平成27年3月18日

平成25年度及び平成26年度
レギュラトリーサイエンス新技術開発事業 研究実績報告書

課題番号：2502

ビロリジンアルカロイド類分析用標準試薬の作製と分析法の検討

研究期間：平成25年度～平成26年度（2年間）
研究総括者名：高山 廣光
試験研究機関名：国立大学法人 千葉大学
I. 全体計画
1. 研究目的

ビロリジンアルカロイド類（PAs）は、植物に含有される天然毒であり、PAs を含む植物の摂取を控えるように WHO により勧告が行われ、日本においても一部含有植物の販売禁止や摂取を控えるように注意喚起がなされている。安全な食品の供給、健康被害の未然防止のためには危害要因である PAs の分析が必須である。しかし、PAs を含むと言われている国内におけるその他の植物、野菜等については、規制のための科学的根拠が十分に整っているとは言えないのが現状である。そこで、本研究では科学的根拠を得るために必要な PAs の分析用標準試料を確保することを目的とする。

2. 研究内容
（1）中課題 1：ビロリジンアルカロイド類（PAs）に関する文献調査

（1）天然物データベース（Dictionary of Natural Products）や SciFinder を活用して、PAs や PAs の含有が報告されている植物、含有濃度を網羅的に調査し、リストアップする。
（2）PubMed、EFSA、英国 MHRA の報告書等を利用して、各 PAs の毒性や諸外国の取り組みに関して調査する。
（3）該当する植物の植生地や栽培・流通などについて調査する。
（4）上記(1)〜(3)のデータに基づき、含有実態調査の対象とすべき PAs、特に大環状型ジエステル体に着目を置き選定する。

（2）中課題 2：ビロリジンアルカロイド類（PAs）分析用標準試薬の作製

1）小課題 1：コンフリリーの成分探索

中課題 1 の調査結果に基づき、含有実態調査の対象とすべき PAs を多く含有し、実験材料として入手可能な植物を採取あるいは購入する。まず、PAs（大環状型ジエステル体である Senkirkine を含む）の含有が報告され、注意喚起が行われているコンフリリー（Symphytum officinale）を実験材料として、できるだけ多数のアルカロイドを得る。

2）小課題 2：他植物の成分探索

コンフリリー以外の植物（フキ、スイセンジナ、モミジガサ）よりアルカロイドサンプルを得る。

3）小課題 3：化学合成

フキノトウ等の食用植物に普遍的に含有されることが知られ、PAs の基本構造を有する Retronecine を大量に化学合成する。

4）小課題 4：誘導体合成

上記 1）、2）、3）で得た PAs について、過酸（メタクロロ過安息香酸）を用
いた化学反応により N-オキシド体を合成し、必要に応じて分析用標準サンプルとする。

（3）中課題３：ピロリジンアルカロイド類（PAs）分析法の予備検討

(1) アルカロイド含有確認法やアルカロイド総量の定量法の確立を行う。
(2) 中課題２の試験研究で得た PAs（標準試料）を LC-MS/MS に付し、スペクトルデータを取得する。
(3) 中課題２の試験研究で得た PAs（標準試料）が良好に分離分析可能な HPLC のカラムと溶媒等の条件を文献情報に基づいて検討する。最適化した分析条件で、PAs を LC-MS に付し、食用植物の実態調査への適用可能性について検討する。

3. 年次計画

<table>
<thead>
<tr>
<th>項目</th>
<th>平成２５年度</th>
<th>平成２６年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 文献調査</td>
<td>文献調査（千葉大学）</td>
<td></td>
</tr>
<tr>
<td>2. 分析用標準試薬の作製</td>
<td>コンフリーの成分探索（千葉大学）</td>
<td>他植物の成分探索（千葉大学）</td>
</tr>
<tr>
<td>(1) コンフリーの成分探索</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) 他植物の成分探索</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) 化学合成</td>
<td></td>
<td>化学合成（千葉大学）</td>
</tr>
<tr>
<td>(4) 誘導体合成</td>
<td>誘導体合成（千葉大学）</td>
<td></td>
</tr>
<tr>
<td>3. 分析法の予備検討</td>
<td>分析法の予備検討（千葉大学）</td>
<td></td>
</tr>
<tr>
<td>所要経費（合計）</td>
<td>9,000 千円</td>
<td>8,850 千円</td>
</tr>
</tbody>
</table>
4. 実施体制

<table>
<thead>
<tr>
<th>項目</th>
<th>担当研究機関</th>
<th>研究担当者</th>
<th>エフォート（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>研究総括者</td>
<td>千葉大学</td>
<td>高山 廣光</td>
<td>15</td>
</tr>
<tr>
<td>1. 文献調査</td>
<td>千葉大学</td>
<td>高山 廣光</td>
<td>前出</td>
</tr>
<tr>
<td>2. 分析用標準試薬の作製</td>
<td>千葉大学</td>
<td>北島 淑里子</td>
<td>20</td>
</tr>
<tr>
<td>（1）コンフリーの成分探索</td>
<td>北島 淑里子</td>
<td>北島 淑里子</td>
<td>前出</td>
</tr>
<tr>
<td>（2）他植物の成分探索</td>
<td>北島 淑里子</td>
<td>北島 淑里子</td>
<td>前出</td>
</tr>
<tr>
<td>（3）化学合成</td>
<td>小暮 紀行</td>
<td>小暮 紀行</td>
<td>25</td>
</tr>
<tr>
<td>（4）誘導体合成</td>
<td>小暮 紀行</td>
<td>小暮 紀行</td>
<td>前出</td>
</tr>
<tr>
<td>3. 分析法の予備検討</td>
<td>千葉大学</td>
<td>北島 淑里子</td>
<td>前出</td>
</tr>
</tbody>
</table>

