsified sauces (e.g., ketchup, cheese sauce, cream sauce, brown gravy)</td>
<td>500 mg/kg</td>
<td>Note 10</td>
<td>6</td>
</tr>
<tr>
<td>13.4</td>
<td>Dietetic formulae for slimming purposes and weight reduction</td>
<td>GMP</td>
<td>Note 10</td>
<td>3</td>
</tr>
<tr>
<td>13.5</td>
<td>Dietetic foods (e.g., supplementary foods for dietary use) excluding products of food categories 13.1 - 13.4</td>
<td>GMP</td>
<td>Note 10</td>
<td>3</td>
</tr>
</tbody>
</table>

BEESWAX, WHITE AND YELLOW

Beeswax, White and Yellow INS: 901

Function: Bulking Agent, Glazing Agent, Release Agent, Stabilizer

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1.4</td>
<td>Water-based flavoured drinks, including "sport" or "electrolyte" drinks and particulated drinks</td>
<td>200 mg/kg</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

CANDELILLA WAX

Candelilla Wax INS: 902

Function: Bulking Agent, Carrier Solvent, Glazing Agent, Release Agent

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1.4</td>
<td>Water-based flavoured drinks, including "sport" or "electrolyte" drinks and particulated drinks</td>
<td>200 mg/kg</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

CARNAUBA WAX

Carnauba Wax INS: 903

Function: Anticaking Agent, Adjuvant, Bulking Agent, Carrier Solvent, Glazing Agent, Release Agent
<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.1.1.2</td>
<td>Surface-treated fresh fruit</td>
<td>GMP</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>04.1.2</td>
<td>Processed fruit</td>
<td>GMP</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>04.2.1.2</td>
<td>Surface-treated fresh vegetables, (including mushrooms and fungi, roots and tubers, pulses and legumes [including soybeans], and aloe vera), seaweeds and nuts and seeds</td>
<td>GMP Note 79</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>05.4</td>
<td>Decorations (e.g., for fine bakery wares), toppings</td>
<td>10000 mg/kg</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12.6</td>
<td>Sauces and like products</td>
<td>GMP</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>14.1.2.1</td>
<td>Canned or bottled (pasteurized) fruit juice</td>
<td>GMP</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

BENZOATES

<table>
<thead>
<tr>
<th>Function: Preservative</th>
<th>Benzoic Acid</th>
<th>Sodium Benzoate</th>
<th>Potassium Benzoate</th>
<th>Calcium Benzoate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INS: 210</td>
<td>INS: 211</td>
<td>INS: 212</td>
<td>INS: 213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Food Cat. No.</th>
<th>Food Category</th>
<th>Max Level</th>
<th>Comments</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.1.2.4</td>
<td>Canned or bottled (pasteurized) fruit</td>
<td>800 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>04.1.2.5</td>
<td>Jams, jellies and marmelades</td>
<td>1500 mg/kg</td>
<td>Note 13</td>
<td>3</td>
</tr>
<tr>
<td>04.2.2.4</td>
<td>Canned or bottled (pasteurized) or retort pouch vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes [including soybeans], and aloe vera), seaweeds</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>05.1.1</td>
<td>Cocoa mixes (powders) and cocoa mass/cake</td>
<td>700 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>05.3</td>
<td>Chewing gum</td>
<td>1500 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>06.4.3</td>
<td>Pre-cooked pastas and noodles and like products</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>07.0</td>
<td>Bakery wares</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>08.2.1.2</td>
<td>Cured (including salted) and dried non-heat treated processed meat, poultry, and game products in whole pieces or cuts</td>
<td>GMP Notes 3 & 13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>08.3.1.2</td>
<td>Cured (including salted) and dried non-heat treated processed comminuted meat, poultry, and game products</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>08.3.2</td>
<td>Heat-treated processed comminuted meat, poultry, and game products</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>3</td>
</tr>
<tr>
<td>09.2.5</td>
<td>Smoked, dried, fermented, and/or salted fish and fish products, including mollusks, crustaceans, and echinoderms</td>
<td>200 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>12.5</td>
<td>Soups and broths</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.1.2</td>
<td>Table waters and soda waters</td>
<td>200 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.2.1</td>
<td>Canned or bottled (pasteurized) fruit juice</td>
<td>2000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.2.2</td>
<td>Canned or bottled (pasteurized) vegetable juice</td>
<td>2000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.2.3</td>
<td>Concentrate (liquid or solid) for fruit juice</td>
<td>2000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.2.4</td>
<td>Concentrate (liquid or solid) for vegetable juice</td>
<td>1400 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.3.1</td>
<td>Canned or bottled (pasteurized) fruit nectar</td>
<td>2000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.3.2</td>
<td>Canned or bottled (pasteurized) vegetable nectar</td>
<td>2000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.3.3</td>
<td>Concentrate (liquid or solid) for fruit nectar</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.3.4</td>
<td>Concentrate (liquid or solid) for vegetable nectar</td>
<td>500 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.4</td>
<td>Water-based flavoured drinks, including "sport" or "electrolyte" drinks and particulated drinks</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.1.5</td>
<td>Coffee, coffee substitutes, tea, herbal infusions, and other hot cereal and grain beverages, excluding cocoa</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>3</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Cider and perry</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>14.2.5</td>
<td>Mead</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>15.1</td>
<td>Snacks - potato, cereal, flour or starch based (from roots and tubers, pulses and legumes)</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
<tr>
<td>16.0</td>
<td>Composite foods - foods that could not be placed in categories 01 - 15</td>
<td>1000 mg/kg</td>
<td>Note 13</td>
<td>6</td>
</tr>
</tbody>
</table>
Notes to the Comments for the Revised Draft General Standard for Food Additives (34th CCFAC)

Note 1: As adipic acid.
Note 2: On dry ingredient, dry weight, dry mix or concentrate basis.
Note 3: Surface treatment.
Note 4: For decoration, stamping, marking or branding the product.
Note 5: Used in raw materials for manufacture of the finished food.
Note 6: As aluminium.
Note 7: Use level not in finished food.
Note 8: As tin.
Note 9: As total bixin or norbixin.
Note 10: As ascorbyl stearate.
Note 11: Flour basis.
Note 12: Carryover from flavouring substances.
Note 13: As benzoic acid.
Note 14: Served at greater than 5-fold dilution.
Note 15: Fat or oil basis.
Note 16: For use in glaze, coatings or decorations for fruit, vegetables, meat or fish.
Note 17: As cyclamnic acid.
Note 18: Added level; residue not detected in ready-to-eat food.
Note 19: Used in cocoa fat; use level on ready-to-eat basis.
Note 20: On total amount of stabilizers, thickeners and/or gums.
Note 21: As anhydrous calcium disodium EDTA.
Note 22: For use in smoked fish products only.
Note 23: As anhydrous sodium ferrocyanide.
Note 24: As formic acid.
Note 25: As p-hydroxybenzoic acid.
Note 26: For use in provolone cheese only.
Note 27: As residual NO3 ion.
Note 28: ADI conversion: if a typical preparation contains 0.025 μg/U and the ADI of 33,000 U/kg bw becomes: (33,000 U/kg bw) x (0.025 μg/U) x (1 mg/1000 μg) = 0.0826 mg/kg bw
Note 29: Reporting basis not specified.
Note 30: As residual NO3 ion.
Note 31: Of the mash used.
Note 32: As residual NO2 ion.
Note 33: As phosphorus.
Note 34: As anhydrous basis.
Note 35: Except for use in special formula at 20,000 mg/kg.
Note 36: Residual level.
Note 37: As residual SO2.
Note 38: On egg yolk weight, dry basis.
Note 39: On egg weight, dry basis.
Note 40: For use in special formula at 200 mg/kg.
Note 41: For use in breading or batter coatings only.
Note 42: As sorbic acid.
Note 43: As thiodipropionic acid.
Note 44: On egg yolk weight, dry basis.
Note 45: As thiodipropionic acid.
Note 46: For olive oil only.
Note 47: For use on citrus fruits only.
Note 48: For use on citrus fruits only.
Note 49: For use in fish roe only.
Note 50: For use in herbs and salt substitutes only.
Note 51: For use in bread only.
Note 52: For use in butter only.
Note 53: For use in creaming mixture.
Note 54: For use on denatured alcohol basis.
Note 55: For use in dried products only.
Note 56: Added level.
Note 57: Provided starch is not present.
Note 58: GMP is 1 part benzoyl peroxide and not more than 6 parts of the subject additive by weight.
Note 59: As calcium.
Note 60: Use as packing gas.
Note 61: If used as a carbonating agent, the CO2 in the finished wine shall not exceed 39.2 mg/kg.
Note 62: As sodium.
Note 63: On amount of dried ingredients.
Note 64: Level added to dry beans; 200 mg/kg in ready-to-eat food, anhydrous basis.
Note 65: Carryover from nutrient preparations.
Note 66: As formaldehyde. For use in provolone cheese only.
Note 67: Carryover from use in casings.
Note 68: For use in natural mineral waters only.
Note 69: Use as carbonating agent.
Note 70: As the acid.
Note 71: Calcium, potassium and sodium salts only.
Note 72: Ready-to-eat basis.
Note 73: Except whole fish.
Note 74: Use level for deep orange coloured cheeses; 25 mg/kg for orange coloured cheeses; 10 mg/kg for normal coloured cheeses.
Note 75: Use in milk powder for vending machines only.
Note 76: Use in potatoes only.
Note 77: As mono-isopropyl citrate.
Note 78: For use in tocino (fresh, cured sausage) only.
Note 79: For use on nuts only.
Note 80: Equivalent to 2 mg/dm² surface application to a maximum depth of 5 mm.
Note 81: Equivalent to 1 mg/dm² surface application to a maximum depth of 5 mm.
Note 82: For use in shrimp; 6000 mg/kg for Crangon crangon and Crangon vulgaris.
Note 83: For use in sauce only.
Note 84: For use in special formula at 10,000 mg/kg.
Note 85: Excluding use in surimi and fish roe products at 500 mg/kg.
Note 86: Use in whipped dessert toppings other than cream only.
Note 87: Treatment level.
Note 88: Carryover from the ingredient.
Note 89: Except for use in dried tangle (KONBU) at 150 mg/kg.
Note 90: For use in milk-sucrose mixtures used in the finished product.
Note 91: For use in special formula only.
Note 92: On the weight of the protein before re-hydration.
Note 93: Except natural wine produced from Vitis Vinifera grapes.
Note 94: For use in loganiza (fresh, uncured sausage) only.
Note 95: For use in surimi and fish roe products only.
Note 96: Carryover from use in fats.
Note 97: In cocoa and chocolate products.
Note 98: For dust control.
Note 99: For use in fish fillets and minced fish only.
Note 100: For use as a dispersing agent in dill oil used in the final food.
Note 101: Level based on the maximum recommended daily dose of 475 mg/dose, assuming one 600 mg tablet is consumed per day.
Note 102: For use as a surfactant or wetting agent for colours in the food.
Note 103: Except for use in special white wines at 400 mg/kg.
Note 104: Maximum 5000 mg/kg residue in bread and yeast-leavened bakery products.
Note 105: Except for use in dried gourd strips (KAMPYO) at 5000 mg/kg.
Note 106: Except for use in Dijon mustard at 500 mg/kg.
Note 107: Except for use in concentrated grape juice for home wine making at 2000 mg/kg.
Note 108: For use on coffee beans only.
Note 109: Use level reported as 25 lbs/1000 gal x (0.45 kg/lb) x (1 gal/3.75 L) x (1 L/kg) x (1 mg/kg) = 3000 mg/kg
Note 110: For use in frozen French fried potatoes only.
Note 111: For use in dipping solution only.
Note 112: For use in grated cheese only.
Note 113: Excluding butter.
Note 114: Excluding cocoa powder.
Note 115: Except for use in special formula at 12,000 mg/kg.
Note 116: For use in doughs only.
Note 117: Except for use in loganiza (fresh, uncured sausage) at 1000 mg/kg.
Note 118: Except for use in tocino (fresh, cured sausage) at 1000 mg/kg.
Note 119: As carrier for flavours
Note 120: Except for use in caviar at 2500 mg/kg
DRAFT AMENDMENTS TO FOOD CATEGORIES OR INDIVIDUAL FOOD ITEMS
EXCLUDED FROM THE GENERAL CONDITIONS OF TABLE THREE
(ANNEX TO TABLE 3 OF THE GENERAL STANDARD FOR FOOD ADDITIVES)
(AT STEP 6 OF THE PROCEDURE)

The use of additives listed in Table Three in the following foods is governed by the provisions in Tables One and Two.

<table>
<thead>
<tr>
<th>Category Number</th>
<th>Food Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.1.1</td>
<td>Milk and buttermilk (excluding heat-treated buttermilk)</td>
</tr>
<tr>
<td>01.2</td>
<td>Fermented and renneted milk products (plain) excluding food category 01.1.2 (dairy based drinks)</td>
</tr>
<tr>
<td>01.4.1</td>
<td>Pasteurized cream</td>
</tr>
<tr>
<td>01.4.2</td>
<td>Sterilized, UHT, whipping or whipped, and reduced fat creams</td>
</tr>
<tr>
<td>02.1</td>
<td>Fats and oils essentially free from water</td>
</tr>
<tr>
<td>02.2.1.1</td>
<td>Butter and concentrated butter (Only butter)</td>
</tr>
<tr>
<td>04.1.1</td>
<td>Fresh fruit</td>
</tr>
<tr>
<td>04.2.1</td>
<td>Fresh vegetables, (including mushrooms and fungi, roots and tubers, pulses and legumes [(including soybeans], and aloe vera), seaweeds, and nuts and seeds</td>
</tr>
<tr>
<td>04.2.2.1</td>
<td>Frozen vegetables, (including mushrooms and fungi, roots and tubers, pulses and legumes [(including soybeans], and aloe vera), seaweeds, and nuts and seeds</td>
</tr>
<tr>
<td>04.2.2.7</td>
<td>Fermented vegetable (including mushrooms and fungi, roots and tubers, pulses and legumes [(including soybeans], and aloe vera), seaweeds, products</td>
</tr>
<tr>
<td>06.1</td>
<td>Whole, broken or flaked grain, including rice</td>
</tr>
<tr>
<td>06.2</td>
<td>Flours and starches</td>
</tr>
<tr>
<td>06.4.1</td>
<td>Fresh pastas and noodles and like products</td>
</tr>
<tr>
<td>06.4.2</td>
<td>Dried pastas and noodles and like products</td>
</tr>
<tr>
<td>08.1</td>
<td>Fresh meat, poultry, and game</td>
</tr>
<tr>
<td>09.1</td>
<td>Fresh fish and fish products, including mollusks, crustaceans and echinoderms</td>
</tr>
<tr>
<td>09.2</td>
<td>Processed fish and fish products, including mollusks, crustaceans and echinoderms</td>
</tr>
<tr>
<td>10.1</td>
<td>Fresh eggs</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Liquid egg products</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Frozen egg products</td>
</tr>
<tr>
<td>11.1</td>
<td>Refined and raw sugars</td>
</tr>
<tr>
<td>11.2</td>
<td>Brown sugar, excluding products of food category 11.1.3 (soft white sugar, soft brown sugar, glucose syrup, dried glucose syrup, raw cane sugar)</td>
</tr>
<tr>
<td>11.3</td>
<td>Sugar solutions and syrups, also (partially inverted, including treacle and molasses, excluding products of food category 11.1.3 (soft white sugar, soft brown sugar, glucose syrup, dried glucose syrup, raw cane sugar)</td>
</tr>
<tr>
<td>11.4</td>
<td>Other sugars and syrups (e.g., xylose, maple syrup, sugar toppings)</td>
</tr>
<tr>
<td>11.5</td>
<td>Honey</td>
</tr>
<tr>
<td>12.1</td>
<td>Salt</td>
</tr>
<tr>
<td>12.2</td>
<td>Herbs, spices, seasoning (including salt substitutes) and condiments (Only herbs and salt substitutes)</td>
</tr>
<tr>
<td>13.1</td>
<td>Infant formulae and follow-on formulae</td>
</tr>
<tr>
<td>13.2</td>
<td>Weaning foods for infants and young children</td>
</tr>
<tr>
<td>14.1.1.1</td>
<td>Natural mineral waters and source waters (Only natural mineral waters)</td>
</tr>
<tr>
<td>14.1.2.1</td>
<td>Canned or bottled (pasteurized) fruit juice</td>
</tr>
<tr>
<td>14.1.2.3</td>
<td>Concentrates (liquid and solid) for fruit juice</td>
</tr>
<tr>
<td>14.1.3.1</td>
<td>Canned or bottled (pasteurized) fruit nectar</td>
</tr>
<tr>
<td>14.1.3.3</td>
<td>Concentrates (liquid and solid) for fruit nectar</td>
</tr>
<tr>
<td>14.1.5</td>
<td>Coffee, coffee substitutes, tea, herbal infusions, and other hot cereal beverages, excluding cocoa</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Grape wines</td>
</tr>
</tbody>
</table>
INTRODUCTION

Food irradiation is the processing of food products by ionizing radiation in order to, among other things, control foodborne pathogens, reduce microbial load and insect infestation, inhibit the germination of root crops, and extend the durable life of perishable produce. Many countries are using industrial irradiators for processing of food products for commercial purposes.

