Ⅲ 調査の内容

○ 関門総合調査は、短期間調査、千渥浄化機能調査、流動解析等調査の3つの調査から成っています。
○ 調査は、学識経験者からなる関門総合調査運営会議**1の指導・助言を得ながら行いました。

① 短期間調査
○ 諾早駅下水での調整池に海水を1ヶ月程度導入し、調整池、海岸などの環境の変化を観測

② 千渥浄化機能調査
○ 諾早駅に似ているumphるその千渥において、1年間の四季を通じた現地調査などを行うとともに、泥質千渥での塩素の物質の循環をコンピュータで解析し、諾早千渥の水質浄化機能を推定

③ 流動解析等調査
○ 短期間調査及び千渥浄化機能調査により得られた情報も活用し、潮流等の推定についての有明海全体の流れ、水質などの状況をコンピュータで解析し、諾早駅下水事業による有明海の流れ、水質、底質などへの影響を検討

関門総合調査

データの活用

千渥浄化機能調査
○ 現在の潮汐千渥での現地調査など
○ コンピュータでの解析による諾早千渥の浄化機能の推定

短期間調査
○ 海水を調整池に導入して水質、流動などの変化を観察

流動解析等調査
○ コンピュータでの解析等による流動、水質などの変化の推定

「見解」に示された有明海の環境変化の諸事象について検討
○ 水質浄化機能の変化と負荷の増大
○ 流動の変化（潮位、流速、流向）
○ 次酸素水塊の発生
○ 諾早駅の底質の変化

有明海で実施されている他の各種調査結果と併せて、有明海の環境改善の方策を総合的に検討・実施

- 7 -
【開門総合調査の流れ】

13年度 / 14年度 / 15年度

短期開門調査

関門調査の現地観測
関門調査
現地観測データの収集

関門調査結果の整理取りまとめ

観水調査（泥質干渕におけるプランクトン等の調査）
実験室での調査（二枚貝の堆積物等の調査）

泥質干渕の干渕生態系モデルの構築

流動解析等調査

有明海海域環境調査（国土総合開発事業調査等）の
数値シミュレーションモデル

シミュレーションモデルの構築・検証

貧酸素現象調査

各調査結果について総合的な考察・検討

関門総合調査運営会議

早速干拓事業と有明海の流動、水質等の環境変化との関係
IV 調査の結果

1. 流動

できる等第三者的委員会などの「見解」では、有明海の流動（潮位、流速、流向）について、「（潮位差の）経路による流速の変化は必ずしも明確ではないが、潮位差の減少という有明海全体の問題に経路が大きく影響していることは否めない。」と指摘されました。

開門総合調査では、国土総合開発事業調整費調査で関係4省庁が作成したコンピュータ解析モデルの精度を短期開門調査のデータにより確認したうえで、そのモデルを利用し、流動を計算し、これまでの観測データともあわせて、潮受堤防の影響について検討したところ、次のような結果が得られました。

①潮位の計算では、潮受堤防が有る場合の大潮位（大潮時の大潮位と干潮位の差）は、潮受堤防が無い場合より年平均で0.8〜1.5%小さくなりましたが。
②潮位の観測データでは、潮受堤防工事の前後で明かな変化はみられませんでした。
③潮流（流速や流向）の計算では、潮受堤防の影響は諏訪湾周辺海域にとどまっていました。

潮受堤防の経路は、諏訪湾外の流動に対する主要な影響要因とはなっていないと考えられます。

① 潮受堤防による有明海の大潮差への影響（コンピュータ解析による）
② 有明海連奥（大浦）の年平均潮差*1の推移（潮位の観測データによる）

*1 年平均潮差：満潮位と干潮位の差（潮差）の年平均値
*2 指数：昭和45年～平成13年の平均値を100としたときの各年の値

③ 潮吸堤防による有明海連奥の潮流への影響（コンピュータ解析による）

（大潮下げ潮時、平成12年1月）

潮流への影響は兼早湾周辺海域にとどまっていた
2. 水質

ノリ不作等第三者委員会による「見解」では、有明海の水質について、「失われた浄化機能はかなり大きいものと考えられる。浄化機能が失われれば当然河川からの流入負荷が海域に入れる割合が増え、したがって海域への負荷は増大したことになる。」と指摘されました。

開門総合調査では、佐賀県沖の泥質の干潟において、現地調査や室内試験を行い、調査干溝の水質浄化機能を推定するとともに、有明海の水質をコンピュータによって計算し、これまでの観測データとあわせて、潮位埋防の影響を検討したところ、次のような結果が得られました。

①潮位埋防の内側の水質浄化機能は、1日あたりの窒素量で0.38トン（1m²あたり10.6mg）となりました。これは、調整池流域から流入する窒素量の約36％、有明海に流入する窒素量の約0.5％にあたります。
②水質の計算では、潮位埋防が有る場合と無い場合で、全窒素などの水質について、調査干溝外では有意な差がみられませんでした。
③潮位埋防調査や公共用水域水質測定の観測データでは、潮位埋防の締め付け起因すると考えられるような水質の変化はみられませんでした。