研究担当者欄について、中課題担当者には○、小課題担当者には△を付すこと。
II. 研究実績報告
1. 中課題1：ビロリジンアルカロイド類(PAs)に関する文献調査
（1）成果の概要

<table>
<thead>
<tr>
<th>工程表</th>
<th>進捗状況・成果</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 天然物データベース (Dictionary of Natural Products)やSciFinderを活用して、PAsやPAsの含有が報告されている植物、含有濃度を網羅的に調査し、リストアップ。 (平成25年度)</td>
<td>Dictionary of Natural Products (最新版)やSciFinderを活用して、コンフリー、フキ、スイゼンジナ、モミジガサに関する文献を取得した。また、既知のPAsやPAsの含有が報告されている植物を調査した。※1 その結果、コンフリー (Symphytum officinale)、フキ (Petasites japonicus)から下記のようなPAが単離されていることがわかった（図1）。 コンフリー：Retronecine type 8種、 Heliotridine type 2種、他1種。 フキ：Otonesine type 3種、Petasinesine type 2種。※2 (平成25年度)</td>
</tr>
<tr>
<td>(2) PubMed、EFSA、英国MHRAの報告書等を利用して、各PAsの毒性や諸外国の取り組みに関すって調査。 (平成25年度)</td>
<td>タンデム質量分析を用いたPAs分析法及び毒性発現機構について最新の学術論文をもとに調査した。 (平成25年度)</td>
</tr>
<tr>
<td>(3) 該当する植物の植生地や栽培・流通などについて調査。 (平成25年度)</td>
<td>植物の植生地や栽培・流通などについては、農水省の資料を参考とした。</td>
</tr>
<tr>
<td>(4) 上記(1)〜(3)のデータに基づき、含有実態調査の対象すべきPAs、特に大環状型ジェステル体に重きを置き選定。 (平成25年度)</td>
<td>実際に成分分析を実施して得たPAsを標準試料とすることとした。 (平成25年度)</td>
</tr>
</tbody>
</table>

＜成果の概要の補足＞
※1：ビロリジンアルカロイド類のリスト（添付資料1）
<table>
<thead>
<tr>
<th>Retronecine type</th>
<th>Heliotridine type</th>
<th>Otonesine type</th>
<th>Petasinesine type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-Retronecine</td>
<td>Heliotridine</td>
<td>Otonesine</td>
<td>Petasinesine</td>
</tr>
</tbody>
</table>

(from *Symphytum officinale* (コンフリー))

Retronecine type

1. Symphytine \(^1\)

2. Echimidine \(^1\)

3. Symlandine \(^2\)

4. Lycopsamine \(^3\)

5. Intermedine \(^3\)

6. Symviridine \(^4\)

7. 7-Acetyllycosamine \(^3\)

8. 7-Acetylintermedine \(^3\)

Heliotridine type

- Echinatine \(^5\)

- Lasiocarpine \(^5\)

Other type

- Viridiflorine \(^5\)

2. 中課題2: ビロリンジンアルカロイド類 (PA) に分析用標準試薬の作製

(1) 成果の概要

<table>
<thead>
<tr>
<th>工程表</th>
<th>進捗状況・成果</th>
</tr>
</thead>
<tbody>
<tr>
<td>コンフリーの全草（地下部を含む）を採集（小課題1関連）。 (平成25年度)</td>
<td>コンフリーを千葉大学環境健康フィールド科学センターにて採集及び一部購入した。 (平成25年度)</td>
</tr>
<tr>
<td>MeOH 抽出、液々分配によるアルカロイド分画の作成、続くカラムクロマトグラフィーを用いた分離精製により、アルカロイドを取得（小課題1関連）。 (平成25、26年度)</td>
<td>コンフリー（全草、1.9 kg、dry weight）をMeOHにて抽出し、MeOHエキス (219.0 g) を得た。MeOHエキスを液液分配し、AcOEt抽出画分 (8.4 g)、粗塩基分画 (2.4 g)、n-BuOH抽出画分 (34.2 g) を得た (図1)。 ※1 (平成25年度)</td>
</tr>
<tr>
<td></td>
<td>粗塩基分画について LC-MS を行った。 ※2 (平成25年度)</td>
</tr>
<tr>
<td></td>
<td>粗塩基分画をSiO2カラム、amino-silica gelクロマトグラフィー、HPLC等に付すことによりこれまでに7種のPAを取得した (図2)。 ※3、4 (平成25年度)</td>
</tr>
<tr>
<td></td>
<td>さらに分離を続け、PA2種を取得した。 ※4 (平成26年度)</td>
</tr>
<tr>
<td>単離したアルカロイドの化学構造を、2次元NMR等のスペクトル類を用いた詳細な解析により決定（小課題1関連）。 (平成25、26年度)</td>
<td>得られた7種のPAの各種スペクトルの測定と解析を行った。その結果、4種がRetronesine typeの既知化合物 [Symphytine (1)、Echimidine (2)、Echimidine N-oxide (3)、Lycopsamine (4)] であり、その構造は文献値との比較により確認した（図3）。残る3種 [SO-3 (5)、SO-6 (6)、SO-8 (7)] については構造解析中である。 ※4、5（平成25年度）</td>
</tr>
<tr>
<td></td>
<td>平成26年度に得られた2種のPAは、新規PAであり SO-4 (8) と SOM-1 (9) と仮称した。 (図3) ※4（平成26年度）</td>
</tr>
</tbody>
</table>