The regulatory control of food irradiation should take into consideration the Codex General Standard for Irradiated Foods (CX-STAN 106-1983, under revision) and this Code.

The purpose of regulatory control of irradiated food products should be:

a) to ensure that radiation processing of food products is implemented safely and correctly, in accordance with all relevant Codex standards and codes of hygienic practice;

b) to establish a system of documentation to accompany irradiated food products, so that the fact of irradiation can be taken into account during subsequent handling, storage and marketing; and

c) to ensure that irradiated food products that enter into international trade conform to acceptable standards of radiation processing and are correctly labelled.

The purpose of this Code is to provide principles for the processing of food products with ionizing radiation that are consistent with relevant Codex Standards and codes of hygienic practice. Food irradiation may be incorporated as part of a HACCP-plan where applicable; but a HACCP-plan is not required for the use of radiation processing of food processed for purposes other than for food safety. The provisions of this Code will provide guidance to the radiation processor to apply the Hazard Analysis and Critical Control Point (HACCP) system, as recommended in the Recommended International Code of Practice General Principles of Food Hygiene (CAC/RCP 1-1969, Rev 3-1997, Amd. 1-1999), where applicable for food safety purposes, to foods processed by ionizing radiation.

1. OBJECTIVES

This Codex Code of Practice for Radiation Processing of Food identifies the essential practices to be implemented to achieve effective radiation processing of food products in a manner that maintains quality and yields food products that are safe and suitable for consumption.

2. SCOPE, USE and DEFINITIONS

2.1 Scope

This Code is concerned with food products processed by gamma rays, X-rays or accelerated electrons for the purpose of, among other things, control of foodborne pathogens, reduction of microbial load and insect infestation, inhibition of the germination of root crops, and extension of durable life for perishable foods.
This Code covers the requirements of the irradiation process in a facility; it also considers other aspects of the process as primary production and/or harvesting, post-harvest treatment, storage and shipment, packaging, irradiation, labelling, post-irradiation storage and handling, and training.1

2.2 Use

The Recommended International Code of Practice - General Principles of Food Hygiene (CAC/RCP 1-1969, Rev 3-1997, Amd. 1-1999) and its annex on application of the HACCP system, as well as other relevant Codex Standards and codes of hygienic practice should be used with this document. Of particular relevance are the Codex General Standard for Irradiated Foods (CX-STAN 106-1983 - under revision) and the General Standard for the Labelling of Pre-Packaged Foods (CX-STAN 1-1985, Rev 1 - 1991).

2.3 Definitions

For purposes of this Code, the terms below are defined as follows:

Food Irradiation: Processing of food products by ionizing radiation, specifically gamma rays, X-rays or accelerated electrons as specified in the Codex General Standard for Irradiated Foods.

Irradiated Food: Food products processed by ionizing radiation in accordance with the Codex General Standard for Irradiated Foods. Such food is subject to all relevant standards, codes and regulations applicable to the non-irradiated counterpart.

Dosimetry: The measurement of the absorbed dose of radiation at a particular point in a given absorbing medium.

Dose (absorbed): The absorbed dose, sometimes referred to simply as 'dose', is the amount of energy absorbed per unit mass of irradiated food product.

Dose Uniformity Ratio: The ratio of maximum to minimum absorbed dose in the production lot.

Dose Distribution: The spatial variation in absorbed dose throughout the production lot with extreme values being the maximum absorbed dose and the minimum absorbed dose.

Dose Limit: The minimum or maximum radiation dose absorbed by a food product prescribed in regulations as required for technological reasons. Such dose limits are expressed as ranges or as single lower or upper values (i.e., no part of the food product shall absorb less than or more than a specified amount).

3. **PRE-IRRADIATION TREATMENT**

3.1 Primary production and/or harvesting

Primary food products intended for radiation processing should comply with the Codex General Principles of Food Hygiene with reference to the hygienic requirements as well as other relevant Codex standards and codes of practice for primary production and/or harvesting, which ensure that food is safe and suitable for human consumption.

3.2 Handling, storage and transport

The intent to process food products by irradiation poses no unique requirements regarding handling, storage and transport of the food products prior to and subsequent to irradiation. All stages of the processing,
i.e., pre-irradiation, irradiation and post-irradiation, should be in accordance with good manufacturing practices to maximize quality, to minimize contamination, and, if packaged, to maintain package integrity.

Radiation is applied to food products in forms in which they are normally prepared for processing, commercially traded or otherwise used. Food intended for radiation processing should conform to handling, storage and transport requirements of the Codex General Principles of Food Hygiene as well as relevant Codex standards and codes of practice for specific food products.

4. PACKAGING

In general, in order to avoid contamination or infestation after irradiation, food products should be packaged in materials that provide an effective barrier to re-contamination and re-infestation. Packaging must also meet the requirements of the importing country.

The size and shape of containers that may be used for irradiation are determined, in part, by the operating characteristics of the irradiation facility. These characteristics include the product transport systems and the irradiation source, as they affect the dose distribution within the container.

5. ESTABLISHMENT: DESIGN, FACILITIES and CONTROL

Authorization of a facility to irradiate food is granting approval to a facility licensed for radiation processing in general to irradiate food products. Authorization may be general in nature or issued for specific classes or groups of food products.

Facilities which carry out irradiation of food products should meet appropriate standards of occupational safety and good hygiene conditions, including:

- Regulations regarding design, construction and operation of radiation facilities
- General Principles of Food Hygiene
- General Standard for Irradiated Foods and this Code.

5.1 Design and layout

This section is concerned with the areas in which food products are stored and irradiated. Prevention of contamination requires that all measures be taken to avoid direct or indirect contact of the food product with sources of potential contamination and to minimize growth of microorganisms.

Irradiation establishments are laid out to provide storage for irradiated and non-irradiated food products (under ambient, refrigerated and/or freezing temperature conditions), an irradiator, and the normal accommodation and infrastructure for staff and plant services including record maintenance. In order to achieve inventory control there should be provision in both the design and operation of the establishment to keep irradiated and non-irradiated food products separate. This separation can be accomplished by controlled single-direction movement of the food products through the plant and by separated storage areas for irradiated and non-irradiated food products.

Radiation facilities must be designed to provide an absorbed dose in the food product within minimum and maximum limits in accordance with process specifications and government regulatory requirements. For economic and technical reasons (e.g. maintaining product quality), various techniques are used to minimize the ratio, which is termed the dose uniformity ratio.

The following factors largely govern the selection of irradiator design:

a) Means of transporting food products: The mechanical design of the irradiation and transport systems, including the source-to-product geometry in a given process, as required by the form of the product, e.g. bulk or packaged, and its properties.
b) Range of doses: The range of doses needed to process a wide variety of products for various applications.

c) Throughput: The amount of product to be processed within a defined period of time.

d) Reliability: The property of providing correct performance as needed.

e) Safety-systems: The systems intended to protect operating personnel from hazards posed by radiation.

f) Compliance: The adherence to good manufacturing practices and relevant government regulations.

g) Capital and operational costs: The basic economic considerations necessary for sustainable operation.

5.2 Radiation sources

As described in the Codex General Standard for Irradiated Foods, the following sources of ionizing radiation may be used in food irradiation:

a) Gamma rays from radionuclides 60Co or 137Cs;
b) X-rays generated from machine sources operated at or below an energy level of 5 MeV; and
c) Electrons generated from machine sources operated at or below an energy level of 10 MeV.

5.3 Control of operation

5.3.1 Legislation

Food processing establishments are constructed and operated in accordance with regulatory requirements in order to ensure safety of the processed foods for consumption and occupational safety of the plant personnel and the environment. A food irradiation facility, like any other food processing plant, is also subject to such regulation and should be designed, constructed and operated in compliance with relevant regulations.

5.3.2 Requirements for staff

The staff at an irradiation facility is subject to relevant sections of the Recommended International Code of Practice General Principles of Food Hygiene (CAC/RCP 1-1969, Rev 3-1997, Amd. 1-1999) for personal hygiene recommendations and to the General Standard for Irradiated Foods for recommendations regarding the need for an adequate, trained and competent personnel.

5.3.3 Requirements for process control

Requirements for process control are included in the General Standard for Irradiated Foods. Measuring the dose and monitoring of the physical parameters of the process are essential for process control. The need for adequate record keeping, including records of quantitative dosimetry, is emphasized in the General Standard. As for other physical methods of food processing, records are essential means for the regulatory control of processing by ionizing radiation. Evidence for correct processing, including adherence to any legal or technological dose limits, depends on the maintenance of full and accurate records by the irradiation facility. The facility's records link all the information from several sources to the irradiated food products. Such records enable verification of the irradiation process and should be kept.

5.3.4 Control of applied dose

The effectiveness of the irradiation process depends on proper application of the dose and its measurement. Dose distribution measurements should be carried out to characterize the process for each food product; and

2 Training manuals for facility operators and control officials have been produced by ICGFI, available through the International Atomic Energy Agency, PO Box 100, A-1400 Vienna, Austria. ICGFI also, through its FIPCOS, provides such training.
thereafter dosimeters should be used routinely to monitor correct execution of the process in accordance with internationally accepted procedures.3

For certain public health or quarantine applications, there may be specific requirements to regulate the minimum absorbed dose in order to ensure that the desired technological effect is achieved.

5.3.5 Product and inventory control

An adequate system should be in place so that specific consignments of food products can be traced back both to the irradiation facility and the source from which they were received for processing.

Plant design and administrative procedures should ensure that it is impossible to mix irradiated and non-irradiated food products. Incoming products should be logged and given a code number to identify the packages at each step in its path through the irradiation plant. All relevant parameters such as date, time, source strength, minimum and maximum dose, temperature, etc. should be logged against the code number of the product.

It is not possible to distinguish irradiated from non-irradiated product by visual inspection. Therefore, it is essential that appropriate means, such as physical barriers, be employed for keeping the irradiated and non-irradiated product separate. Affixing colour change indicator label on each package, where applicable, provides another means of distinguishing irradiated and non-irradiated product.

6. IRRADIATION

6.1 General

Refer to the Codex General Standard for Irradiated Foods (CX-STAN 106-1983, under revision).

6.2 Process determination

It is important that all steps in the determination of process procedures are documented to:

a) ensure that the application of the process complies with relevant regulatory requirements;
b) establish a clear statement for the technological objectives of the process;
c) estimate the dose range to be applied to achieve the technological objective based on appropriate knowledge of the food product;
d) demonstrate that irradiation of test samples has been carried out to confirm the estimated dose range under practical production conditions;
e) ensure that it is possible to meet the technological requirements, e.g. dose range and effectiveness of treatment, under practical production conditions; and
f) establish the process parameters under practical production conditions.

6.3 Dosimetry

Successful radiation processing practice depends on the ability of the processor to measure the absorbed dose delivered to each point in the food product and in the production lot.

Various techniques for dosimetry pertinent to radionuclide and machine sources are available for measuring absorbed dose in a quantitative manner. Relevant ISO/ASTM Standard Practices and Guides for dosimetry in food irradiation facilities have been developed and should be consulted.4

3 Such procedures are specified, for example, by the American Society for Testing and Materials (ASTM) in their annual handbooks.

4 ISO/ASTM 51204 – Standard Practice or Dosimetry in Gamma Irradiation Facilities for Food Processing;
In order to implement these irradiation practices, facilities should be adequately staffed by competent personnel trained in dosimetry and its application in radiation processing.

The calibration of the dosimetry system used in radiation processing should be traceable (i.e., calibrated) to national and international standards.

6.4 Dosimetry systems

Dosimeters are devices that are capable of providing a quantitative and reproducible measurement of dose through a change in one or more of the physical properties of the dosimeters in response to the exposure to ionizing radiation energy. A dosimetry system consists of dosimeters, measurement instruments and their associated reference standards, and procedures for the system's use. Selection of appropriate dosimetry system for radiation processing of food will depend on a variety of factors, including the dose range needed to achieve a particular technological objective, cost, availability, and ease of use. A variety of dosimetry systems are available.5

6.5 Dosimetry and process control

In food irradiation, the key quantity that governs the process is the absorbed dose. It is influenced by various parameters, such as: radiation source type, strength and geometry; conveyor speed or dwell time; food product density and loading configuration; and carrier size and shape.6 Their overall influence on dose distribution must be taken into account to ensure that the intended technological objective is achieved throughout the production lot.

The application of radiation processing is mainly governed by the minimum absorbed dose achieved in the dose distribution within a given product. If the required minimum is not applied, the intended technical effect may not be achieved (e.g. sprout inhibition, pathogen reduction). There are also situations where the application of too high a dose would impair the quality of the treated food (e.g. off flavours or odours).7

6.6 Records of irradiation

Radiation processors should maintain adequate records showing the food processed, identifying marks if packaged or, if not, the shipping details, the bulk density of the food, the dosimetry results, including the type of dosimeters used and details of their calibration, the date of irradiation and the type of radiation source. All documentation should be available to authorized personnel and accessible for a period of time established by food control authorities.

6.7 Control of hazards

Controls of microbiological hazards are described in the International Code of Practice - General Principles of Food Hygiene (RCP 01-1969, Rev 3-1997, Amd 1-1999).

Codes of good irradiation practice and compilations of technical data for the authorization and control of the irradiation of several food classes have been produced by ICGFI, available through the International Atomic Energy Agency, PO Box 100, A-1400 Vienna, Austria.
irradiation is a means of reducing hazards associated with infectious parasites and microbial contamination of foods and may be used as a method of control.

7. POST-IRRADIATION STORAGE AND HANDLING

Refer to the International Code of Practice - General Principles of Food Hygiene (RCP 01-1969, Rev 3-1997, Amd 1-1999) for general storage and handling guidance.

8. LABELLING

The Codex General Standard for Irradiated Foods (CX-STAN 106-1983, under revision) and the Codex General Standard for the Labelling of Pre-Packaged Foods (CX-STAN-002, Rev 2, 1999) contain provisions for labelling of irradiated foods, including the internationally recognized symbol (logo) and the inclusion of information in shipping documents, and for the labelling of prepackaged irradiated foods, respectively. All food labelling must meet any additional requirements established by competent authorities.
SPECIFICATIONS FOR THE IDENTIFY AND PURITY OF FOOD ADDITIVES ARISING FROM THE FIFTY-SEVENTH MEETING OF THE JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITIVES

(At step 5/8 of the Procedure)

Note. Food additive specifications under Categories III, IV and V are included in the Report of the Working Group on Specifications (Conference Room Document 2)

CATEGORY I (RECOMMENDED TO THE COMMISSION FOR ADOPTION)

Food additives (18 substances)

- Acesulfame potassium
- Blackcurrant extract
- Calcium dihydrogen diphosphate
- Carrageenan
- Curcumin
- Curdlan
- alpha-Cyclodextrin
- Hydrogenated poly-1-decene
- Invertase from *Saccharomyces cerevisiae*
- DL-Malic acid
- Modified starches
- Pectins
- Processed Euchema seaweed
- Smoke flavourings
- Sodium calcium polyphosphate
- Sodium sulfate
- D-Tagatose
- Tagetes extract

Certain anticaking agents, flavouring agents, sweetening agents and thickening agents: deletion of Heavy Metals (as Lead) and new limits for arsenic and lead