潮位埋防の締め付けは、調査干溝外の水質に対する主要な影響要因とはなっていないと考えられます。

① 調査干溝の水質浄化機能の推定
（佐賀県沖の泥質の干溝の現地調査、室内試験とコンピュータ解析などによる）

1日あたりの窒素の平均浄化量は0.38トン
（1m²あたり10.6mg）

これは、現在の調整池流域から流入する窒素量の約36％、有明海に流入する窒素量の約0.5％に相当

調査干溝の状態（潮位埋防の設置前）
2 潮受堤防による有明海の水質への影響（コンピュータ解析による）

全窒素（T-N）（平成12年平均、単位ng/L）

諫早湾外に有意な差はみられない

3 有明海の水質の推移（観測データによる）

平成2～5年度平均（潮受け堤防の設置前）より平成9～13年度平均（潮受け堤防の設置後）の方が低い

注）有明海東口の平成2～5年度は観測データがなく未表示
3. 貧酸素現象

ノリ不作等第三者委員会による「解説」では、有明海における貧酸素水塊の発生について、「排水門から河川にかつか間歇的に放出される淡水が密度差をつくり、成層形成を助けている。」と指摘されました。

閉門総合調査では、観測データや、コンピュータ解析により贫酸素現象について検討したところ、次のようなる結果が得られました。

① 調整池からの排水の影響は、篠早湾湾奥と一部湾央でみられましたが、塩分が低下した時間は短く、その影響は篠早湾湾口まで及んでいませんでした。
また、調整池からの排水がない時期にも、塩分躍層がみられました。
② コンピュータ解析により、有明海湾奥の低塩分水が篠早湾湾口に達する状況が再現されました。
③ 観測データ（浅海定線調査）によると、佐賀県沖で1970年代から貧酸素現象が観測されています。

○ 調整池からの排水は、有明海の広範囲かつ継続的な塩分躍層の形成には、主要な影響要因とはなっていないと考えられます。
○ 潮受堤防の築造は、佐賀県内の貧酸素現象の影響要因とはなっていないと考えられます。

(1) 調整池からの排水による篠早湾表層の塩分への影響（観測データによる）
② 有明海表層の塩分の分布状況（コンピュータ解析による）
平成13年7月11日～13日にかけて約200mmの降雨があった後、有明海海域の低塩分水が、諫早湾湾口に達する状況がみられました。図は7月16日の計算結果です。

③ 佐賀県沖の酸素飽和度*3の変化（海底上1mの観測データによる）
酸素飽和度*340%以下の貧酸素現象が過去からみられる

*1 貧酸素現象：水中の酸素濃度が低下する現象で、以下に、なぜこの現象が起こるかを示した。

水が風や潮汐により混合している場合には、貧酸素現象は生じない。

・低塩分や高温の軽い水が、上にのると、もとの水との間で密度が異なった層（躍層）ができる。
・塩分による密度差による場合の塩分躍層、温度による場合を温度躍層という。
・躍層ができると、躍層の上層の水と下層の水は混じりにくくなり、下の層に貧酸素現象が起きやすくなる。

*2 塩分躍層 : 上記の説明参照
*3 酸素飽和度 : 海水中の酸素量／その海水に溶けうる酸素量×100

-14-
4. 底質

ノリ不作等第三者委員会による「見解」では、篤早湾の底質について、「緑肥堤防前面海域に浮泥が溜まり、底質が細粒化していると言われる。これは干拓事業の事前の環境影響評価で、流速の低下に伴って起こると予測されていたことでもある。」と指摘されました。

関門総合調査では、コンピュータ解析と観測データにより篤早湾と周辺海域の底質について検討したところ、次のような結果が得られました。
①コンピュータによる解析では、潮受堤防が有る場合には、篤早湾の湾口の一部で細粒化の傾向がみられましたが、その他の篤早湾内や湾外では細粒化の傾向はみられませんでした。
②環境モニタリングによる観測データからは、篤早湾の湾口付近の底質の粒度について、一定の変化傾向はみられませんでした。

○コンピュータによる解析では、篤早湾湾口の一部で潮受堤防により底質が細粒化する傾向がみられましたが、観測データからは、湾口付近の底質の粒度について一定の変化傾向はみられませんでした。

○潮受堤防による篤早湾底質の粒度への影響（コンピュータ解析による）

冬季**1

夏季**2

* 1 冬季: 平成13年1月1日～1月31日
* 2 夏季: 平成13年7月15日～8月14日
* 3 Md: φ (中央粒径値):
底質に大いな大きさの粒子が混在しているため中央値（それより大きい粒子と小さい粒子の重量が同一となる直径）で表し、Md (Median diameter) と示す。
φは底質の泥や砂の大きさを示す単位で、φと粒子の直径との関係は、

泥や砂の直径 (mm) = \(\frac{1}{2^{\phi}} \)

となる。\(\phi = 4 \)のとき、直径は1/16 = 0.0625 mm となる。