8
コンフリート再度購入し、同様の操作でPAsの探索を行った。（小課題1関連）（平成26年度）

フキ、スイゼンジナ、モミジガサの取得（小課題2関連）。（平成25、26年度）

↓

MeOH抽出、液液分配によるアルカロイド分画の作成、続くカラムクロマトグラフィーを用いた分離精製により、アルカロイドを取得（小課題2関連）。（平成25、26年度）

4種の新規アルカロイド[SO-3(5), SO-6(6), SO-4(8), SO-8(7)]について、既知PAとNMRデータを詳細に解析することにより立体配置の可能性を示した。また、SOM-1についてNMRデータを解析することにより、相対配置を決定した。※5（平成26年度）

コンフリート（全草、4.34 kg、dry weight）をMeOHにて抽出し、MeOHエキス（424.6 g）を得た。MeOHエキスを液液分配し、AcOEt抽出画分（28.11 g）、粗塩基分画（2.77 g）、n-BuOH抽出画分（22.58 g）を得た（図5）。※6（平成26年度）

粗塩基分画をSiO2カラム、amino-silica gelクロマトグラフィー、HPLC等に付すことにによりこれまでに5種の既知PAを取得した（図6）。※7（平成26年度）

フキ：フキを千葉大学薬学部薬用植物園にて採集した（全草、6.8 kg、dry weight）。
スイゼンジナ：熊本県産スイゼンジナを入手した（自然乾燥後2 kg、4℃にて保存（現在972 g）。
モミジガサ（シドケ）：山形県産、秋田県産、宮城県産のモミジガサ（シドケ）をそれぞれ2 kg（wet weight）、1.2 kg（wet weight）、2 kg（wet weight）購入した。（平成25年度）

フキ：フキ（全草、6.8 kg、dry weight）をMeOHにて抽出し、MeOHエキスを得た。MeOHエキスをスキムに従って分配し、AcOEt抽出画分（20.6 g）、粗塩基分画（2.97 g）、n-BuOH抽出画分（90.9 g）を得た（図7）。粗塩基分画のうち97.8 mgを冷蔵保存した。※8
粗塩基分画について LC-MS を行った。※9（平成25年）
粗塩基分画（2.96 g）を SiO₂カラム、amino-silica gel クロマトグラフィー、HPLC に付し、4 種の PA を取得した（図8、9）。※10、11（平成25年度）

モミジガサ（シドケ）：取得した 3 種の植物についてそれぞれ MeOH 抽出を行った。
・山形県産モミジガサ 1920.27 g (wet weight) を MeOH にて抽出（8.0 L, rt 3 d; 7.0 L x 4 d; 6.0 L, reflux 8 h; 6.5 L, reflux 8 h）し、MeOH エキス 60.14 g (4℃ にて保存）を得た。
・秋田県産モミジガサ 191.56 g (dry weight) を MeOH にて抽出（3.0 L, rt 63 h; 2.3 L, rt 50.5 h; 2.5 L, reflux 8 h; 2.5 L, reflux 8 h）し、MeOH エキス 32.51 g (4℃ にて保存）を得た。（平成25年度）

上記の MeOH エキスをすべてまとめて、スキャームに従って分配し、AcOEt 抽出画分（32.18 g）、粗塩基分画（1.85 g）、n-BuOH 抽出画分を得た（図10）。※13
粗塩基分画（2.96 g）を SiO₂カラム、amino-silica gel クロマトグラフィー、HPLC に付し、詳細な成分探索を行い、2 種の化合物を単離した。PA の存在は確認できなかった（図11、12）。※14、15（平成26年度）
熊本県産スイセンジナ：全草 921 g（半乾燥）を MeOH にて抽出（9.5 L, rt 42 h, 8.9 L, rt 22.5 h, 6.3 L, reflux 8 h, 7.2 L, reflux 8 h）し，MeOH エキス 103.3 g を得た。MeOH エキスをスキームに従って分配し，AcOEt 抽出画分（24.6 g）、粗塩基分画（4.24 g）、n-BuOH 抽出画分を得た（10.9 g）（図 13）※ 1 6
粗塩基分画（4.18 g）を SiO2 カラム、amino-silica gel クロマトグラフィー、HPLC に付し，詳細な成分探索を行い，4 種の化合物を単離した。PA の存在は確認できなかった（図 14, 15）。※ 1 7, 1 8（平成 26 年度）