<table>
<thead>
<tr>
<th>Substance</th>
<th>As mg/kg</th>
<th>Pb mg/kg</th>
<th>Substance</th>
<th>As mg/kg</th>
<th>Pb mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTICAKING AGENTS</td>
<td></td>
<td></td>
<td>SWEETENING AGENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium aluminium silicate</td>
<td>3</td>
<td>5</td>
<td>Alitame</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Ferrocyanides of Ca, K, and Na</td>
<td>35</td>
<td></td>
<td>Aspartame</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Magnesium silicates (synthetic)</td>
<td>3</td>
<td>5</td>
<td>Cyclohexylsulfamic acid</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Silicon dioxide (amorphous)</td>
<td>-</td>
<td>5</td>
<td>Isomalt</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Tricalcium phosphate</td>
<td>-</td>
<td>4</td>
<td>Lactitol</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Trimagnesium phosphate</td>
<td>-</td>
<td>4</td>
<td>Mannitol</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>FLAVOUR ENHANCERS</td>
<td></td>
<td></td>
<td>THICKENING AGENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium-5'-guanylate</td>
<td>-</td>
<td>1</td>
<td>Sorbitol</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Calcium-5'-inosinate</td>
<td>-</td>
<td>1</td>
<td>Sorbitol syrup</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Calcium-5'-ribonucleotides</td>
<td>-</td>
<td>1</td>
<td>Sucralose</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Calcium di-L-glutamate</td>
<td>-</td>
<td>1</td>
<td>Xylitol</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Dipotassium-5'-guanylate</td>
<td>-</td>
<td>1</td>
<td>Ammonium alginate</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Dipotassium-5'-inosinate</td>
<td>-</td>
<td>1</td>
<td>Ethyl cellulose</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Disodium-5'-guanylate</td>
<td>-</td>
<td>1</td>
<td>Karaya gum</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Disodium-5'-inosinate</td>
<td>-</td>
<td>1</td>
<td>Konjac flour</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Ethyl maltol</td>
<td>-</td>
<td>1</td>
<td>Methyl cellulose</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>L-Glutamic acid</td>
<td>-</td>
<td>1</td>
<td>Powdered cellulose</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5'-Guanylic acid</td>
<td>-</td>
<td>1</td>
<td>Tara gum</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5'-Inosinic acid</td>
<td>-</td>
<td>1</td>
<td>Tragacanth gum</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Magnesium di L-glutamate</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoammonium L-glutamate</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monopotassium L-glutamate</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JECFA No.</td>
<td>Flavouring agent</td>
<td>JECFA No.</td>
<td>Flavouring agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-----------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Allyl tiglate</td>
<td>789</td>
<td>2-Ethyl(or methyl)-(3,5 or 6)-methoxy pyrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Allyl cyclohexane acetate</td>
<td>790</td>
<td>2-Methoxy-(3,5 or 6)-isopropyl pyrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Allyl cyclohexane butyrate</td>
<td>791</td>
<td>2-Methoxy-3-(1-methylpropyl)-pyrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Allyl cyclohexane valerate</td>
<td>792</td>
<td>2-Isobutyl-3-methoxy pyrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Allyl cyclohexane hexanoate</td>
<td>793</td>
<td>2-Methyl-3,5 or 6-ethoxy pyrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Benzaldehyde</td>
<td>794</td>
<td>2-(Mercaptomethyl)pyrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Benzyl acetate</td>
<td>795</td>
<td>2-Pyrazinylethanethiol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Benzy1 benzooate</td>
<td>796</td>
<td>Pyrazinylmethyl methyl sulfide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Benzy1 alcohol</td>
<td>797</td>
<td>(3,5 or 6)-(Methylthio)-2-methyl pyrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Isoamyl formate</td>
<td>798</td>
<td>5-Methylquinoxaline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Isoamyl 2-methyl butyrate</td>
<td>799</td>
<td>α-Methylbenzyl alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Geranyl acetate</td>
<td>800</td>
<td>α-Methylbenzyl formate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Rhodinyl propionate</td>
<td>801</td>
<td>α-Methylbenzyl acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Geranyl hexanoate</td>
<td>802</td>
<td>α-Methylbenzyl propionate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Geranyl isobutyrate</td>
<td>803</td>
<td>α-Methylbenzyl butyrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Rhodinly isobutyrate</td>
<td>804</td>
<td>α-Methylbenzyl isobutyrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Rhodinyl isovalerate</td>
<td>805</td>
<td>p, α-Dimethylbenzyl alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>3,7-Dimethyl-2,6-octadien-1-yl-2-ethyl butanoate</td>
<td>806</td>
<td>Acetophenone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Heptanal</td>
<td>807</td>
<td>4-Methylacetophenone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Nonanal</td>
<td>808</td>
<td>p-Isopropylacetophenone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Undecanal</td>
<td>809</td>
<td>2,4-Dimethylacetophenone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Propyl formate</td>
<td>810</td>
<td>Acetanisole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>n-Amy1 formate</td>
<td>811</td>
<td>Methyl β-naphthyl ketone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Isobutyl formate</td>
<td>812</td>
<td>4-Acetal-6-t-butyl-1,1-dimethylindan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>n-Amy1 heptanoate</td>
<td>813</td>
<td>1-(p-Methoxyphenyl)-2-propanone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Isobutyl heptanoate</td>
<td>815</td>
<td>4-Phenyl-2-butanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Nonyl octanoate</td>
<td>816</td>
<td>4-Phenyl-2-butyl acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Methyl laurate</td>
<td>818</td>
<td>4-(p-Methoxyphenyl)-2-butanone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Butyl stearate</td>
<td>819</td>
<td>4-Phenyl-3-buten-2-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>trans-3-Heptenyl-2-methyl propanoate</td>
<td>820</td>
<td>4-Phenyl-3-buten-2-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Methyl 2-butyrate</td>
<td>821</td>
<td>3-Methyl-4-phenyl-3-buten-2-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>2-Methylbutyl 2-methylbutyrate</td>
<td>822</td>
<td>1-Phenyl-1-propanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>α-6-Hexadecene lactone</td>
<td>823</td>
<td>α-Ethylbenzyl butyrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>cis-4-Hydroxy-6-dodecenoic acid lactone</td>
<td>824</td>
<td>Propiophenone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>2-Methylpentan1</td>
<td>825</td>
<td>α-Propylphenethyl alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>2-Methylhexanoic acid</td>
<td>826</td>
<td>1-(p-Methoxyphenyl)-1-penten-3-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>5-Methylhexanoic acid</td>
<td>827</td>
<td>α-Isobutylphenethyl alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>2-Methyloctan1</td>
<td>828</td>
<td>4-Methyl-1-phenyl-2-pentanone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>2,6-Dimethyloctanal</td>
<td>829</td>
<td>1-(4-Methoxyphenyl)-4-methyl-1-penten-3-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>2-Methylundecan1</td>
<td>830</td>
<td>3-Benzyl-4-heptanone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>Isopropy1 formate</td>
<td>831</td>
<td>Benzophenone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>Isopropyl propionate</td>
<td>832</td>
<td>1,3-Diphenyl-2-propanone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>Isopropyl hexanoate</td>
<td>833</td>
<td>1-Phenyl-1,2-propanedione</td>
<td></td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>cis-5-Octen-1-ol</td>
<td>834</td>
<td>Ethyl benzoylecetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>323</td>
<td>cis-5-Octenal</td>
<td>835</td>
<td>Ethyl 2-acetyl-3-phenyl-propionate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JECFA No.</td>
<td>Flavouring agent</td>
<td>JECFA No.</td>
<td>Flavouring agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>cis-6-Nonenal</td>
<td>836</td>
<td>Benzoin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>4-Decenal</td>
<td>837</td>
<td>Benzaldehyde dimethyl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>328</td>
<td>9-Decenoic acid</td>
<td>838</td>
<td>Benzaldehyde glyceryl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>10-Undecenal</td>
<td>839</td>
<td>Benzaldehyde propylene glycol acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>334</td>
<td>Methyl 3-hexenoate</td>
<td>840</td>
<td>Benzyl 2-methoxyethyl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>344</td>
<td>Butyl 10-undecenoate</td>
<td>841</td>
<td>Benzyl formate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>347</td>
<td>2-Methyl-3-pentenoic acid</td>
<td>842</td>
<td>Benzyl propionate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>348</td>
<td>2,6-Dimethyl-6-hepten-1-ol</td>
<td>843</td>
<td>Benzyl butyrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>Ethyl 2-methyl-3-pentenoate</td>
<td>844</td>
<td>Benzyl isobutyrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>Hexyl 2-methyl-3&4-pentenoate (mixture)</td>
<td>845</td>
<td>Benzyl isovalerate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>367</td>
<td>Terpinyl formate</td>
<td>846</td>
<td>Benzyl trans-2-methyl-2-butenoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>Terpinyl butyrate</td>
<td>848</td>
<td>Benzyl acetooacetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>Terpinyl isovalerate</td>
<td>849</td>
<td>Benzyl phenylacetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>374</td>
<td>p-Menth-8-en-1-ol</td>
<td>850</td>
<td>Benzoic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>388</td>
<td>beta-Ionone</td>
<td>851</td>
<td>Methyl benzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>Allyl-beta-ionone</td>
<td>852</td>
<td>Ethyl benzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>alpha-iso-Methylionone</td>
<td>853</td>
<td>Propyl benzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>416</td>
<td>5-Hydroxy-4-octanone</td>
<td>854</td>
<td>Hexyl benzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>424</td>
<td>2-Hydroxy-2-cyclohexen-1-one</td>
<td>855</td>
<td>Isopropyl benzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>428</td>
<td>d-neo-Menthol</td>
<td>856</td>
<td>Isobuty! benzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>434</td>
<td>p-Menth-1-en-3-ol</td>
<td>857</td>
<td>Isoamyl benzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>2-Ethyl-1,3,3-trimethyl-2-norbornanol</td>
<td>858</td>
<td>cis-3-Hexenyl benzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>442</td>
<td>Methyl 1-acetoxy cyclohexyl ketone</td>
<td>859</td>
<td>Linalyl benzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>448</td>
<td>1-Ethylhexyl tiglate</td>
<td>860</td>
<td>Geranyl benzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>457</td>
<td>(1-Buten-1-yl) methyl sulfide</td>
<td>863</td>
<td>Methylbenzyl acetate (mixed o,m,p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>461</td>
<td>3-(Methylthio)propanol</td>
<td>864</td>
<td>p-Isopropylbenzyl alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>478</td>
<td>3-(Methylthio)propyl acetate</td>
<td>865</td>
<td>4-Ethylbenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>2-Propanethioli</td>
<td>867</td>
<td>Tolualdehyde glyceryl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>531</td>
<td>2-Naphthalenethioli</td>
<td>868</td>
<td>Cuminaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>543</td>
<td>Trithioacetone</td>
<td>869</td>
<td>2,4-Dimethylbenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>562</td>
<td>2,5-Dimethyl-2,5-dihydroxy-1,4-dithiane</td>
<td>871</td>
<td>Anisyl alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>2-Methyl-2-(methylthio)propanal</td>
<td>873</td>
<td>Anisyl acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>581</td>
<td>Ethyl 2-(methylthio)propionate</td>
<td>874</td>
<td>Anisyl propionate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>591</td>
<td>Methyl 2-oxo-3-methyl-pentanoate</td>
<td>875</td>
<td>Anisyl butyrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>599</td>
<td>Geranyl acetoacetate</td>
<td>876</td>
<td>Anisyl phenylacetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>645</td>
<td>3-Phenylpropanaldehyde</td>
<td>877</td>
<td>Veratraldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>648</td>
<td>Cinnamaldehyde ethylene glycol acetal</td>
<td>878</td>
<td>p-Methoxybenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>652</td>
<td>Cinnamyl butyrate</td>
<td>879</td>
<td>p-Ethoxybenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>656</td>
<td>Cinnamaldehyde</td>
<td>880</td>
<td>Methyl o-methoxybenzoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>Propyl cinnamate</td>
<td>881</td>
<td>2-Methoxybenzoic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>663</td>
<td>Butyl cinnamate</td>
<td>882</td>
<td>3-Methoxybenzoic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>666</td>
<td>Heptyl cinnamate</td>
<td>883</td>
<td>4-Methoxybenzoic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>671</td>
<td>Phenethyl cinnamate</td>
<td>884</td>
<td>Methyl anisate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>672</td>
<td>3-Phenylpropyl cinnamate</td>
<td>885</td>
<td>Ethyl p-anisate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>673</td>
<td>Cinnamyl cinnamate</td>
<td>886</td>
<td>Vanillyl alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>676</td>
<td>α-Amylcinnamyl formate</td>
<td>887</td>
<td>Vanillyl ethyl ether</td>
<td></td>
<td></td>
</tr>
<tr>
<td>677</td>
<td>α-Amylcinnamyl acetate</td>
<td>888</td>
<td>Vanillyl butyl ether</td>
<td></td>
<td></td>
</tr>
<tr>
<td>681</td>
<td>α-Amylcinnamaldehyde dimethyl acetal</td>
<td>889</td>
<td>Vanillin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JECFA No.</td>
<td>Flavouring agent</td>
<td>JECFA No.</td>
<td>Flavouring agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>698</td>
<td>o-Tolyl acetate</td>
<td>890</td>
<td>Vanillin acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>711</td>
<td>p-Vinylphenol</td>
<td>891</td>
<td>Vanillin isobutyrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>719</td>
<td>Guaiacyl phenylacetate</td>
<td>892</td>
<td>Ethyl vanillin β-d-glucopyranoside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>720</td>
<td>Hydroquinone monoethyl ether</td>
<td>893</td>
<td>Ethyl vanillin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>723</td>
<td>4-Ethyl-2,6-dimethoxyphenol</td>
<td>894</td>
<td>Piperonyl acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>724</td>
<td>4-Propyl-2,6-dimethoxyphenol</td>
<td>895</td>
<td>Piperonyl isobutyrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>726</td>
<td>4-Allyl-2,6-dimethoxyphenol</td>
<td>896</td>
<td>Piperonal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>732</td>
<td>Vanillylidene acetone</td>
<td>897</td>
<td>Salicylaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>740</td>
<td>Furfuryl propionate</td>
<td>898</td>
<td>2-Hydroxy-4-methylbenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>741</td>
<td>Furfuryl pentanoate</td>
<td>899</td>
<td>Methyl salicylate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>742</td>
<td>Furfuryl octanoate</td>
<td>900</td>
<td>Ethyl salicylate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>743</td>
<td>Furfuryl 3-methylbutanoate</td>
<td>901</td>
<td>Butyl salicylate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>748</td>
<td>Amyl 2-furoate</td>
<td>902</td>
<td>Isobutyl salicylate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>749</td>
<td>Hexyl 2-furoate</td>
<td>903</td>
<td>Isoamyl salicylate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>Octyl 2-furoate</td>
<td>904</td>
<td>Benzyl salicylate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>759</td>
<td>Furfuryl butyrate</td>
<td>905</td>
<td>Phenethyl salicylate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>Cinnamyl benzoate</td>
<td>907</td>
<td>o-Tolyl salicylate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>761</td>
<td>2-Methylpyrazine</td>
<td>908</td>
<td>2,4-Dihydroxybenzoic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>762</td>
<td>2-Ethylpyrazine</td>
<td>912</td>
<td>Heptanal glyceryl acetal (mixed 1,2 and 1,3 acetals)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>763</td>
<td>Propylpyrazine</td>
<td>913</td>
<td>1,2,3-Tris[(1'-ethoxy)ethoxy]propane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>764</td>
<td>Isopropylpyrazine</td>
<td>927</td>
<td>1,2-Di[(1-ethoxy)ethoxy]propane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>765</td>
<td>2,3-Dimethylpyrazine</td>
<td>928</td>
<td>4-Methyl-2-pentyl-1,3-dioxolan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>766</td>
<td>2,5-Dimethylpyrazine</td>
<td>929</td>
<td>2,2,4-Trimethyl-1,3-oxacyclopentane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>767</td>
<td>2,6-Dimethylpyrazine</td>
<td>930</td>
<td>Lactic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>768</td>
<td>2-Ethyl-3-methylpyrazine</td>
<td>931</td>
<td>Ethyl lactate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>769</td>
<td>2-Ethyl-6-methylpyrazine</td>
<td>932</td>
<td>Butyl lactate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>770</td>
<td>2-Ethyl-5-methylpyrazine</td>
<td>933</td>
<td>Potassium 2-(1'-ethoxy)ethoxypropanoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>771</td>
<td>2,3-Diethylpyrazine</td>
<td>934</td>
<td>cis-3-Hexenyl lactate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>772</td>
<td>2-Methyl-5-isopropylpyrazine</td>
<td>935</td>
<td>Butyl butyrylactate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>773</td>
<td>2-Isobutyl-3-methylpyrazine</td>
<td>936</td>
<td>Pyruvic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>774</td>
<td>2,3,5-Trimethylpyrazine</td>
<td>938</td>
<td>Ethyl pyruvate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>775</td>
<td>2-Ethyl-3, (5 or 6)-dimethylpyrazine</td>
<td>939</td>
<td>Isoamyl pyruvate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>776</td>
<td>3-Ethyl-2,6-dimethylpyrazine</td>
<td>940</td>
<td>1,1-Dimethoxyethane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>777</td>
<td>2,3-Diethyl-5-methylpyrazine</td>
<td>941</td>
<td>Acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>778</td>
<td>2,5-Diethyl-3-methylpyrazine</td>
<td>942</td>
<td>Octanlyl dimethyl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>779</td>
<td>3,5-Diethyl-2-methylpyrazine</td>
<td>944</td>
<td>Citral dimethyl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>780</td>
<td>2,3,5,6-Tetramethylpyrazine</td>
<td>945</td>
<td>Decanal dimethyl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>781</td>
<td>5-Methyl-6,7-dihydro-5H-cyclopentapyrazine</td>
<td>946</td>
<td>2,6-Nonadienal diethyl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>782</td>
<td>6,7-Dihydro-2,3-dimethyl-5H-cyclopentapyrazine</td>
<td>947</td>
<td>Heptanal, dimethyl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>783</td>
<td>(Cyclohexymethyl)pyrazine</td>
<td>948</td>
<td>Citral diethyl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>784</td>
<td>Acetylpyrazine</td>
<td>949</td>
<td>4-Heptenal diethyl acetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>785</td>
<td>2-Acetyl-3-ethylpyrazine</td>
<td>950</td>
<td>2-Acetyl-3-methylpyrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>786</td>
<td>2-Acetyl-3,(5 or 6)-dimethylpyrazine</td>
<td>951</td>
<td>Pyrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>787</td>
<td>Methoxypyrazine</td>
<td>952</td>
<td>5,6,7,8 -Tetrahydroquinoxaline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>788</td>
<td>(2,5 or 6)-Methoxy-3-methylpyrazine</td>
<td>953</td>
<td>Ethyl vanillin isobutyrate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CATEGORY II (RECOMMENDED FOR ADOPTION AFTER EDITORIAL CHANGES, INCLUDING TECHNICAL REVISIONS)

Food Additives
Diacetyltartaric and fatty acid esters of glycerol Remark: Insert the percentage for Free Fatty Acids

Flavouring agents
None
DRAFT AMENDMENTS TO THE INTERNATIONAL NUMBERING SYSTEM FOR FOOD ADDITIVES
(At Step 5 of the Accelerated Procedure)

<table>
<thead>
<tr>
<th>INS NUMBER</th>
<th>COMPOUND</th>
<th>TECHNOLOGICAL FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>452(vi)</td>
<td>Sodium potassium tripolyphosphate</td>
<td>Emulsifier, Stabilizer, Acidity regulator, Raising agent Sequesterant, Water retention agent</td>
</tr>
</tbody>
</table>

DRAFT AMENDMENTS TO THE INTERNATIONAL NUMBERING SYSTEM FOR FOOD ADDITIVES
(At Step 5/8 of the Procedure)

<table>
<thead>
<tr>
<th>INS NUMBER</th>
<th>COMPOUND</th>
<th>TECHNOLOGICAL FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 (iv)</td>
<td>Purple corn colour</td>
<td>Colour</td>
</tr>
<tr>
<td>163 (v)</td>
<td>Red cabbage colour</td>
<td>Colour</td>
</tr>
<tr>
<td>165</td>
<td>Gardenia blue</td>
<td>Colour</td>
</tr>
<tr>
<td>407</td>
<td>Carrageenan and its Na, K, NH₄, Ca and Mg salts (includes furcellaran)</td>
<td>Thickener, Gelling agent, Stabilizer</td>
</tr>
<tr>
<td>445</td>
<td>Glycerol esters of wood rosin</td>
<td>Emulsifier, Stabilizer, Glazing agent</td>
</tr>
<tr>
<td>650</td>
<td>Zinc acetate</td>
<td>Flavour enhancer</td>
</tr>
<tr>
<td>949</td>
<td>Hydrogen</td>
<td>Packing gas</td>
</tr>
<tr>
<td>961</td>
<td>Neotame</td>
<td>Sweetener, Flavour enhancer</td>
</tr>
</tbody>
</table>

PROPOSED DRAFT AMENDMENTS TO THE INTERNATIONAL NUMBERING SYSTEM FOR FOOD ADDITIVES
(At Step 5 of the Procedure)

<table>
<thead>
<tr>
<th>INS NUMBER</th>
<th>COMPOUND</th>
<th>TECHNOLOGICAL FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>905d</td>
<td>Mineral oil, high viscosity</td>
<td>Glazing agent, Release agent, Sealing agent</td>
</tr>
<tr>
<td>905e</td>
<td>Mineral oil, medium and low viscosity (Class I)</td>
<td>Glazing agent, Release agent, Sealing agent</td>
</tr>
<tr>
<td>905f</td>
<td>Mineral oil, medium and low viscosity (Class II)</td>
<td>Glazing agent, Release agent, Sealing agent</td>
</tr>
<tr>
<td>905g</td>
<td>Mineral oil, medium and low viscosity (Class III)</td>
<td>Glazing agent, Release agent, Sealing agent</td>
</tr>
</tbody>
</table>
DRAFT AMENDMENTS TO THE INTERNATIONAL NUMBERING SYSTEM FOR FOOD ADDITIVES
(At Step 5 of the Accelerated Procedure)

<table>
<thead>
<tr>
<th>INS NUMBER</th>
<th>COMPOUND</th>
<th>TECHNOLOGICAL FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>452(vi)</td>
<td>Sodium potassium tripolyphosphate</td>
<td>Emulsifier, Stabilizer, Acidity regulator, Raising agent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sequesterant, Water retention agent</td>
</tr>
</tbody>
</table>

DRAFT AMENDMENTS TO THE INTERNATIONAL NUMBERING SYSTEM FOR FOOD ADDITIVES
(At Step 5/8 of the Procedure)

<table>
<thead>
<tr>
<th>INS NUMBER</th>
<th>COMPOUND</th>
<th>TECHNOLOGICAL FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 (iv)</td>
<td>Purple corn colour</td>
<td>Colour</td>
</tr>
<tr>
<td>163 (v)</td>
<td>Red cabbage colour</td>
<td>Colour</td>
</tr>
<tr>
<td>165</td>
<td>Gardenia blue</td>
<td>Colour</td>
</tr>
<tr>
<td>407</td>
<td>Carrageenan and its Na, K, NH₄, Ca and Mg salts (includes furcellaran)</td>
<td>Thickener, Gelling agent, Stabilizer</td>
</tr>
<tr>
<td>445</td>
<td>Glycerol esters of wood rosin</td>
<td>Emulsifier, Stabilizer, Glazing agent</td>
</tr>
<tr>
<td>650</td>
<td>Zinc acetate</td>
<td>Flavour enhancer</td>
</tr>
<tr>
<td>949</td>
<td>Hydrogen</td>
<td>Packing gas</td>
</tr>
<tr>
<td>961</td>
<td>Neotame</td>
<td>Sweetener, Flavour enhancer</td>
</tr>
</tbody>
</table>

PROPOSED DRAFT AMENDMENTS TO THE INTERNATIONAL NUMBERING SYSTEM FOR FOOD ADDITIVES
(At Step 5 of the Procedure)

<table>
<thead>
<tr>
<th>INS NUMBER</th>
<th>COMPOUND</th>
<th>TECHNOLOGICAL FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>905d</td>
<td>Mineral oil, high viscosity</td>
<td>Glazing agent, Release agent, Sealing agent</td>
</tr>
<tr>
<td>905e</td>
<td>Mineral oil, medium and low viscosity (Class I)</td>
<td>Glazing agent, Release agent, Sealing agent</td>
</tr>
<tr>
<td>905f</td>
<td>Mineral oil, medium and low viscosity (Class II)</td>
<td>Glazing agent, Release agent, Sealing agent</td>
</tr>
<tr>
<td>905g</td>
<td>Mineral oil, medium and low viscosity (Class III)</td>
<td>Glazing agent, Release agent, Sealing agent</td>
</tr>
</tbody>
</table>
CCFAC PRINCIPLES FOR EXPOSURE ASSESSMENT OF CONTAMINANTS AND TOXINS IN FOODS OR FOOD GROUPS

Introduction

1. Exposure assessment is a basic component of risk assessment of contaminants and toxins. Risk assessments and exposure assessments requested by CCFAC and performed by JECFA, must be guided by clearly articulated policies elaborated by CCFAC with the aim of increasing the transparency of risk management decisions. This annex includes:

 - A framework that outlines the basic components of exposure assessment
 - Definition of criteria for selecting foods that contribute significantly to exposure for a contaminant or toxin

2. The following components of exposure assessment performed by JECFA make up the conduct of a transparent, consistent, science-based risk assessment for contaminants and toxins in foods. CCFAC will take into account this information to establish risk management options and recommendations for contaminants and toxins in foods. *These components do not need to be done consecutively.*

 Component 1

 JECFA uses available data to estimate dietary exposure to a contaminant or toxin, expressed as a percentage of the tolerable intake (e.g., PTDI, PTWI or other appropriate toxicological reference point). For a carcinogen with no clear threshold, JECFA uses available data on intake, combined with data on carcinogenic potency to estimate potential population risks.

 Component 2

 From dietary exposure estimates obtained in Component 1, JECFA identifies food/food groups that contribute significantly to exposure to that contaminant or toxin (significant as defined by CCFAC policy).

 Component 3

 (concurrent with Component 2; or subsequent step)

 If requested by CCFAC, for foods or food groups identified in Component 2, JECFA uses available data on contaminant levels to generate distribution curves for concentrations of the contaminant or toxin in specific foods or food groups.

 Component 4

 (concurrent with Component 2; or subsequent step)

 If requested by CCFAC, JECFA will assess the impact of agricultural and production practices on contaminant levels in food.
Criteria for selecting food or food groups that constitute a significant contribution to dietary exposure for a contaminant or toxin

3. The proposed criteria include the following:

 Food or food groups that represent 10% or more of the total dietary exposure in one of the GEMS/Food Regional diets

 and/or

 Food or food groups that represent 5% or more of the total dietary exposure in two or more of the GEMS/Food Regional diets

 and/or

 Food or food groups that may have a significant impact on exposure for specific group of consumers, although it may not exceed 5% of the total dietary exposure in any of the GEMS/Food Regional diets. These would be considered on a case-by-case basis.
THE RISK ANALYSIS PROCESS
Role of JECFA, CCFAC and members states (MS)

<table>
<thead>
<tr>
<th>ACTIVITIES</th>
<th>JECFA</th>
<th>CCFAC</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identification of a potential health risk for a contaminant</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Write a position paper</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Check for availability of data and commitment to submit those to JECFA</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Request risk assessment with specific question (PTWI, exposure as a percentage of TDI, PTWI or PTMI, distribution curves etc.)</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Call for data for risk assessment and information on processing factors</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Submit data and information on processing factors</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Perform risk assessment as a concise report</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8. Define risk management options (ML’s or/and source directed measures) on basis of the risk assessment</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9. Drafting group appointed to propose ML’s on main contributors</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10. Drafting group discusses risk assessment and proposes ML’s to plenary</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>11. Endorse proposed draft ML’s in CCFAC plenary and propose new work to CAC</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12. CAC agrees to new work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. If required by members, request risk characterisation and assessment of source directed measures or practices</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>14. Perform risk characterisation</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>15. If Required by members, request specially the re-assessment of source directed measures or ML’s impact on public health for general population or specific subgroups</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>16. Re-assessment of risk characterisation with an emphasis on exposure assessment after risk management options are decided</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>17. Refinement of proposed measures</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
The risk analysis process - Role of JECFA, CCFAC and member states

1. Identify a potential health risk for a contaminant
 - CCFAC
2. Write a position paper
 - CCFAC
3. Consider the position paper
 - CCFAC
4. Request a risk assessment
 - JECFA
5. Perform a risk assessment
 - CCFAC
6. Consider the outcome
 - CCFAC
 - STOP

Request a drafting group to elaborate risk management decisions (like maximum levels or codes of practices) for main contributors

7. Request data
 - Member states
8. Adequate data

- Member state or international organisations

Request a re-assessment of source directed measures or ML's impact on public health

9. Request a re-assessment of source directed measures or ML's impact on public health
 - JECFA
10. Perform the re-assessment
 - CCFAC
11. Refinement of proposed measure
 - Drafting group of CCFAC

Propose ML and code of practices

12. Propose ML and code of practices
 - CCFAC
13. Request a risk characterisation and an assessment of practices
 - JECFA
14. Perform the risk characterisation
 - CCFAC
15. Endorse the proposals

Request data

16. Request data
 - Member states

Adequate data

17. Adequate data
DRAFT MAXIMUM LEVEL FOR OCHRATOXIN A IN RAW WHEAT, BARLEY AND RYE AND DERIVED PRODUCTS

(At Step 8 of the Procedure)

Ochratoxin A 5 µg/kg in Raw Wheat, Barley and Rye and Derived Products
DRAFT MAXIMUM LEVEL FOR PATULIN

(At Step 8 of the Procedure)

Patulin 50 µg/kg in apple juice and apple juice ingredients in other beverages
INTRODUCTION

1. Patulin is a secondary metabolite produced by a number of fungal species in the genera Penicillium, Aspergillus and Byssochlamys of which Penicillium expansum is probably the most commonly encountered species. Patulin has been found as a contaminant in many mouldy fruits, vegetables, cereals and other foods, however, the major sources of contamination are apples and apple products.

2. Alcoholic fermentation of fruit juices destroys patulin (1,2) and, therefore, fermented products such as cider and perry will not contain patulin. Ascorbic acid has been reported to cause the disappearance of patulin from apple juice, although the optimal conditions for inactivation have not been fully established (3,4). Patulin is relatively temperature stable, particularly at acid pH. High temperature (150°C) short-term treatments have been reported to result in approximately 20% reduction in patulin concentrations. However, thermal processing alone is not sufficient to ensure a product free of patulin (5).

3. There is no clear evidence that patulin is carcinogenic, however, it has been shown to cause immunotoxic effects (6) and is neurotoxic in animals (7). The IARC (8) concluded that no evaluation could be made of the carcinogenicity of patulin to humans and that there was inadequate evidence in experimental animals. Patulin was evaluated by the JECFA in 1990 and re-evaluated in 1995. The latter evaluation took into account the fact that most of the patulin ingested by rats is eliminated within 48 hours and 98% within 7 days. A study on the combined effects of patulin on reproduction, long-term toxicity and carcinogenicity pointed to a harmless intake of 43 µg/kg body weight per day. On the basis of this work and using a safety factor of 100, the JECFA set a provisional maximum tolerable daily intake of 0.4 µg/kg body weight.

4. Patulin occurs mainly in mould-damaged fruits although the presence of mould does not necessarily mean that patulin will be present in a fruit but indicates that it may be present. In some instances, internal growth of moulds may result from insect or other invasions of otherwise healthy tissue, resulting in occurrence of patulin in fruit which externally appears undamaged. However, it can also occur in bruised fruit after controlled atmosphere storage and exposure to ambient conditions both with and without core rot being present. Washing of fruit, or removal of mouldy tissue, immediately prior to pressing will not necessarily remove all the patulin present in the fruit since some may have diffused into apparently healthy tissue. Washing apples with ozone solution is reported to contribute substantially to the control of patulin during processing (9).

5. Although the spores of many of the moulds capable of producing patulin will be present on fruit whilst it is still on the tree, they will generally not grow on fruit until after harvest. However, mould growth and patulin production can occur in fruit pre-harvest if the fruit becomes affected by disease or damaged by insects or where fallen fruit is gathered for processing. The condition of the fruit at harvest, the way in which the fruit is handled subsequently (especially during storage) and the extent to which storage conditions are inhibitory to the growth of moulds, will all affect the likelihood of patulin contamination of juice and other products prepared from fresh and stored fruit.

6. The recommendations for reducing patulin contamination in apple juice in this document are divided into two parts:

I) Recommended practices based on Good Agricultural Practice (GAP).
II) Recommended practices based on Good Manufacturing Practices (GMP).
I. RECOMMENDED PRACTICES BASED ON GAP

PREHARVEST

7. During the dormant season cut off, remove and destroy all diseased wood and mummified fruits.

8. Prune trees in line with good commercial practice producing a tree shape which will allow good air movement through the tree and light penetration into the tree. This will also enable good spray cover to be achieved.

9. Measures should be taken to control pests and diseases which directly cause fruit rots or allow entry sites for patulin-producing moulds. These include canker, eye rot (Botrytis spp and Nectria spp), codling moth, fruitlet mining tortrix moth, winter moth, fruit tree tortrix, blastobasis, sawfly and dock sawfly.

10. Wet weather around the time of petal fall and of harvesting is likely to increase the risk of rot and appropriate measures, such as application of fungicide to prevent spore germination and fungal growth should be considered.

11. Apples of poor mineral composition are more likely to suffer physiological disorders in store and hence are more susceptible to particular types of rot especially by Gloeosporium spp and secondary rots such as Penicillium. Consignments of apples for the fresh fruit market which do not meet the recommended mineral compositional standards (10), as determined by fruit analysis, should therefore be excluded from long-term storage i.e. storage for longer than 3 - 4 months.

12. Where levels of minerals in the fruit for the fresh fruit market are outside optimum ranges (10), improving calcium and phosphorus levels in the fruit, particularly increasing the calcium/potassium ratio by controlled fertiliser usage, will improve cell structure, which will then reduce susceptibility to rotting (11,12).

13. Records of rot levels should be kept each year for individual orchards since historical data is the best guide, at present, to potential rot levels, which will indicate the need for fungicide application and the storage potential of the fruit from that orchard.

HARVESTING AND TRANSPORTATION OF FRUIT

14. Apples for processing are from two different origins:

 a) Mechanically harvested fruit

15. Mechanically harvested fruit is obtained by shaking the tree and collecting the fruit from the ground with appropriate mechanical machinery.

16. All fruit should be handled as gently as possible and every effort made to minimize physical damage at all stages of the harvesting and transportation procedures.

17. Before shaking the trees, deteriorated fallen fruit (rotten, fleshed etc.) should be removed from the ground in order to make sure that only fresh and/or sound fruit is collected.