単離したアルカロイドの化学構造を，2 次元 NMR 等のスペクトル類を用いた詳細な解析により決定（小課題 2 関連）。（平成 25, 26 年度）

プキ：得られた 4 種の PA の各種スペクトルの測定と解析を行った。その結果，3 種が Otonesine type の既知化合物 [Neopetasitene (13), Petasitene (14), Senkirkine (15)] であることがわかり，その構造は文献値との比較により確認した（図 9）。また，詳細な NMR のアサンプをした。残る 1 種[PJ-4 (16)] は Otonesine type の新規化合物であることがわかった。本化合物については，スペクトル解析に加え，Petasitene (14)の加溶媒分解により得た化合物と一致したことから，その構造を立体化学も含めて決定した。（図 9）※ 1 1（平成 25 年度）

上記結果について第 5 回食品薬学シンポジウム（平成 25 年 11 月 1-2 日，京都大学）にて発表した。タイトル：プキ（Petasites japonicus）に含有されるビロリジンアルカロイド類の検索研究。優秀発表賞を受賞した。※ 1 2
PAsの基本構造を有するRetronecineの化学合成を検討し、Retronecineを大量に取得（小課題3関連）。（平成25、26年度）

Retronecineの誘導体を合成（小課題4関連）。（平成26年度）

取得したPAsのN-オキシド誘導体を合成小課題4関連）。（平成26年度）

(+)Retronecine (1)の合成をScheme 1〜4に従って検討した。（図16）※19（平成25、26年度）

Retronecineの全合成は達成できなかったが、天然物Loroquineの全合成を達成した。
※19（平成26年度）

N-オキシド体の合成を行うためには、取得したPAsの量が少なかった。

【追】PAsの安定性が疑われたため、PAsの安定性を確かめるために下記の実験を行った。和光純薬工業よりRetrorsineを購入し、CDCl3を溶媒としてNMR測定を行った。そのサンプルを溶液のまま冷蔵庫で7か月保管したが、分解は認められていない。
※20（平成26年度）

【追】PAの純度を確認するため、定量NMRを行った。和光純薬工業より購入した1,4-BTMSB-d4を内標準物質として用い、Senkirkineの純度測定を行ったところ、99.2%と算出した。※21（平成26年度）
＜成果の概要の補足＞

※1：図1 コンフリーの抽出・液液分配のスキーム

※2：コンフリーの粗塩基分画のLC-MS（添付資料2）
※3：図2 コンフリーの粗塩基分画、カラムの各フラクションのTLC

TLC ブレート：SiO₂
展開溶媒：10% MeOH/CHCl₃
検出：UV 254 nm（鉛筆書き）及びSchlittler発色

・粗塩基分画

・カラム（SiO₂ flashカラム φ 4.5 cm x h 8.0 cm, MeOH/CHCl₃ gradientにて分離）のフラクション

※4：図3 コンフリーから取得したピロリジンアルカロイド類

Symphytine

Echimidine

Echimidine N-oxide

Lycopsamine
<table>
<thead>
<tr>
<th>化合物</th>
<th>重量（mg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symphytine (1)</td>
<td>20.1 mg</td>
</tr>
<tr>
<td>Echimidine (2)</td>
<td>47.0 mg</td>
</tr>
<tr>
<td>Echimidine N-oxide (3)</td>
<td>2.3 mg</td>
</tr>
<tr>
<td>Lycopsamine (4)</td>
<td>1.6 mg</td>
</tr>
<tr>
<td>SO-3 (5)</td>
<td>3.2 mg</td>
</tr>
<tr>
<td>SO-6 (6)</td>
<td>7.0 mg</td>
</tr>
<tr>
<td>SO-8 (7)</td>
<td>10.2 mg</td>
</tr>
<tr>
<td>SO-4 (8)</td>
<td>1.6 mg</td>
</tr>
<tr>
<td>SOM-1 (9)</td>
<td>4.0 mg</td>
</tr>
</tbody>
</table>

添付資料 3 化合物 1-4 の NMR スペクトル
添付資料 4 化合物 1-3 の ESI-MS チャート

※5：新規 PAs[SO-3 (5), SO-6 (6), SO-4 (8), SO-8 (7), SOM-1 (9)] の立体配置解析

新規アルカロイド SO-3 (5), SO-6 (6), SO-4 (8), SO-8 (7), SOM-1 (9) について立体配置の解析を行った。これまでに単離報告されている PAs の 1H-NMR, 13C-NMR のケミカルシフトを詳細に解析し、予測を行った。SOM-1 (9) については、相対配置を決定した。
※6 図5 コンフリーの抽出・液液分配のスキューム（2回目）

※7 図6 コンフリーから取得したピロジジンアルカロイド類（2回目）
<table>
<thead>
<tr>
<th>Compound</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symphytine (1)</td>
<td>1.3 mg</td>
</tr>
<tr>
<td>Echimidine (2)</td>
<td>37.6 mg</td>
</tr>
<tr>
<td>Myoscorpine (10)</td>
<td>3.7 mg</td>
</tr>
<tr>
<td>Symlandine (11)</td>
<td>0.4 mg</td>
</tr>
<tr>
<td>7-Acetyllycopsamine (12)</td>
<td>14.0 mg</td>
</tr>
</tbody>
</table>

添付資料 5 : 化合物 10-12 の NMR チャート
添付資料 6 : 化合物 10-12 の ESI-MS チャート
※８：図7 フキの抽出・液液分配のスキーム