18. Mechanically harvested fruit has to be transported to processing plants within 3 days after harvest.

19. All containers used to transport harvested fruit should be clean, dry and free of any debris.

 b) Fruit for the fresh fruit market

20. Fruit from orchards with a history of high levels of rot should be harvested separately and not considered for storage.
21. Ideally all fruit should be picked in dry weather conditions, when the fruit is mature, and placed in clean bins or other containers (e.g. boxes) suitable for transportation directly to store. Bins or boxes should be cleaned, ideally by hosing with clean water or preferably by scrubbing with soap and water, and fruit and leaf debris should be removed. Cleaned bins and boxes should be dried prior to use. Avoid exposure of fruit to rain.

22. Adequate training and supervision should be provided to ensure good damage-free picking practice.

23. All fruit in which the skin is damaged, or with the flesh exposed, as well as all diseased fruit, should be rejected in the orchard at the time of picking and fruit bruising should be minimised as far as possible.

24. All soil-contaminated fruit, i.e. rain splashed fruit or fruit on the ground, should be rejected for storage purposes.

25. Care must be taken to avoid the inclusion of leaves, twigs etc. in the picked fruit.

26. Fruit should be placed in cold storage within 18 hours of harvest and cooled to the recommended temperatures (see Table 1) within 3 - 4 days of picking.

27. During transport and storage, measures should be taken to avoid soil contamination.

28. Care must be taken during handling and transport of the bins or boxes in the orchard, and between the orchard and store, to avoid soil contamination of the container and the fruit and to minimize physical damage e.g. bruising of the fruit.

29. Harvested fruit should not be left in the orchard overnight but moved to a hard standing area, preferably under cover.

POST-HARVEST HANDLING AND STORAGE PRACTICES OF FRUIT FOR THE FRESH FRUIT MARKET

30. All fruit, whether for the fresh market or for later processing, should be handled as gently as possible and every effort made to minimise physical damage e.g. bruising at all stages of post-harvest handling prior to pressing.

31. Apple growers, and other producers of juice who do not have controlled storage facilities, need to ensure that fruits for juicing are pressed as soon as possible after picking.

32. For controlled atmosphere storage ensure that stores are checked for gas tightness, where appropriate, and that all monitoring equipment is tested before harvesting commences. Pre-cool stores thoroughly before use.

33. Where appropriate post harvest fungicide treatments may be applied in accordance with manufacturers’ recommendations.

34. Stored apples should be examined regularly, at least once a month, for rot levels; a record of the levels should be maintained from year to year. The sampling procedure used should minimize the risk of atmospheric changes occurring in the store (see para. 37).

35. Random samples of fruit should be placed in suitable containers (e.g. net bags) situated close to the inspection hatches to permit monitoring of fruit condition during the storage period (see para. 36). Samples should be examined for rots, general fruit condition and shelf life at least every month. Shorter intervals may be recommended in stores where the fruit storage conditions are less than optimum and/or the fruit has a predicted storage life of less than 3 months, because of adverse growth and/or harvesting conditions.
36. Where samples indicate problems with fruit condition appropriate action should be taken to remove the fruit for use before extensive damage occurs.

37. Mould growth normally occurs in a warm environment. Rapid cooling and maintenance of store atmosphere conditions will improve fruit condition. Ideally fruit should be loaded and cooled to less than 5°C in 3 - 4 days and to optimum temperatures within a further 2 days. Controlled atmosphere conditions should be achieved within 7 - 10 days from the start of loading, and ultra-low oxygen regimes (i.e. less than 1.8% oxygen) should be established within a further 7 days (13).

POST-STORAGE GRADING OF FRUIT FOR THE FRESH MARKET OR JUICE MANUFACTURE

38. All rotten fruits, even those with only small areas of rot, should be eliminated as far as possible and wholesome fruit should be kept in a clean bulk container.

39. When containers are removed from storage to select fruit for retail distribution, the containers of fruit remaining for juicing should be specifically marked and returned to cold store within 12 hours of sorting. The time the fruit is at ambient temperatures should be kept to a minimum. Ideally fruit for juicing should be kept at < 5°C between withdrawal from store and juicing and should be utilized as soon as possible.

40. Fruit which is to be sent for juicing should be utilized as soon as possible and within the normal shelf life which would be recommended for fruit from the same store. Any bruising will encourage patulin formation hence bruising should be kept to a minimum, especially if fruit is to be stored for longer than 24 hours at ambient temperature before juicing (14).

II. RECOMMENDED PRACTICES BASED ON GMP

TRANSPORTATION, CHECKING, AND PRESSING OF FRUIT

Mechanically harvested fruit and fruit for the fresh market

(a) fruit for the fresh market

41. Stored fruit should be transported from the cold store to the processor in the shortest time possible (ideally <24 hours to pressing unless cold stored).

42. Varieties with an open calyx are particularly susceptible to core rots. These varieties should be examined for internal rots by regular checks immediately prior to pressing. An appropriate random sample of apples should be preferably taken from each separate batch of fruit. Each apple is then cut across its equator and examined for signs of mycelial growth. If the frequency of core rots exceeds an agreed level the consignment should not be used for juicing. The processor should specify the maximum proportion of supplied fruit which can have any sign of rotting, taking into account the capacity of the processor to remove the rotting fruit during pre-process inspection. If this proportion is exceeded the whole consignment of fruit should be rejected.

43. On arrival at the factory the fruit should be checked for quality, particularly for evidence of both external and internal mould damage (see para. 44).

(b) mechanically harvested fruit and fruit for the fresh market

44. During processing and prior to pressing, the fruit should be sorted carefully to remove any visually mouldy fruit (check randomly and routinely for internal mould by cutting some fruit as in para. 44) and washed thoroughly, using potable or suitably treated water.

45. Juice presses and other manufacturing equipment should be cleaned and sanitised in accordance with industry "best practices". Juice presses and other equipment will generally be washed down with pressured water hoses and sanitised by application of a suitable sanitiser, followed by a further rinse with potable cold
96

water. In some plants, which operate almost continuously, this should preferably be a once per shift or once per day cleaning operation.

46. After pressing samples of juice should be taken for analysis. A representative bulk production sample should analysed for patulin by an appropriate method in a laboratory which is accredited to carry out such analyses.

47. The juice should preferably be chilled to <5°C and maintained chilled until it is concentrated, packaged or pasteurised.

48. Juice should only be sent for packing on a positive release basis after patulin analysis has been confirmed as being below the maximum agreed limit. Specifications for the purchase of apple juice should include an appropriate limit for patulin subject to confirmation by the recipient.

PACKAGING AND FINAL PROCESSING OF JUICE

49. Moulds which are capable of producing patulin may occur, together with other moulds and yeasts, particularly in NFC juice. It is essential to prevent the development of such organisms during transport and storage to prevent spoilage of the product and by the same means prevent the production of patulin.

50. If juice is to be held for a period prior to use the temperature should preferably be reduced to 5°C or less, in order to reduce microbial development.

51. Most juice will be heat processed to ensure destruction of enzymes and spoilage organisms. It must be recognized that whilst such processes will generally destroy fungal spores and vegetative mycelium the process conditions will not destroy any patulin which is already present.

QUALITY ASSESSMENT OF JUICE

52. Specifications for the purchase of apple juice or apple juice concentrates should include a maximum limit for patulin based on an appropriate method of analysis.

53. A sampling plan should be developed for random sampling of product to assure that the finished product is within the maximum limit for patulin.

54. The packer must satisfy himself that the juice supplier is able to control properly his own operations to ensure that the recommendations given above are carried out.

55. Assessment of the quality of apple juice by the packer will include °Brix, acidity, flavour, colour, turbidity, etc. The microbiological quality should be carefully monitored since this indicates not only the risk level of potential organisms for the production of patulin but also the hygienic aspects of the previous stages in the production cycle.

56. Further checks should be carried out on the packaged product to ensure that no deterioration has taken place during the packaging stage.

CONCLUSION

57. In conclusion, this Code of Practice elaborated in Codex Alimentarius can only contain general principles for the prevention patulin in apple juice. It is important that these general principles are given sanction by national authorities, taking into account the local varieties of apples, climate, storage facilities and production conditions, in order to make them useful for the growers and processors.

58. At the Third International Conference on Mycotoxins, which took place in Tunisia in March 1999, one of the general recommendations was that integrated mycotoxin control programmes should incorporate Hazard
Analysis and Critical Control Points (HACCP) principles in the control of risks associated with mycotoxin contamination of foods and feeds (15).

59. HACCP is a food safety management system that is used to identify and control hazards within the production and processing system. The general principles of HACCP have been described in several documents (16-18) and FAO/IAEA have recently published a HACCP manual for mycotoxin prevention and control (19).

60. A post-harvest management system based on HACCP for reduction of patulin in apple juice is a possible approach for future consideration.
REFERENCES

Table 1: Recommended temperatures for storage of apples in air (13)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Temperature °C</th>
<th>Temperature °F</th>
<th>Variety</th>
<th>Temperature °C</th>
<th>Temperature °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAMLEY</td>
<td>3.0 - 4.0</td>
<td>37 - 39</td>
<td>IDARED</td>
<td>3.5 - 4.0</td>
<td>38 – 39</td>
</tr>
<tr>
<td>COX’S ORANGE PIPPIN</td>
<td>3.0 - 3.5</td>
<td>37 – 38</td>
<td>JONAGOLD</td>
<td>0.0 - 0.5</td>
<td>32 – 33</td>
</tr>
<tr>
<td>DISCOVERY</td>
<td>1.5 - 2.0</td>
<td>35 – 36</td>
<td>RED DELICIOUS</td>
<td>0.0 - 1.0</td>
<td>32 – 34</td>
</tr>
<tr>
<td>EGREMONT</td>
<td>3.0 - 3.5</td>
<td>37 - 38</td>
<td>SPARTAN</td>
<td>0.0 - 0.5</td>
<td>32 – 33</td>
</tr>
<tr>
<td>GOLDEN DELICIOUS</td>
<td>1.5 - 2.0</td>
<td>35 – 36</td>
<td>WORCESTER</td>
<td>0.0 - 1.0</td>
<td>32 – 34</td>
</tr>
<tr>
<td>CRISPIN</td>
<td>1.5 - 2.0</td>
<td>35 – 36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. The complete elimination of mycotoxin contaminated commodities is not achievable at this time. The elaboration and acceptance of a General Code of Practice by Codex will provide uniform guidance for all countries to consider in attempting to control and manage contamination by various mycotoxins. In order for this Code of Practice to be effective, it will be necessary for the producers in each country to consider the general principles given in the Code, taking into account their local crops, climate, and agronomic practices, before attempting to implement provisions in the Code. It is important for producers to realize that good agricultural practices (GAP) represent the primary line of defense against contamination of cereals with mycotoxins, followed by the implementation of good manufacturing practices (GMP) during the handling, storage, processing, and distribution of cereals for human food and animal feed.

2. The recommendations for the reduction of mycotoxins in cereals are divided into two parts: recommended practices based on Good Agricultural Practice (GAP) and Good Manufacturing Practice (GMP); a complementary management system to consider in the future is Hazard Analysis Critical Control Point (HACCP) principles.

3. This General Code of Practice contains general principles for the reduction of various mycotoxins in cereals that should be sanctioned by national authorities. National authorities should educate producers regarding the environmental factors that promote infection, growth and toxin production in cereal crops at the farm level. Emphasis should be placed on the fact that the planting, preharvest and postharvest strategies for a particular crop will depend on the climatic conditions of that particular year, taking into account the local crops, and traditional production conditions for that particular country or region. There is need to develop quick, affordable and accurate test kits and associated sampling plans that will allow testing of grain shipments without undue disruption of operations. Procedures should be in place to properly handle, through segregation, reconditioning, recall or diversion, cereal crops that may pose a threat to human and/or animal health. National authorities should support research on methods and techniques to prevent fungal contamination in the field and during harvest and storage.

I. RECOMMENDED PRACTICES BASED ON GOOD AGRICULTURAL PRACTICES (GAP) AND GOOD MANUFACTURING PRACTICES (GMP)

PLANTING

4. Consider developing and maintaining a crop rotation schedule to avoid planting the same commodity in a field in two consecutive years. Wheat and maize have been found to be particularly susceptible to Fusarium species and they should not be used in rotation with each other. Crops such as potato, other vegetables, clover and alfalfa that are not hosts to Fusarium species should be used in rotation to reduce the inoculum in the field.

5. When possible and practical, prepare the seed bed for each new crop by plowing under or by destroying or removing old seed heads, stalks, and other debris that may have served, or may potentially serve as substrates for the growth of mycotoxin-producing fungi. In areas that are vulnerable to erosion, no-till practices may be required in the interests of soil conservation.

6. Utilize the results of soil tests to determine if there is need to apply fertilizer and/or soil conditioners to assure adequate soil pH and plant nutrition to avoid plant stress, especially during seed development.
7. When available, grow seed varieties developed for resistance to seed-infecting fungi and insect pests. Only seed varieties recommended for use in a particular area of a country should be planted in that particular area.

8. As far as practical, crop planting should be timed to avoid high temperature and drought stress during the period of seed development and maturation.

9. Avoid overcrowding of plants by maintaining the recommended row and intra-plant spacing for the species/varieties grown. Information concerning plant-spacing may be provided by seed companies.

PREHARVEST

10. Minimize insect damage and fungal infection in the vicinity of the crop by proper use of registered insecticides, fungicides and other appropriate practices within an integrated pest management program.

11. Control weeds in the crop by use of mechanical methods or by use of registered herbicides or other safe and suitable weed eradication practices.

12. Minimize mechanical damage to plants during cultivation.

13. If irrigation is used, ensure that it is applied evenly and that all plants in the field have an adequate supply of water. Irrigation is a valuable method of reducing plant stress in some growing situations. Excess precipitation during anthesis (flowering) makes conditions favorable for dissemination and infection by *Fusarium* spp.; thus irrigation during anthesis and during the ripening of the crops, specifically wheat, barley, and rye, should be avoided.

14. Plan to harvest grain at low moisture content and full maturity, unless allowing the crop to continue to full maturity would subject it to extreme heat, rainfall or drought conditions. Delayed harvest of grain already infected by *Fusarium* species may cause a significant increase in the mycotoxin content of the crop.

15. Before harvest time, make sure that all equipment, which is to be used for harvesting and storage of crops, is functional. A breakdown during this critical period may cause grain quality losses and enhance mycotoxin formation. Keep important spare parts available on the farm to minimize time loss from repairs. Make sure that the equipment needed for moisture content measurements is available and calibrated.

HARVEST

16. Containers (e.g., wagons, trucks) to be used for collecting and transporting the harvested grain from the field to drying facilities, and to storage facilities after drying, should be clean, dry and free of insects and visible fungal growth before use and re-use.

17. As far as possible, avoid mechanical damage to the grain and avoid contact with soil during the harvesting operation. Steps should be taken to minimize the spread of infected seed heads, chaff, stalks, and debris onto the ground where spores may inoculate future crops.

18. During the harvesting operation, the moisture content should be determined in several spots of each load of the harvested grain since the moisture content may vary considerably within the same field.

19. Immediately after harvest, determine moisture levels of the crop; where applicable, dry the crop to the moisture content recommended for storage of that crop. Samples taken for moisture measurements should be as representative of the lot as possible. To reduce the variation of moisture content within a lot, the grain may be moved to another facility (or silo) after the drying process.
20. Cereals should be dried in such a manner that damage to the grain is minimized and moisture levels are lower than those required to support mold growth during storage (generally less than 15%). This is necessary to prevent further growth of a number of fungal species that may be present on fresh grains, especially *Fusarium* species.

21. Freshly harvested cereals should be cleaned to remove damaged kernels and other foreign matter. Kernels containing symptomless infections cannot be removed by standard cleaning methods. Seed cleaning procedures, such as gravity tables, may remove some infected kernels. More research is needed to develop practical procedures for separating symptomless infected kernels from those that are not infected.

STORAGE

22. Avoid piling or heaping wet, freshly harvested commodities for more than a few hours prior to drying or threshing to lessen the risk of fungal growth. Sun drying of some commodities in high humidity may result in fungal infection. Aerate the commodities by forced air circulation.

23. Make sure that the storage facilities include dry, well-vented structures that provide protection from rain, drainage of ground water, protection from entry of rodents and birds, and minimum temperature fluctuations.

24. Crops to be stored should be dried to safe moisture levels and cooled as quickly as possible after harvest. Minimize the amount of foreign materials and damaged kernels in stored grains. Refer to paragraph 29 to evaluate the use of approved pesticides.

25. The mycotoxin level in in-bound and out-bound grain should be monitored when warranted, using appropriate sampling and testing programs.

26. For bagged commodities, ensure that bags are clean, dry and stacked on pallets or incorporate a water impermeable layer between the bags and the floor.

27. Where possible, aerate the grain by circulation of air through the storage area to maintain proper and uniform temperature levels throughout the storage area. Check moisture content and temperature in the stored grain at regular intervals during the storage period.

28. Measure the temperature of the stored grain at several fixed time intervals during storage. A temperature rise of 2-3°C may indicate microbial growth and/or insect infestation. Separate the apparently infected portions of the grain and send samples for analysis. When separated, lower the temperature in the remaining grain and aerate. Avoid using infected grain for food or feed production.

29. Use good housekeeping procedures to minimize the levels of insects and fungi in storage facilities. This may include the use of suitable, registered insecticides and fungicides or appropriate alternative methods. Care should be taken to select only those chemicals that will not interfere or cause harm based on the intended end use of the grains and should be strictly limited.

30. The use of a suitable, approved preservative (e.g., organic acids such as propionic acid) may be beneficial. These acids are effective in killing various fungi and thus prevent the production of mycotoxins in grains intended only for animal feed. The salts of the acids are usually more effective for long-term storage. Care must be taken because these compounds can negatively affect the taste and odor of the grain.

31. Document the harvesting and storage procedures implemented each season by making notes of measurements (e.g., temperature, moisture, and humidity) and any deviation or changes from traditional practices. This information may be very useful for explaining the cause(s) of fungal growth and mycotoxin formation during a particular crop year and help to avoid similar mistakes in the future.
TRANSPORT FROM STORAGE

32. Transport containers should be dry and free of visible fungal growth, insects and any contaminated material. As necessary, transport containers should be cleaned and disinfected before use and re-use and be suitable for the intended cargo. The use of registered fumigants or insecticides may be useful. At unloading, the transport container should be emptied of all cargo and cleaned as appropriate.

33. Shipments of grain should be protected from additional moisture by using covered or airtight containers or tarpaulins. Avoid temperature fluctuations and measures that may cause condensation to form on the grain, which could lead to local moisture build-up and consequent fungal growth and mycotoxin formation.

34. Avoid insect, bird and rodent infestation during transport by the use of insect-and rodent proof containers or insect and rodent repellent chemical treatments if they are approved for the intended end use of the grain.

II. A COMPLEMENTARY MANAGEMENT SYSTEM TO CONSIDER IN THE FUTURE

35. The Hazard Analysis Critical Control Point (HACCP) system is a food safety management system that is used to identify and control hazards within the production and processing system. The general principles of HACCP have been described in several documents.1,2

36. The HACCP concept is an all-encompassing integrated management system. When properly implemented, this system should result in a reduction of the levels of mycotoxins in many cereal grains. The use of HACCP as a food safety management system has many benefits over other types of management control systems in some segments of the food industry. At farm level, especially in the field, many factors that influence the mycotoxin contamination of cereals are environmentally related, such as weather and insects, and are difficult or impossible to control. In other words, critical control points often do not exist in the field. However, after harvesting, critical control points may be identified for mycotoxins produced by fungi during storage. For example, a critical control point could be at the end of the drying process and one critical limit would be the water content/water activity.

37. It is recommended that resources be directed to emphasizing Good Agricultural Practices (GAPs) at the preharvest level and Good Manufacturing Practices (GMPs) during the processing and distribution of various products. A HACCP system should be built on sound GAPs and GMPs.

38. It is also recommended that before further consideration is given to the HACCP system, reference should be made to the Codex Annex to CAC/RCP 1-1969, Rev.3 (1997) “Hazard Analysis and Critical Control Point (HACCP) System and Guidelines for its Management”.

39. Consideration should also be given to a HACCP manual for mycotoxin control recently published by FAO/IAEA.3

1 FAO. 1995. The use of hazard analysis critical control points (HACCP) principles in food control. FAO Food and Nutrition Paper No. 58 Rome
2 ILSI. 1997. A simple guide to understanding and applying the hazard analysis critical control point concept, ILSI Europe Concise Monograph series. 2nd edition, ILSI Europe, Brussels
40. At the Third International Conference on Mycotoxins, which took place in Tunisia in March 1999, one of the general recommendations was that integrated mycotoxin control programs should incorporate HACCP principles in the control of risks associated with mycotoxin contamination of foods and feeds.\(^4\) The implementation of HACCP principles will minimize mycotoxin contamination through applications of preventive controls to the extent feasible in the production, handling, storage and processing of each cereal crop.

\(^4\) FAO. Preventing mycotoxin contamination. Food, Nutrition and Agriculture No. 23, 1999. Food and Nutrition Division, FAO, Rome
REDUCTION OF CONTAMINATION BY ZEARALENONE IN CEREAL GRAINS

RECOMMENDED PRACTICES BASED ON GOOD AGRICULTURAL PRACTICE (GAP) AND GOOD MANUFACTURING PRACTICE (GMP)

1. Good Agricultural Practice includes methods to reduce *Fusarium* infection and zearalenone contamination of cereals in the field and during planting, harvest, storage, transport and processing.

PLANTING

2. Refer to paragraphs 4-9 in the General Code of Practice.

PREHARVEST

3. Refer to paragraphs 10-15 in the General Code of Practice

4. The establishment of *Fusarium* infection in cereal heads during flowering should be monitored before harvest by sampling and determination of infection by standard microbiological methods. Also, mycotoxin content in representative preharvest samples should be determined. Utilization of the crop should be based on prevalence of infection and mycotoxin content of the grain.

HARVEST

5. Refer to paragraphs 16-21 in the General Code of Practice.

STORAGE

6. Refer to paragraphs 22-31 in the General Code of Practice.

TRANSPORT FROM STORAGE

7. Refer to paragraphs 32-34 in the General Code of Practice

PROCESSING

8. Small, shriveled grain may contain more zearalenone than healthy normal grain. Winnowing grains at harvest or later will remove shriveled grain.

ZEARALENONE MANAGEMENT SYSTEM BASED ON HAZARD ANALYSIS CRITICAL CONTROL POINT SYSTEM (HACCP)

9. Refer to paragraphs 35-40 in the General Code of Practice.
REDUCTION OF CONTAMINATION BY FUMONISINS IN CEREAL GRAINS

RECOMMENDED PRACTICES BASED ON GOOD AGRICULTURAL PRACTICES (GAP) AND GOOD MANUFACTURING PRACTICE (GMP)

1. Good Agricultural Practice includes methods to reduce *Fusarium* infection and fumonisin contamination of cereals during planting, harvest, storage, transport and processing.

PLANTING

2. Refer to paragraphs 4-9 in the General Code of Practice.

PREHARVEST

3. Refer to paragraphs 10-15 in the General Code of Practice.

HARVEST

4. Refer to paragraphs 16-21 in the General Code of Practice.

5. The time of harvest for maize should be carefully planned. It has been shown that maize grown and harvested during warm months may have fumonisin levels significantly higher than maize grown and harvested during cooler months of the year.

STORAGE

6. Refer to paragraphs 22-31 in the General Code of Practice.

TRANSPORT FROM STORAGE

7. Refer to paragraphs 32-34 of the General Code of Practice.

FUMONISINS MANAGEMENT SYSTEM BASED ON HAZARD ANALYSIS CRITICAL CONTROL POINT SYSTEM (HACCP)

8. Refer to paragraphs 35-40 in the General Code concerning HACCP.
REDUCTION OF CONTAMINATION BY OCHRATOXIN A IN CEREALS

RECOMMENDED PRACTICES BASED ON GOOD AGRICULTURAL PRACTICES (GAP) AND GOOD MANUFACTURING PRACTICE (GMP)

1. Good Agricultural Practice includes methods to reduce fungal infection and ochratoxin A contamination of cereals during harvest, storage, transport and processing.

PLANTING

2. Refer to paragraphs 4-9 in the General Code of Practice.

PREHARVEST

3. Refer to paragraphs 10-15 in the General Code of Practice.

4. Factors during preharvest that may affect levels of ochratoxin A in harvested grains include frost damage, presence of competitive fungi, excessive rainfall and drought stress.

HARVEST

5. Refer to paragraphs 16-21 in the General Code of Practice.

PRESERVATION

6. Grain should be allowed to dry as much as possible before harvest consistent with local environment and crop conditions. If unable to harvest the grain when it has a water activity below 0.70, then dry the grain to a moisture content corresponding to a water activity of less than 0.70 (less than 14% moisture content in small grain) as quickly as possible. To avoid ochratoxin A formation, start the drying process immediately after harvest and preferably use heated-air drying. In the temperate climate region, when intermediate or buffer storage is necessary because of low drying capacity, make sure that the moisture content is less than 16%, that the buffer storage time is less than 10 days, and the temperature is less than 20 °C.

STORAGE

7. Refer to paragraphs 22-31 in the General Code of Practice.

TRANSPORT

8. Refer to paragraphs 32-34 in the General Code of Practice.

OCHRATOXIN A MANAGEMENT SYSTEM BASED ON HAZARD ANALYSIS CRITICAL CONTROL POINTS (HACCP)

9. Refer to paragraphs 35-40 in the General Code of Practice.
REDUCTION OF CONTAMINATION BY TRICOTHECENES IN CEREAL GRAINS

RECOMMENDED PRACTICES BASED ON GOOD AGRICULTURAL PRACTICES (GAP) AND GOOD MANUFACTURING PRACTICE (GMP)

1. Good Agricultural Practices includes methods to reduce *Fusarium* infection and tricothecene contamination of cereals during planting, harvest, storage, transport and processing.

PLANTING

2. Refer to paragraphs 4-9 in the General Code of Practice.

PREHARVEST

3. Refer to paragraphs 10-15 in the General Code of Practice.

4. Do not permit mature grains to remain in the field for extended periods of time, particularly in cold, wet weather. T-2 and HT-2 toxins are not usually found in grains at harvest, but can result from grains that are water-damaged in the field or grains that become wet at harvest or during storage.

5. Refer to paragraph 4 in Annex 1.

6. Cereal growers should maintain close relations with local cereal trade groups. Such groups should be important sources of information and advice regarding choice of appropriate plant protection products, cultivars and strains that will take into account those resistant to *Fusarium* and are available for their location.

HARVEST

7. Refer to paragraphs 16-21 in the General Code of Practice.

STORAGE

8. Refer to paragraphs 22-31 in the General Code of Practice.

9. Be aware that cereal grains may be contaminated by more than one tricothecene mycotoxin along with their derivatives; therefore simple, rapid screening methods should be available for the analysis of several tricothecenes. Zearalenone, which is not a tricothecene, has been noted to regularly co-occur in cereals contaminated with DON and other tricothecenes.

TRANSPORT FROM STORAGE

10. Refer to paragraphs 32-34 in the General Code of Practice.

TRICOTHECENE MANAGEMENT SYSTEM BASED ON HAZARD ANALYSIS CRITICAL CONTROL POINT SYSTEM (HACCP)

11. Refer to paragraphs 35-40 in the General Code of Practice.
DRAFT MAXIMUM LEVELS FOR LEAD
(At Step 6 of the Procedure)

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Food</th>
<th>ML (mg/kg)</th>
<th>Step</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF115, VD120, WS125</td>
<td>Fish</td>
<td>0.2</td>
<td>6</td>
<td>Excluding Appendix 1</td>
</tr>
</tbody>
</table>

Non-Exhaustive List of Fish Species Indicated by Member States on the Basis of Not Being Able to Meet the Draft Maximum Level for Lead of 0.2 mg/kg

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>English name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clupeidae</td>
<td>Clupea harengus</td>
<td>Herring</td>
</tr>
<tr>
<td>Nototheniidae Gadidae</td>
<td>Lotella rhacina, Paranotothenia microlepidota, Gadus macrocepholus, G. morhua</td>
<td>Cod</td>
</tr>
<tr>
<td>Ictalurus spp.</td>
<td>Ictalurus punctatus</td>
<td>Catfish, Channel</td>
</tr>
<tr>
<td>Carangidae</td>
<td>Trachurus symmetricus</td>
<td>Mackerel (canned)</td>
</tr>
<tr>
<td>Chanidae</td>
<td>Chanos chanos</td>
<td>Milkfish</td>
</tr>
<tr>
<td>Salmonidae</td>
<td>Oncorhynchus tshawytscha, O. keta, O. kisutch, O. gorbuscha, O. nerka, Salmo salar</td>
<td>Salmon</td>
</tr>
<tr>
<td>Salmonidae Sciaenidae</td>
<td>Cynoscion spp.</td>
<td>Trout</td>
</tr>
<tr>
<td></td>
<td>Oncorhynchus mykiss, Salvelinus namaycush, S. fontinalis</td>
<td></td>
</tr>
<tr>
<td>Clupeidae</td>
<td>Sardinella spp</td>
<td>Sardines</td>
</tr>
<tr>
<td>Xiphiidae</td>
<td>Xiphias gladius</td>
<td>Swordfish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shark</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sea Mullet</td>
</tr>
</tbody>
</table>
Proposed Draft Maximum Levels for Cadmium

(At Step 3 of the Procedure)

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Food</th>
<th>ML (mg/kg)</th>
<th>Step</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fruit</td>
<td>0.05</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wheat Grain</td>
<td>0.2</td>
<td>3</td>
<td>Including Bran and Germ</td>
</tr>
<tr>
<td></td>
<td>Milled Rice</td>
<td>0.2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soybean and Peanuts</td>
<td>0.2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meat of Cattle, Poultry, Pig and Sheep</td>
<td>0.05</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molluscs</td>
<td>1.0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meat of Horse</td>
<td>0.2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetables</td>
<td>0.05</td>
<td>3</td>
<td>Excluding Leafy Vegetables, Fresh Herbs, Stem and Root Vegetables, Fungi, Tomatoes and Peeled Potatoes</td>
</tr>
<tr>
<td></td>
<td>Peeled Potatoes, Stem and Root Vegetables</td>
<td>0.1</td>
<td>3</td>
<td>Excluding Celeriac</td>
</tr>
<tr>
<td></td>
<td>Leafy Vegetables, Fresh Herbs, Fungi and Celeriac</td>
<td>0.2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
PROPOSED DRAFT MAXIMUM LEVELS FOR TIN
(At Step 3 of the Procedure)

Tin

- **250 mg/kg** for solid canned foods
- **200 mg/kg** for liquid canned foods
PRIORITY LIST OF FOOD ADDITIVES, CONTAMINANTS AND NATURALLY OCCURRING TOXICANTS PROPOSED FOR EVALUATION BY JECFA

<table>
<thead>
<tr>
<th>Food additives for toxicological and intake evaluation and development of specifications</th>
<th>Data availability</th>
<th>Originally proposed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium from all sources (toxicity and intake of aluminium from its use in food additives and from other sources)</td>
<td>Unknown</td>
<td>CCFAC (GSFA)</td>
</tr>
<tr>
<td>Arpink red (new evaluation)</td>
<td>2002</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Beeswax</td>
<td>Unknown</td>
<td>CCFAC (GSFA)</td>
</tr>
<tr>
<td>Candelilla wax</td>
<td>Unknown</td>
<td>CCFAC (GSFA)</td>
</tr>
<tr>
<td>Benzoyl peroxide (data identified as necessary at fifty-fifth meeting of JECFA)</td>
<td>2002</td>
<td>Canada</td>
</tr>
<tr>
<td>Enzyme preparations (new evaluations):</td>
<td>2002</td>
<td>Denmark</td>
</tr>
<tr>
<td>• laccase enzyme preparation, produced by a strain of Aspergillus oryzae, containing the gene coding for laccase in Myceliophthora thermophila, inserted by recombinant DNA techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• an α-amylase enzyme preparation, produced by a strain of Bacillus licheniformis, containing a protein engineered gene of Bacillus licheniformis coding for α-amylase, inserted by recombinant DNA techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• xylanase enzyme preparation, produced by a strain of Fusarium venenatum, containing the gene coding for xylanase from Thermomyces lanuginosus, inserted by recombinant DNA techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mixed xylanase, β-glucanase enzyme preparations, produced by a strain of Humicola insolens.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrous bisglycinate (new evaluation - nutritional source of iron)</td>
<td>2002</td>
<td>USA</td>
</tr>
<tr>
<td>Approx. 200 flavouring agents (new evaluations)</td>
<td>2002</td>
<td>USA</td>
</tr>
<tr>
<td>Magnesium silicate (use as a filtration aid)</td>
<td>2002</td>
<td>USA</td>
</tr>
<tr>
<td>Magnesium sulfate (new evaluation)</td>
<td>2002</td>
<td>USA</td>
</tr>
<tr>
<td>Neotame (new evaluation)</td>
<td>2002</td>
<td>Australia</td>
</tr>
<tr>
<td>Polyvinyl alcohol (new evaluation)</td>
<td>2002</td>
<td>Philippines</td>
</tr>
</tbody>
</table>

| Food additives for specifications only |
|---|---|
| Revision of General specifications and considerations for enzyme preparations used in food processing | ----- | CCFAC (WG on Specifications) |
| Sucrose esters of fatty acids | 2002 | Japan |

| Contaminants and naturally occurring toxicants |
|---|---|
| 2-Alkyl cyclobutanones (data to be provided by the EC) | unknown | CCFAC (standard for irradiated foods) |
| Arsenic | 2002 | JECFA Secretariat |
| Cadmium | 2002 | Japan |
| • toxicity (review of studies requested at fifty-fifth meeting of JECFA) | 2002 | Japan |
| • impact of alternative maximum levels | unknown | CCFAC (GSCTF) |
| Ergot alkaloids (full evaluation) | unknown | Canada |
| Ethyl carbamate (full evaluation) | 2002 | CCFAC |
| Glycyrhrzizic acid (full evaluation) | anytime | Denmark |
| Phenylhydrazines, including agaritine (full evaluation) | anytime | Denmark |
| Polycyclic aromatic hydrocarbons, including benz[a]pyrene (full evaluation) | 2002 | Netherlands, Canada, Denmark, Finland |
| Polybrominated diphenyl ether | unknown | Canada |