Petasites japonicus
Whole plant, 6.8 Kg (dry weight)

extracted with MeOH
(26.8 L, rt 4 d; 19.4 L, rt 1 d;
14 L, reflux 8 h; 17.8 L, reflux 8 h)

MeOH Extract
938.3 g

dissolved in 1 NH₂SO₄ aq. (2.9 L)
extracted with AcOEt (2.0 L)

AcOEt Layer

extracted with 1 NH₂SO₄ aq. (1.0 L)

aq. Layer
extracted with n-BuOH x 4 (total 8.0 L)

Crude Base
2.97 g

dissolved in 1 NH₂SO₄ aq. (2.9 L)
extracted with AcOEt (2.0 L)

AcOEt Layer
20.6 g

basified with conc. NH₃ (750 mL) (pH 9)
extracted with 5% MeOH/CHCl₃ x 3-4, (total 7.0 L)

n-BuOH Layer
90.9 g

aq. Layer

※９：フキの粗塩基分画のLC-MS（添付資料7）

※10：図8 フキの粗塩基分画、カラムの各フラクションのTLC

TLC プレート：SiO₂

展開溶媒：20% MeOH/CHCl₃

検出：UV 254 nm（鉛筆書き）及びSchlittler発色

・粗塩基分画
・カラム（SiO₂ flash カラム 4.6 cm x 9.0 cm, MeOH/CHCl₃ gradient にて分離）のフラクション

※11：図9 フキから取得したピロリンジンアルカロイド類

<table>
<thead>
<tr>
<th>化合物</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>ネオペタシテニン (13)</td>
<td>172.2 mg</td>
</tr>
<tr>
<td>ペタシテニン (14) (Fukinotoxine)</td>
<td>181.8 mg</td>
</tr>
<tr>
<td>センキルキン (15)</td>
<td>24.7 mg</td>
</tr>
<tr>
<td>PJ-4 (16)</td>
<td>2.7 mg</td>
</tr>
</tbody>
</table>

添付資料8 化合物13-16のNMRスペクトル
添付資料9 化合物13-16のESI-MSスペクトル
添付資料10 化合物13-16のHPLC分析
添付資料11 化合物13-16のLC-MS/MSスペクトル

※12：第5回食品薬学シンポジウムポスター（添付資料12）
※13: 図10 モミジガサの抽出・液液分配のスキーム

Parasenecio delphiniifolius
Whole plant, 5.5 Kg (wet weight)

extracted with MeOH
(r, 2 times; reflux, 2 times)

MeOH Extract
153.2 g

152.3 g
dissolved in 1 NH₄SO₄ aq. (1.0 L)
extracted with AcOEt (0.7 L)

AcOEt Layer
extracted with 1 NH₄SO₄ aq.
(0.8 L)

aq. Layer
basified with conc. NH₃ (pH 9)
extracted with 5% MeOH/CHCl₃
(4 times, total 8.0 L)

Crude Base
1.85 g
dissolved in 1 NH₄SO₄ aq. (1.0 L)
extracted with AcOEt (0.7 L)

AcOEt Layer
extracted with 1 NH₄SO₄ aq.
(0.8 L)

aq. Layer
extracted with n-BuOH
(3 times, total 2.8L)

n-BuOH Layer

※14: 図11 モミジガサの粗塩基分画、カラムの各フラクションのTLC

TLC プレート: SiO₂
検出: UV 254 nm（鉛筆書き）及び Anisaldehyde 発色（左 TLC）、Schlittler 発色（右 TLC）

・MeOH エキス (M)、粗塩基分画 (C)、カラム (SiO₂ flash カラム φ 3.0 cm x 8.0 cm, MeOH/CHCl₃ gradient にて分離) のフラクション Fr. 1-4

展開溶媒: 10% MeOH/CHCl₃
・粗塩基分画 (C), カラムのフラクション Fr. 6-8
展開溶媒: 20% MeOH/CHCl₃

・粗塩基分画の HPLC
Column : InertSil ODS-3 (GL Science) 5 μm (4.6 x 250 mm)
A 液 0.2 % aq. HCOOH
B 液 0.2 % HCOOH / MeOH
流速: 0.5 mL / min
カラムオープン: 30 ℃
Inject: 0.21mg / 20mL MeOH を 3μL inject

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>A (%)</th>
<th>B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>61</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>stop</td>
</tr>
</tbody>
</table>
compounds isolated from *Parasenecio delphiniifolius*
※16：図13 スイゼンジナの抽出・液液分配のスキーム

<table>
<thead>
<tr>
<th>Gynura bicolor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole plant, 921 g (dry weight)</td>
</tr>
<tr>
<td>extracted with MeOH</td>
</tr>
<tr>
<td>(9.5 L, rt, 42 h; 8.9 L, rt, 22.5 h; 6.3 L, reflux, 8 h; 7.2 L, reflux 8-9 h)</td>
</tr>
<tr>
<td>MeOH Extract</td>
</tr>
<tr>
<td>103.3 g</td>
</tr>
<tr>
<td>101.9 g</td>
</tr>
<tr>
<td>dissolved in 1 NH₂SO₄ aq. (810 mL)</td>
</tr>
<tr>
<td>extracted with AcOEt (830 mL)</td>
</tr>
<tr>
<td>AcOEt Layer</td>
</tr>
<tr>
<td>extracted with 1 NH₂SO₄ aq. (730 mL)</td>
</tr>
<tr>
<td>aq. Layer</td>
</tr>
<tr>
<td>AcOEt Layer</td>
</tr>
<tr>
<td>24.6 g</td>
</tr>
<tr>
<td>Crude Base</td>
</tr>
<tr>
<td>4.24 g</td>
</tr>
<tr>
<td>extracted with 5% MeOH/CHCl₃</td>
</tr>
<tr>
<td>(2.0 L x 3)</td>
</tr>
<tr>
<td>n-BuOH Layer</td>
</tr>
<tr>
<td>10.9 g</td>
</tr>
<tr>
<td>aq. Layer</td>
</tr>
<tr>
<td>extracted with n-BuOH</td>
</tr>
<tr>
<td>(800 mL x 3)</td>
</tr>
</tbody>
</table>