1 High priority for evaluation by JECFA in 2003.
2 Groups of flavouring agents should be prioritized in the event that the JECFA Secretariat is unable to include all of them on the agenda of the sixty-first meeting of JECFA in 2003.
METHODS OF ANALYSIS FOR THE DETERMINATION OF FOOD ADDITIVES AND CONTAMINANTS IN FOODS

(For Endorsement by the Codex Committee of Method Analysis and Sampling)

Additives

Determination of sulfites

<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
</table>

Determination of intense sweeteners

<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 1376 : 1996-09 (confirmed 2001)</td>
<td>Foodstuffs - Determination of saccharin in table top sweetener preparations – Spectrometric method</td>
<td>Type III</td>
</tr>
<tr>
<td>EN 1377 : 1996-09 (confirmed 2001)</td>
<td>Foodstuffs - Determination of acesulfame K in table top sweetener preparations – Spectrometric method</td>
<td>Type II</td>
</tr>
<tr>
<td>EN 1378 : 1996-09 (confirmed 2001)</td>
<td>Foodstuffs - Determination of aspartame in table top sweetener preparations - Method by high performance liquid chromatography</td>
<td>Type II</td>
</tr>
<tr>
<td>EN 1379 : 1996-09 (confirmed 2001)</td>
<td>Foodstuffs - Determination of cyclamate and saccharin in liquid table top sweetener preparations - Method by high performance liquid chromatography</td>
<td>Type II</td>
</tr>
<tr>
<td>EN 12856 : 1999-04</td>
<td>Foodstuffs - Determination of acesulfame-K, aspartame and saccharin - High performance liquid chromatographic method</td>
<td>Type II</td>
</tr>
<tr>
<td>EN 12857 : 1999-04</td>
<td>Foodstuffs - Determination of cyclamate - High performance liquid chromatographic method</td>
<td>Type II</td>
</tr>
</tbody>
</table>

Contaminants

Determination of PCBs

<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 1528-1: 1996-10 (confirmed 2001)</td>
<td>Fatty food - Determination of pesticides and polychlorinated biphenyls (PCBs) - Part 1: General considerations</td>
<td>Type III</td>
</tr>
<tr>
<td>EN 1528-2: 1996-10 (confirmed 2001)</td>
<td>Fatty food - Determination of pesticides and polychlorinated biphenyls (PCBs) - Part 2: Extraction of fat, pesticides and PCBs and determination of fat content</td>
<td>Type III</td>
</tr>
<tr>
<td>EN 1528-3: 1996-10 (confirmed 2001)</td>
<td>Fatty food – Determination of pesticides and polychlorinated biphenyls (PCBs) - Part 3: Clean-up methods</td>
<td>Type III</td>
</tr>
<tr>
<td>EN 1528-4: 1996-10 (confirmed 2001)</td>
<td>Fatty food – Determination of pesticides and polychlorinated biphenyls (PCBs) - Part 4: Determination, confirmatory tests, Miscellaneous</td>
<td>Type III</td>
</tr>
</tbody>
</table>
Determination of nitrates/nitrites (partly also to be assessed as additives)

<table>
<thead>
<tr>
<th>Standard Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 12014-1:1997-04</td>
<td>Foodstuffs - Determination of nitrate and/or nitrite content - Part 1: General considerations</td>
<td>Type III</td>
</tr>
<tr>
<td>EN 12014-2:1997-04</td>
<td>Foodstuffs - Determination of nitrate and/or nitrite content - Part 2: HPLC/IC method for the determination of nitrate content of vegetables and vegetable products</td>
<td>Type II</td>
</tr>
<tr>
<td>ENV 12014-3:1998-06</td>
<td>Foodstuffs - Determination of nitrate and/or nitrite content - Part 3: Spectrometric determination of nitrate and nitrite content of meat products after enzymatic reduction of nitrate to nitrite</td>
<td>Type III</td>
</tr>
<tr>
<td>ENV 12014-4:1998-06</td>
<td>Foodstuffs - Determination of nitrate and/or nitrite content - Part 4: Ion-exchange chromatographic (IC) method for the determination of nitrate and nitrite content of meat products</td>
<td>Type III</td>
</tr>
<tr>
<td>EN 12014-5:1997-04</td>
<td>Foodstuffs - Determination of nitrate and/or nitrite content - Part 5: Enzymatic determination of nitrate content of vegetable-containing food for babies and infants</td>
<td>Type II</td>
</tr>
<tr>
<td>EN 12014-7:1998-06</td>
<td>Foodstuffs - Determination of nitrate and/or nitrite content - Part 7: Continuous flow method for the determination of nitrate content of vegetables and vegetable products after cadmium reduction</td>
<td>Type III</td>
</tr>
</tbody>
</table>

Determination of mycotoxins

<table>
<thead>
<tr>
<th>Standard Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 12955 : 1999-07</td>
<td>Foodstuffs - Determination of aflatoxin B₁, and the sum of aflatoxins B₁, B₂, G₁ and G₂ in cereals, shell-fruits and derived products - High performance liquid chromatographic method with post column derivatization and immunoaffinity column clean up</td>
<td>Type III</td>
</tr>
<tr>
<td>EN 13595 : 2001 - 11</td>
<td>Foodstuffs – Determination of fumonisins B₁ and B₂ in maize – HPLC method with solid phase extraction clean-up</td>
<td>Type I</td>
</tr>
</tbody>
</table>
ACTION REQUIRED AS A RESULT OF CHANGES IN ACCEPTABLE DAILY INTAKE (ADI) STATUS AND OTHER TOXICOLOGICAL RECOMMENDATIONS

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>PREVIOUS ADI AND OTHER TOXICOLOGICAL RECOMMENDATIONS</th>
<th>PRESENT ADI AND OTHER TOXICOLOGICAL RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsifiers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diacetyltartaric and fatty acid esters of glycerol</td>
<td>0-50 mg/kg bw</td>
<td>0-50 mg/kg bw (temporary)<sup>a</sup></td>
</tr>
<tr>
<td>Tartaric, acetic and fatty acid esters of glycerol, mixed Quillaia extracts</td>
<td>Not Limited</td>
<td>ADI withdrawn<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>0-5 mg/kg bw</td>
<td>0-5 mg/kg bw (temporary)<sup>c</sup></td>
</tr>
<tr>
<td>Enzyme preparations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertase from Saccharomyces cerevisiae</td>
<td>None</td>
<td>Acceptable<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food colours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Carotene from Blakeslea trispora</td>
<td>None</td>
<td>0-5 mg/kg bw (group ADI with synthetic β-carotene)<sup>e</sup></td>
</tr>
<tr>
<td>Curcumin</td>
<td>0-1 mg/kg bw (temporary)</td>
<td>0-1 mg/kg bw (temporary)<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food salts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium dihydrogen diposphate</td>
<td>None</td>
<td>Included in the maximum tolerable daily intake of 70 mg/kg bw for phosphates, diphosphates, and polyphosphates</td>
</tr>
<tr>
<td>Monomagnesium phosphate</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Sodium calcium polyphosphate</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Trisodium diphosphate</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glazing agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogenated poly-1-decene</td>
<td>No ADI Allocated</td>
<td>0-6 mg/kg bw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preservative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natamycin (pimaricin)</td>
<td>0-0.3 mg/kg bw<sup>b</sup></td>
<td>0-0.3 mg/kg bw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweetening agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Tagatose</td>
<td>No ADI Allocated</td>
<td>0-80 mg/kg bw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickening agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrageenan</td>
<td>Not Specified (Temporary).</td>
<td>ADI “not specified”<sup>i</sup> (group ADI for carrageenan and processed Eucheuma seaweed)</td>
</tr>
<tr>
<td>Processed Eucheuma seaweed</td>
<td>Not Specified (Temporary).</td>
<td></td>
</tr>
<tr>
<td>Curdlan</td>
<td>Not Specified (ADI Temporary)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous substances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylated oxidized starch</td>
<td>None</td>
<td>ADI “not specified”<sup>ii,j</sup></td>
</tr>
<tr>
<td>α-Cyclodextrin</td>
<td>None</td>
<td>ADI “not specified”<sup>i</sup></td>
</tr>
<tr>
<td>Sodium sulfate</td>
<td>Not Specified (Temporary).</td>
<td>ADI “not specified”<sup>i</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Chloro-1,2-propanediol</td>
<td>Levels in hydrolysed vegetable protein should be reduced as far as technically possible</td>
<td>PMTDI (provisional maximum tolerable daily intake): 2 µg/kg bw</td>
</tr>
<tr>
<td>1,3-Dichloro-2-propanol</td>
<td>Levels in hydrolysed vegetable protein should be reduced as far as technically possible</td>
<td>Establishment of a tolerable intake was considered to be inappropriate because of the nature of toxicity (tumorogenic in various organs in rats and the contaminant can interact with chromosomes and/or DNA); The Committee noted that the dose that caused tumours in rats (19 mg/kg bw per day) was about 20,000 times the highest</td>
</tr>
<tr>
<td>Polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (PCBs)</td>
<td>None</td>
<td>PTMI (provisional tolerable monthly intake): 70 pg/kg bw<sup>k</sup></td>
</tr>
</tbody>
</table>

estimated intake of 1,3-dichloro-2-propanol by consumers of soya sauce (1 μg/kg bw per day).

The Codex Alimentarius Commission has adopted International Numbering System as numbers 472e for diacetyltartaric and fatty acid esters of glycerol and as 472f for tartaric, acetic, and fatty acid esters of glycerol mixed respectively. At the 51st meeting of JECFA(1998) established one specification under name of diacetyltartaric and fatty acid esters of glycerol to cover these two substances, and 57th JECFA established this ADI as temporary.

The ADI was withdrawn because the specifications for tartaric, acetic and fatty acid esters of glycerol, mixed, were combined with those of diacetyltartaric and fatty acid esters of glycerol under the latter name at the fifty-first meeting (WHO Technical Report Series, No. 891, 2000).

The existing specifications for quillaia extracts were revised in order to clarify the differences between unpurified and semi-purified extracts Additional information on composition (minimum and maximum percentages of saponins unpurified and semi-purified extracts) is necessary, so the specifications were designated as tentative. Once the requested information has been received, the Committee will consider whether separate specifications for unpurified and semi-purified extracts are required. This information is required for evaluation in 2003. The ADI was made temporary pending clarification of the specifications. The temporary ADI is applicable only to the unpurified extract.

Information is required on the method of analysis for residual solvents (ethyl acetate and isobutyl acetate). This information is required for evaluation in 2003

The results of a reproductive toxicity study on a substance complying with the specifications for curcumin, known to be in progress, is required for evaluation in 2003

Information is required on the loss on drying, loss on ignition, test method for loss on ignition and assay method for the hydrates. This information is required for evaluation in 2003.

Information is required on the level and determination of water content, lead limit, specific rotation, assay value and method of assay for the commercial product. Comments on other aspects of the monograph are invited. This information is required for evaluation in 2003.

ADI “not specified” is used to refer to a food substance of very low toxicity which, on the basis of the available data (chemical, biochemical, toxicological and other) and the total dietary intake of the substance arising from its use at the levels necessary to achieve the desired effects and from its acceptable background levels in food, does not, in the opinion of the Committee, represent a hazard to health. For that reason, and for the reasons stated in the individual evaluations, the establishment of an ADI expressed in numerical form is not deemed necessary. An additive meeting this criterion must be used within the bounds of good manufacturing practice, i.e. it should be technologically efficacious and should be used at the lowest level necessary to achieve this effect, it should not conceal food of inferior quality or adulterated food, and it should not create a nutritional imbalance.

The new specifications for Acetylated Oxidized Starch were integrated into the revised specifications for Modified Starches

the long half-times of PCDDs, PCDFs, and coplanar PCBs result in each daily ingestion having a small or even negligible effect on overall intake. Only after consideration of the total or average intake of PCDDs, PCDFs, and coplanar PCBs over months can their long- or short-term risk to health be assessed. The tolerable intake should therefore be assessed over 1 month or longer. To encourage this view, the Committee decided to express the tolerable intake as a monthly value in the form of a provisional tolerable monthly intake (PTMI).
ALNORM 03/12
APPENDIX XIX

ENDORSEMENT AND/OR REVISION OF MAXIMUM LEVELS FOR FOOD ADDITIVES IN THE DRAFT STANDARD FOR CHOCOLATE AND CHOCOLATE PRODUCTS

<table>
<thead>
<tr>
<th>INS No.</th>
<th>Food additive</th>
<th>Maximum level</th>
<th>ADI (mg/kg body weight)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>503(i)</td>
<td>Ammonium carbonate</td>
<td></td>
<td>NOT SPECIFIED</td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>Ammonium hydroxide</td>
<td></td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>503(ii)</td>
<td>Ammonium hydrogen carbonate</td>
<td></td>
<td>NOT SPECIFIED</td>
<td></td>
</tr>
<tr>
<td>170(i)</td>
<td>Calcium carbonate</td>
<td></td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>Citric acid</td>
<td></td>
<td>NOT LIMITED</td>
<td>(Group ADI for citric acid and its calcium, potassium, sodium, and ammonium salts)</td>
</tr>
<tr>
<td>504(i)</td>
<td>Magnesium carbonate</td>
<td>Limited by GMP</td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>Magnesium hydroxide</td>
<td></td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>Magnesium Oxide</td>
<td></td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>501(i)</td>
<td>Potassium carbonate</td>
<td></td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>Potassium hydroxide</td>
<td></td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>501(ii)</td>
<td>Potassium hydrogen carbonate</td>
<td></td>
<td>NOT LIMITED</td>
<td>(Included in the group ADI for hydrogen carbonates)</td>
</tr>
<tr>
<td>500(i)</td>
<td>Sodium carbonate</td>
<td></td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>Sodium hydroxide</td>
<td></td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>500(ii)</td>
<td>Sodium hydrogen carbonate</td>
<td></td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>Calcium hydroxide</td>
<td></td>
<td>NOT LIMITED</td>
<td></td>
</tr>
<tr>
<td>338</td>
<td>Orthophosphoric acid</td>
<td>2.5 g/kg expressed as P₂O₅ in finished cocoa and chocolate products</td>
<td>MTDI 70 (Expressed as phosphorus from all sources)</td>
<td></td>
</tr>
</tbody>
</table>

1 Alkalizing and neutralizing agents carried over as a result of processing cocoa material in proportion to the maximum quantity as provided for.
<table>
<thead>
<tr>
<th>Product Code</th>
<th>Ingredient</th>
<th>Specifications</th>
<th>ADI 0-30</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>334</td>
<td>L-Tartaric acid</td>
<td>5 g/kg in finished cocoa and chocolate products</td>
<td>0-30 (Group ADI for L-(+)-tartaric acid and its sodium, potassium, potassium sodium salts)</td>
<td></td>
</tr>
<tr>
<td>471</td>
<td>Mono- and di-glycerides of edible fatty acids</td>
<td>Limited by GMP</td>
<td>NOT LIMITED</td>
<td>Product described<sup>2</sup></td>
</tr>
<tr>
<td>322</td>
<td>Lecithin</td>
<td>NOT LIMITED</td>
<td>NOT LIMITED</td>
<td>“”</td>
</tr>
<tr>
<td>422</td>
<td>Glycerol</td>
<td>NOT SPECIFIED</td>
<td>NOT SPECIFIED</td>
<td>“”</td>
</tr>
<tr>
<td>442</td>
<td>Ammonium salts of phosphatidic acids</td>
<td>10 g/kg</td>
<td>0-30 (The phosphorus content is to be included in the ADI for phosphates)</td>
<td>“”</td>
</tr>
<tr>
<td>476</td>
<td>Polyglycerol esters of interesterified ricinoleic acid</td>
<td>5 g/kg</td>
<td>0-7.5</td>
<td>“”</td>
</tr>
<tr>
<td>491</td>
<td>Sorbitan monostearate</td>
<td>10 g/kg</td>
<td>0-25</td>
<td>“”</td>
</tr>
<tr>
<td>492</td>
<td>Sorbitan tristearate</td>
<td>10 g/kg</td>
<td>0-25</td>
<td>“”</td>
</tr>
<tr>
<td>435</td>
<td>Polyoxyethylene (20) sorbitan monostearate</td>
<td>10 g/kg</td>
<td>0-25 (as total polyoxyethylene(20) sorbitan esters)</td>
<td>“”</td>
</tr>
</tbody>
</table>