※17：図14 スイゼンジナの粗塩基分画、カラムの各フラクションのTLC

TLC プレート：SiO₂
検出：UV 254 nm（鉛筆書き）及びHanessian 発色

・粗塩基分画
展開溶媒：10% MeOH/CHCl₃
・カラム（SiO₂ flash カラム φ 4.5 cm x 8.0 cm, MeOH/CHCl₃ gradient にて分離）の
フラクション

Fr. 1-5 展開溶媒: 5% MeOH/CHCl₃

Fr. 6-10 展開溶媒: 10% MeOH/CHCl₃

Fr. 11-16, MeOH 回収（M） 展開溶媒: 20% MeOH/CHCl₃
※18：図15 スイゼンジナの分離スキームの一部と取得化合物

A, B, C…, 1, 2, 3…は分離フラクションの仮称を表す（低極性からA, B, C…）

HPLC 分離条件（Fr. 7B7B）

Column : Inertsil C18 (GL Science) 5 μm (10 x 250 mm)
A液 0.2 % aq. HCOOH
B液 acetonitrile
流速：1.0 mL/min
カラムオープン：30 ℃
Inject : 12.1 mg / 100 μL (MeOH)を 50 μL

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>A (%)</th>
<th>B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
ビロリジジン環構築を閉環メタセシス反応（RCM）で行うこととした（Scheme 1）。市販の（−）リンゴ酸を出発原料に既知ラクトム3を合成し、続いてBaylis–Hillman反応によって4を得た。4に対するRCMは進行しないことが既に報告されているので、反応性を高めるためにメチルエステル基を還元して、6の合成を試みたが目的物を得ることができなかった。メチルエステル基の還元には下記の条件を検討した（Table 1）。

またBaylis–Hillman反応は再現性がとれず4を大量供給できなかったため、本合成経路は困難であると判断した。

![Scheme 1](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>reductant</th>
<th>solvent</th>
<th>condition</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIBAL</td>
<td>THF</td>
<td>-70 ℃</td>
<td>complex mix.</td>
</tr>
<tr>
<td></td>
<td>8.0 eq.</td>
<td></td>
<td>30 min</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BH₃·</td>
<td>THF</td>
<td>-70 to 0 ℃</td>
<td>complex mix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 ℃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>LiAlH₄</td>
<td>THF</td>
<td>0 ℃</td>
<td>complex mix.</td>
</tr>
<tr>
<td></td>
<td>15 eq.</td>
<td></td>
<td>30 min</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>LiAlH₄</td>
<td>THF</td>
<td>0 ℃</td>
<td>complex mix.</td>
</tr>
<tr>
<td></td>
<td>8.0 eq.</td>
<td></td>
<td>1 h</td>
<td></td>
</tr>
</tbody>
</table>

Table 1
次に金触媒環化反応を用いたピロリジン環構築の検討を行った（Scheme 2）。
(R)-3-Pyrrolizinol (8)を出発原料に設定し、N-アルキル化、酸化の2工程で10へ導いた。
続いて位置選択的なシリルエノール化反応の検討を行った。種々条件検討を行った
(Table 2) が、所望のシリルエノールエーテル11は得られず、6位で脱プロトン化した
シリルエノール体を与える結果となった（Table 2）。

![Scheme 2](image)

Table 2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Si source</th>
<th>Base</th>
<th>solvent</th>
<th>condition</th>
<th>11</th>
<th>13</th>
<th>10 (S.M.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TIPSOTf</td>
<td>Et₂N</td>
<td>CH₂Cl₂</td>
<td>rt, 3.5 h</td>
<td>-</td>
<td>82%</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>TIPSCl</td>
<td>LDA</td>
<td>THF</td>
<td>-78 °C to 0 °C, 30 min</td>
<td>-</td>
<td>-</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>TIPSCl</td>
<td>KHMDS</td>
<td>toluene</td>
<td>-78 °C to 0 °C, 30 min</td>
<td>-</td>
<td>19%</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>TIPSCl</td>
<td>LDA</td>
<td>THF/toluene</td>
<td>-78 °C to 0 °C, 30 min</td>
<td>decomp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2
そこで6位プロトンの脱プロトン化を抑制することを目的に、6位に嵩高い置換基を導入した基質16を合成中間体に設定し、シリルエノールエーテル化反応を行うことを計画した（Scheme 3）。まず出発原料として1-L-酒石酸を用い、6工程で16を得た。続いて位置選択的なシリルエノール化反応の条件検討を行った（Table 3）、本基質でも所望の17は得られなかった。