Flavouring Agents

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Ingredient</th>
<th>Specifications</th>
<th>ADI 0-30</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural and artificial flavours, except those which reproduce the flavour of chocolate or milk</td>
<td>Limited by GMP</td>
<td>Temporarily endorsed</td>
<td>Products described<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>Vanillin</td>
<td>1 g/kg in combination</td>
<td>0-10</td>
<td>No safety concern at current levels of intake when used as a flavouring agent</td>
<td></td>
</tr>
<tr>
<td>Ethyl vanillin</td>
<td>1 g/kg in combination</td>
<td>0-3</td>
<td>No safety concern at current levels of intake when used as a flavouring agent</td>
<td>Products described<sup>3</sup></td>
</tr>
</tbody>
</table>

² Products described under provision 2.1 and 2.2 in Draft Standard for Chocolate and Chocolate Products.
Sweeteners

<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Limitation</th>
<th>Toxicological Period</th>
<th>Product Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>950</td>
<td>Acesulfame Potassium</td>
<td>500 mg/kg</td>
<td>0-15</td>
<td>Products described ³</td>
</tr>
<tr>
<td>951</td>
<td>Aspartame</td>
<td>2000 mg/kg</td>
<td>0-40</td>
<td>"</td>
</tr>
<tr>
<td>952</td>
<td>Cyclamic acid and its Na and Ca salts</td>
<td>500 mg/kg</td>
<td>0-11</td>
<td>"</td>
</tr>
<tr>
<td>954</td>
<td>Saccharin and its Na and Ca salts</td>
<td>500 mg/kg</td>
<td>0-5</td>
<td>"</td>
</tr>
<tr>
<td>957</td>
<td>Thaumatin</td>
<td>NOT SPECIFIED</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>Sorbitol and sorbitol syrup</td>
<td>NOT SPECIFIED</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>Mannitol</td>
<td>Limited by GMP</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>953</td>
<td>Isomalt (Isomaltitol)</td>
<td>NOT SPECIFIED</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>965</td>
<td>Maltitol and maltitol syrup</td>
<td>NOT SPECIFIED</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>966</td>
<td>Lactitol</td>
<td>NOT SPECIFIED</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>967</td>
<td>Xylitol</td>
<td>NOT SPECIFIED</td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>

Glazing agents

<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Limitation</th>
<th>Product Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>414</td>
<td>Gum Arabic (Acacia gum)</td>
<td>NOT SPECIFIED</td>
<td>Products described ³</td>
</tr>
<tr>
<td>440</td>
<td>Pectin</td>
<td>NOT SPECIFIED (Group ADI for pectins and amidated pectins, singly or in combination)</td>
<td>"</td>
</tr>
<tr>
<td>901</td>
<td>Beeswax, white and yellow</td>
<td>GMP</td>
<td>"</td>
</tr>
<tr>
<td>902</td>
<td>Candelilla wax</td>
<td>ACCEPTABLE</td>
<td>"</td>
</tr>
<tr>
<td>904</td>
<td>Shellac</td>
<td>ACCEPTABLE</td>
<td>"</td>
</tr>
</tbody>
</table>

Antioxidants

<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Limitation</th>
<th>Product Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>304</td>
<td>Ascorbyl palmitate</td>
<td>200 mg/kg</td>
<td>Product described in White chocolate calculated on a fat content basis</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Quantity</td>
<td>ADI</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>319</td>
<td>Tertiary butylhydroquine</td>
<td>200 mg/kg singly or in combination</td>
<td>0-0.7</td>
</tr>
<tr>
<td>320</td>
<td>Butylated hydroxyanisole</td>
<td>200 mg/kg singly or in combination</td>
<td>0-0.5</td>
</tr>
<tr>
<td>321</td>
<td>Butylated hydroxytoluene</td>
<td>200 mg/kg singly or in combination</td>
<td>0-0.3</td>
</tr>
<tr>
<td>310</td>
<td>Propylgallate</td>
<td>200 mg/kg singly or in combination</td>
<td>0-1.4</td>
</tr>
<tr>
<td>307</td>
<td>α-Tocopherol</td>
<td>750 mg/kg</td>
<td>0.15-2 (Group ADI for dl-alpha-tocopherol and d-alpha-tocopherol concentrate, singly or in combination)</td>
</tr>
</tbody>
</table>

Colours (for decoration purpose only)

<table>
<thead>
<tr>
<th>No.</th>
<th>Colour</th>
<th>ADI</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>Gold</td>
<td>GMP</td>
<td>NO ADI ALLOCATED (Very limited use. Not considered to present a hazard)</td>
</tr>
<tr>
<td>174</td>
<td>Silver</td>
<td>GMP</td>
<td>DECISION POSTPONED</td>
</tr>
</tbody>
</table>

Bulking agents

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>ADI</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>Polydextrose A and N</td>
<td>GMP</td>
<td>Not Specified</td>
</tr>
</tbody>
</table>

Processing Aid

<table>
<thead>
<tr>
<th>Name</th>
<th>ADI</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexane (62°C - 82°C)</td>
<td>1 mg/kg</td>
<td>Limited by GMP</td>
</tr>
</tbody>
</table>

|
REQUEST FOR DATA SUBMISSION FOR THE ESTABLISHMENT OF A MAXIMUM LEVEL FOR LEAD IN FISH

It is preferable to receive individual data (see Annex 1) to support the maximum level for lead in fish. However, if this is not possible, please submit aggregate data (annex 2). Data should preferably be submitted in Excel format.

Annex 1

Instruction for submission of INDIVIDUAL DATA on lead in fish

Please fill in the fields for which you have information.

Fields from the GEMS/FOOD

Instructions for electronic submission of data on chemical contaminants in food to be found on the web site: http://www.who.int/fsf

Field No. 1: Serial Number of the Record
Field No. 2: Date of Record Creation
Field No. 3: Country Providing the Record
Field No. 4: Food Identifier
Field No. 5: Food Origin
Field No. 6: Time Period of Food Sampling
Field No. 7: Representativeness of the Samples
Field No. 8: Number of Laboratories Participating in Sample Analyses
Field No. 9: Indicator of analytical Quality assurance
Field No. 10: Contaminant identifier
Field No. 11: Unit of Reporting for Contaminant Levels (mg/kg)
Field No. 12: Range of Analytical Limits in the Data Set
 12a: Limit of detection
 12c: Limit of quantification
Field No. 13: Basis for the Analytical values (fresh weight)
Field No. 21: Confidentiality of data
Field No. 22: Remarks/References

Additional fields

Field No. 23: Fish Family name in Latin
Field No. 24: Fish Species name in Latin
Field No. 25: Fish Species name in English
Field No. 26: Reference of method of analysis
Field No. 27: Concentration value
Instruction for submission of AGGREGATE DATA on lead in fish

Please fill in the fields for which you have information.

Fields from the GEMS/FOOD

Instructions for electronic submission of data on chemical contaminants is located at: http://www.who.int/fsf

Field No. 1: Serial Number of the Record
Field No. 2: Date of Record Creation
Field No. 3: Country Providing the Record
Field No. 4: Food Identifier
Field No. 5: Food Origin
Field No. 6: Time Period of Food Sampling
Field No. 7: Representativeness of the Samples
Field No. 8: Number of Laboratories Participating in Sample Analyses
Field No. 9: Indicator of analytical Quality assurance
Field No. 10: Contaminant identifier
Field No. 11: Unit of Reporting for Contaminant Levels (mg/kg)
Field No. 12: Range of Analytical Limits in the Data Set
 12a: Limit of Detection – minimum
 12b: Limit of detection – maximum
 12c: Limit of quantification – minimum
 12d: Limit of quantification - maximum
Field No. 13: Basis for the Analytical values (fresh weight)
Field No. 14: Number of Samples analysed
Field No. 15: Number of Samples with concentrations below Limit of Quantification
Field No. 16: Range of Quantified analytical concentrations
 16a: Minimum concentration
 16b: Maximum concentration
Field No. 17: Mean concentrations
 17a: Mean concentration
 17b: Mean lower bound
 17c: Mean upper bound
Field No. 18: Median concentration
Field No. 19: 90th Percentile Concentration
Field No. 20: Standard Deviation (Optional)
Field No. 21: Confidentiality of data
Field No. 22: Remarks/References

Additional fields

Field No. 23: Fish Family name in Latin
Field No. 24: Fish Species name in Latin
Field No. 25: Fish Species name in English
Field No. 26: reference of method of analysis
CCFAC and JECFA

a) CCFAC and JECFA recognize that communication between risk assessors and risk managers is critical to the success of their risk analysis activities.

b) CCFAC and JECFA will continue to develop procedures to enhance communication between the two committees.

c) CCFAC and JECFA will ensure that their contributions to the risk analysis process are fully transparent, thoroughly documented and available in a timely manner to Member States.

d) JECFA, in consultation with CCFAC, will continue to explore developing minimum quality criteria for data requirements necessary for JECFA to perform risk assessments. These criteria will be used by CCFAC in preparing its Priority List for JECFA. The JECFA Secretariat will consider whether these minimum quality criteria for data have been met when preparing the provisional agenda for meetings of JECFA.

CCFAC

e) CCFAC is primarily responsible for recommending risk management proposals for adoption by the CAC.

f) CCFAC will base its risk management recommendations to the CAC on JECFA’s risk assessments or safety assessments of food additives, naturally occurring toxicants, and contaminants in food.

g) In cases where JECFA has performed a safety assessment and CCFAC or the CAC determines that additional scientific guidance is necessary, CCFAC or CAC may make a more specific request to JECFA to obtain the scientific guidance necessary for a risk management decision.

h) CCFAC’s risk management recommendations to the CAC with respect to food additives shall be guided by the principles described in the Preamble and relevant annexes of the Codex General Standard for Food Additives.

i) CCFAC’s risk management recommendations to the CAC with respect to contaminants and naturally occurring toxicants shall be guided by the principles described in the Preamble and relevant annexes of the Codex General Standard for Contaminants and Naturally Occurring Toxins in Food.

j) CCFAC’s risk management recommendations to the CAC that involve health and safety aspects of food standards will be based on JECFA’s quantitative risk assessments or, if sufficient, safety assessments, and other legitimate factors relevant to the health protection of consumers and for the promotion of fair practices in food trade.

k) CCFAC’s risk management recommendations to the CAC will take into account the relevant uncertainties and safety factors described by JECFA.

l) CCFAC will endorse maximum use levels only for those additives for which 1) JECFA has established
specifications of identity and purity, 2) JECFA has established an ADI or has completed a quantitative risk assessment, and 3) the level of the additive in food can be determined through appropriate methods.

m) CCFAC will take into account differences in regional and national food consumption patterns and dietary exposure as assessed by JECFA when recommending maximum use levels for additives or maximum limits for contaminants and naturally occurring toxicants in food,

n) Before finalising proposals for MLs for contaminants and naturally occurring toxicants, CCFAC shall seek the scientific advice of JECFA about the validity of the analysis and sampling aspects, about the distribution of concentrations of contaminants and naturally occurring toxicants in foods and about other relevant technical and scientific aspects, including dietary exposure, as necessary to provide for a suitable scientific basis for its advice to CCFAC.

o) When establishing its standards, codes of practice, and guidelines, CCFAC will clearly state when it applies any non-science-based considerations in addition to JECFA’s risk assessment and specify its reasons for doing so.

p) CCFAC’s risk communication with JECFA will include prioritizing substances for JECFA review with the view towards obtaining the best available risk assessment for purposes of elaborating safe conditions of use for food additives and elaborating safe maximum limits or codes of practice for contaminants and naturally occurring toxicants in food.

q) CCFAC will consider the following when preparing its priority list of substances for JECFA review:
 - Consumer protection from the point of view of health and prevention of unfair trade practices;
 - CCFAC’s Terms of Reference;
 - JECFA’s Terms of Reference;
 - The Codex Alimentarius Commission’s Medium-Term Plan of Work;
 - The quality, quantity, adequacy, and availability of data pertinent to performing a risk assessment;
 - The prospect of completing the work in a reasonable period of time;
 - The diversity of national legislation and any apparent impediments to international trade;
 - The impact on international trade (i.e., magnitude of the problem in international trade).
 - Work already undertaken by other international organizations;

r) When referring substances to JECFA, CCFAC may also refer a range of risk management options, with a view toward obtaining JECFA’s guidance on the attendant risks and the likely risk reductions associated with each option.

s) CCFAC will request JECFA to review any methods and guidelines being considered by CCFAC for assessing maximum use levels for additives or Maximum Limits for contaminants and naturally occurring toxicants. CCFAC will make any such request with a view toward obtaining JECFA’s guidance on the limitations, applicability, and appropriate means for implementation of a method or guideline for CCFAC’s work.

JECFA

t) JECFA is primarily responsible for performing the risk assessments upon which CCFAC and ultimately the CAC base their risk management decisions.

u) JECFA will select scientific experts on the basis of their competence and independence, taking into account geographical representation to ensure that all regions are represented.

v) JECFA will strive to provide CCFAC with science-based risk assessments that include the four components of risk assessment as defined by CAC and safety assessments that can serve as the basis for CCFAC’s risk-management discussions. For contaminants and naturally occurring toxicants, JECFA will
determine to the extent possible the risks associated with various levels of intake. Because of the lack of appropriate information, including data in humans, however, this will be possible in only a few cases in the foreseeable future. For additives, JECFA will continue to use its safety assessment process for establishing ADIs.

w) JECFA will strive to provide CCFAC with science-based quantitative risk assessments and safety assessments for food additives, contaminants, and naturally occurring toxicants in a transparent manner.

x) JECFA will provide CCFAC information on the applicability and any constraints of the risk assessment to the general population and to particular sub-populations and will as far as possible identify potential risks to vulnerable populations (e.g., children, women of child-bearing age, the elderly).

y) JECFA will also strive to provide CCFAC with specifications of identity and purity essential to assessing risk associated with the use of additives.

z) Recognizing that primary production in developing countries is largely through small and medium size enterprises, JECFA will strive to base its risk assessments on global data, including that from developing countries. These data should include epidemiological surveillance data and exposure studies.

aa) JECFA is responsible for evaluating exposure to additives, contaminants, and naturally occurring toxicants as part of the risk assessments provided to CCFAC.

bb) When evaluating intake of additives or contaminants and naturally occurring toxicants during its risk assessment, JECFA will take into account regional differences in food consumption patterns.

c) JECFA will provide to CCFAC its scientific views on the validity and the distribution aspects of the available data regarding contaminants and naturally occurring toxicants in foods which have been used for exposure assessments, and will give details on the magnitude of the contribution to the exposure from specific foods as may be relevant for risk management actions or options of CCFAC.

dd) JECFA will communicate to CCFAC the magnitude and source of uncertainties in its risk assessments. When communicating this information, JECFA will provide CCFAC a description of the methodology and procedures by which JECFA estimated any uncertainty in its risk assessment.

ee) JECFA will communicate to CCFAC the basis for all assumptions used in its risk assessments including default assumptions used to account for uncertainties.

ff) When establishing an ADI, PTWI, PTMDI, or PTMI, JECFA will identify and provide a description of the scientific basis for the toxicological endpoint used to determine a NOEL or a Lowest Observed Effect Level (LOEL).

gg) When establishing an ADI, PTWI, PTMDI, or PTMI, JECFA is responsible for choosing the appropriate safety factor to be applied to the NOEL or LOEL and for providing an explanation of the scientific basis for the choice to account for any attendant uncertainties in the safety assessment.

hh) JECFA’s risk assessment output to CCFAC is limited to presenting its deliberations and the conclusions of its risk assessments and safety assessments in a complete and transparent manner. JECFA’s communication of its risk assessments should not include the consequences of its analyses on trade or other non-public health consequence. Should JECFA include risk assessments of alternative risk management options, JECFA should ensure that these are consistent with the general risk analysis guidelines of Codex and CCFAC.
When establishing the agenda for a JECFA meeting, the JECFA Secretariat will work closely with CCFAC to ensure that CCFAC’s risk management priorities are addressed in a timely manner. With respect to food additives, the JECFA Secretariat will normally give first priority to compounds that have been assigned a temporary ADI, or equivalent. Second priority will be normally given to food additives or groups of additives that have previously been evaluated and for which an ADI, or equivalent, has been estimated, and for which new information is available. Third priority will be normally given to food additives that have not been previously evaluated. With respect to contaminants and naturally occurring toxicants, the JECFA Secretariat will give priority to substances that present both a significant risk to public health and are a known or expected problem in international trade.

When establishing the agenda for a JECFA meeting, the JECFA Secretariat will give priority to substances that are known or expected problems in international trade or that present an emergency or imminent public health risk.
The interactions of CAC, CCFAC and JECFA in the risk analysis process (the dotted arrows represent the iterative exchange of information).