Table 3

<table>
<thead>
<tr>
<th>Entry</th>
<th>TESCl</th>
<th>Base</th>
<th>Solvent</th>
<th>Condition</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0 eq.</td>
<td>LDA</td>
<td>THF</td>
<td>−78 ℃ to 0 ℃</td>
<td>N.R.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 eq.</td>
<td></td>
<td>30 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.0 eq.</td>
<td>LHMDS</td>
<td>THF</td>
<td>−78 ℃ to 0 ℃</td>
<td>N.R.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 eq.</td>
<td></td>
<td>30 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.0 eq.</td>
<td>KHMDS</td>
<td>toluene</td>
<td>−78 ℃ to 0 ℃</td>
<td>- 25%</td>
<td>7%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 eq.</td>
<td></td>
<td>30 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.0 eq.</td>
<td>KHMDS</td>
<td>toluene</td>
<td>−90 ℃ to 0 ℃</td>
<td>- 24%</td>
<td>5%</td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 eq.</td>
<td></td>
<td>30 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scheme 3

1) NH₂OH, xylen, reflux, 67%. 2) TESCl, imidazole, rt., 73%. 3) BH₃THF, THF, 70 ℃ to reflux, 68%. 4) Pd/C, H₂, EtOH, rt. 5) K₂CO₃, DMF, 70 ℃, 56% (2 steps). 6) (COCl)₂, DMSO, Et₅N, CH₂Cl₂, −78 ℃, 92%.
金触媒環化反応を用いた合成経路と並行して、Pd触媒エノラート環化反応を用いたピロリジン骨格構築を検討した（Scheme 4）。まず(R)-3-Pyrrolizinol (8)を出発原料に2工程で21を得、これを用いてPd触媒によるエノラート環化反応について検討した（Table 4）。現時点ではピロール化された環化体23、24を得るのみで目的物は得れていない。また得られたピロール23に対してTBS基の脱保護を行い、天然物であるLoroquine (25)へと導いた。

Scheme 4

a) 20, C₅H₅N, DMF, rt., 78%. b) (C₆H₅)₂,P, DMSO, Et₃N, CH₂Cl₂, -78°C, 86%. c) TASF, THF, rt., 79%

Table 4

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pd cat.</th>
<th>Et₃N</th>
<th>additive</th>
<th>solvent*</th>
<th>condition</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(PPh₃)₄</td>
<td>20 mol%</td>
<td>3.0 eq.</td>
<td>-</td>
<td>DMF</td>
<td>80 °C</td>
<td>-</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pd(PPh₃)₄</td>
<td>20 mol%</td>
<td>3.0 eq.</td>
<td>Na ascorbate</td>
<td>DMF</td>
<td>80 °C</td>
<td>-</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pd(PPh₃)₄</td>
<td>20 mol%</td>
<td>-</td>
<td>Na ascorbate</td>
<td>DMF/Et₃N</td>
<td>80 °C</td>
<td>-</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1 : 1)</td>
<td>18 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pd(PPh₃)₄</td>
<td>20 mol%</td>
<td>-</td>
<td>-</td>
<td>Et₃N</td>
<td>80 °C</td>
<td>-</td>
<td>45%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pd(OAc)₂</td>
<td>-</td>
<td>PPh₃</td>
<td>30 mol%</td>
<td>DMF/Et₃N</td>
<td>80 °C</td>
<td>-</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 mol%</td>
<td>(1 : 1)</td>
<td>9 h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 使用した溶媒は全て凍結脱気を行った。

Table 4

29
※20 添付資料13：Retrorcineの¹H-NMRデータと安定性の確認

※21 添付資料14：Senkirkine (15) の定量 NMRデータ

Senkirkine (15) の定量 NMR

Senkirkine 7.78 mg と 1,4-BTMSB·d₄ 0.66 mg を用いて NMR サンプルを調製し(CDCl₃溶媒)、NMR 測定をおこなった。その積分値を用いて、下記の式により純度を99.2％と算出した。

\[
P_{\text{sample}} = \frac{S_{\text{sample}}}{S_{\text{std}}} \times \frac{N_{\text{std}}}{N_{\text{sample}}} \times \frac{m_{\text{std}}}{m_{\text{sample}}} \times \frac{M_{\text{sample}}}{M_{\text{std}}} \times P_{\text{std}}
\]

\[
P_{\text{sample}} = \frac{1}{2.48} \times \frac{18}{1} \times \frac{0.66}{7.78} \times \frac{365.4}{226.5} \times 99.9 = 99.2\%
\]
3. 中課題3：ビロリジジンアルカロイド類（PAs）分析法の予備検討
(1) 成果の概要

<table>
<thead>
<tr>
<th>工程表</th>
<th>進捗状況・成果</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) アルカロイド含有確認法やアルカロイド総量の定量法の確立。（平成26年度）</td>
<td>アルカロイド含有を確認する発色試薬を文献に求めたところ、PA発色を目的に開発されたMattocks-Molyneux試薬の存在が明らかとなったので、実際のPA探索に用いた。（図1）※1（平成26年度）</td>
</tr>
</tbody>
</table>

(2) 中課題2の試験研究で得たPAs（標準試料）をLC-MS/MSに付し、スペクトルデータを取得。（平成26年度）

(3) 中課題2の試験研究で得たPAs（標準試料）が良好に分離分析可能なHPLCのカラムと溶媒の条件を、文献情報を参考に検討。（平成26年度）

最適化した分析条件で、PAsをLC-MS／MSに付し、食用植物の実態調査への適用可能性について検討。（平成26年度）

5種のPAs [Symphytine (1), Echimidine (2), Myoscorpine (10), Symlandine (11), 7-Acethyllycopsamine (12)] についてLC-MS/MSを行い、m/z 120のピークがPA含有の確認に有効であるという知見を得た。※2（平成26年度）

文献を参考に、逆相カラムとギ酸水溶液－MeOH溶媒系を用いた条件で分離を検討したが、良好な分析条件は得られなかった。※3（平成26年度）

最適化条件の確立には至っていない。
＜成果の概要の補足＞

※1：図1 PAsのTLC分析

A液：1% O-chloranil (tetrachloro-o-benzoquinone) / benzene溶液
B液：p-dimethylaminobenzaldehyde (2.0 g)の無水エタノール(100 mL)溶液
+ Boron trifluoride etherate (2.0 mL)
C液：10%無水酢酸 / benzene溶液
使用法：(1)A液をスプレーし、すぐホットプレートで加熱して乾かす。
(N-oxide体の場合はC液をスプレーする）
(2)B液をスプレーし、もう一度ホットプレートで加熱する。
PAsは紫色に発色する。

Symlandine (11)を含む同一のフラクションを異なる発色剤でTLC分析を行った。
（SiO₂プレート、展開溶媒：10% MeOH / CHCl₃）

![Hanessian 試薬]

Hanessian 試薬

Mattocks–Molyneux 試薬

左側から5mmの位置にスポットし、4 cm展開。（TLCプレートは約5 cm）
スポットの位置は展開位置から6 mmでRf値は0.15。

Mattocks–Molyneux 試薬はPAに特異的に発色することが確認された。

※2 添付資料15：化合物1, 2, 10-12のLC-MS/MSスペクトル
３．PAsのHPLC分析条件

Sample: Echimidine (2) をmainに含むフラクション
(Echimidine (2)を保管していただいたサンプル)

Column: Inertsil ODS-3 (GL Science) 3 μm (4.6 x 250 mm)

A 液 0.2 % aq. HCOOH
B 液 MeOH

流速: 0.3 mL / min

カラムオープン: 30 ℃

Inject: 21.7 mg / 3mL (MeOH) を3μL

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>A (%)</th>
<th>B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

7.5 min付近の大きなピークがEchimidine (2)のピークと推定される。
Ⅲ．主要な成果

1．成果の内容

1）ピロジジンアルカロイド(PAs)の取得と構造決定

コンフリー、フキより16種のピロジジンアルカロイドを取得し、そのうち12種について構造を決定した。さらに取得したPAsの各種スペクトルデータを収集し、代表的なピロジジンアルカロイドの同定を容易にした。

2．成果の活用

1）ピロジジンアルカロイド含有検査。

植物などにピロジジンアルカロイドが含有されているか否か、LC-MS/MSを用いることにより予測することができる。今後、HPLC分析条件などが検査されることにより、さらに含有検査の精度が上がると期待できる。

IV．論文、特許等の実績及び推進会議の開催状況等

学会発表

第5回食品薬学シンポジウム（平成25年11月1-2日、京都大学）

タイトル：フキ(Petasites japonicus)に含有されるピロジジンアルカロイド類の検索研究。優秀発表賞を受賞。

第108回日本食品衛生学会（平成26年12月3-6日、金沢）

タイトル：野菜や山菜に含まれるピロジジンアルカロイド類のリスク管理の必要性に関する考察

推進会議

平成25年6月14日

平成25年度レギュラトリーサイエンス新技術開発事業第1回研究推進会議

平成26年2月19日

平成25年度レギュラトリーサイエンス新技術開発事業第2回研究推進会議

平成26年6月4日

平成26年度レギュラトリーサイエンス新技術開発事業第1回研究推進会議

平成27年3月5日

平成26年度レギュラトリーサイエンス新技術開発事業第2回研究推進会議

34
論文、特許等の実績等

<table>
<thead>
<tr>
<th>学術論文</th>
<th>タイトル、著者名、学会誌名、巻、ページ、発行年月</th>
<th>機関名</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>口頭発表</th>
<th>タイトル、発表者名、学会等名、発表年月</th>
<th>機関名</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>出版図書</th>
</tr>
</thead>
<tbody>
<tr>
<td>区分：①出版書、②雑誌、③年報、④広報誌、⑤その他</td>
</tr>
<tr>
<td>区分</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>発明者</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>特許権等の名称</td>
</tr>
<tr>
<td>取得年月日</td>
</tr>
<tr>
<td>番号</td>
</tr>
</tbody>
</table>

(6) 國際特許権等

<table>
<thead>
<tr>
<th>発明者</th>
<th>権利者</th>
</tr>
</thead>
<tbody>
<tr>
<td>特許権等の名称</td>
<td>特許権等の種類</td>
</tr>
<tr>
<td>取得年月日</td>
<td>出願年月日</td>
</tr>
<tr>
<td>番号</td>
<td>番号</td>
</tr>
</tbody>
</table>