Joint FAO/WHO Expert meeting on Microbiological Risk Assessment

PANPILAD SAIKAEW, PROJECT COORDINATOR, FAORAP

REGIONAL TRAINING WORKSHOP

ENHANCING EFFECTIVE PARTICIPATION IN CODEX ACTIVITIES: DEVELOPING SCIENCE-BASED NATIONAL POSITIONS AND CONTRIBUTING SCIENTIFIC DATA TO THE CODEX STANDARD-SETTING ACTIVITIES

5-7 DECEMBER 2018, TOKYO, JAPAN
The main principles of developing scientific advice

Excellence
Use of internationally recognized expertise, supported by the creation of a platform for global scientific discussions based on best practices in elaborating guidance.

Independence
Experts contribute in their own capacity and not on behalf of a government or institution; they are required to declare possible conflicts of interest.

Transparency
Procedures and methods to ensure all interested parties understand the processes for the development of scientific advice and have access to the reports, safety assessments and evaluations, and other basic information.

Universality
A broad base of scientific data is critical for the elaboration of international standards-setting activities. Therefore, institutions and all interested parties throughout the world are invited to make data available. It should be noted that in support of this principle, one of the objectives of the Codex Strategic Plan 2014 — 2019 is to “Increase scientific input from developing countries.”
General process for the provision of scientific advice by FAO/WHO Expert Bodies

1. **Codex Alimentarius**
2. **Observers** (e.g. NGO, company)
3. **Guidelines / Working principles**
4. **Results & Publication**
5. **Member countries**
6. **Issues & priority**
7. **Call for data** (FAO/WHO Secretariat)
8. **FAO/WHO expert meeting**
9. **Roster of Experts**
10. **Call for experts** (FAO/WHO Secretariat)
The Joint FAO/WHO Expert meeting on Microbiological Risk Assessment has been established in order to

- provide scientific advice on microbiological issues to Codex, and FAO and WHO member countries;
- address specific microbiological risk assessment questions from Codex committees (mainly the Codex Committee on Food Hygiene);
- develop “adaptable” risk assessments and data resources for countries to use in conducting their risk assessments.
History of JEMRA

1991: Joint FAO/WHO Conference on Food Standards, Chemicals in Foods and Food trade

1995: Joint FAO/WHO Expert Consultation on the application of Risk Analysis to Food Standards

1997: Codex request FAO/WHO to establish an advisory body on microbial hazards in foods

1999: CCFH suggested that FAO and WHO convene ad hoc expert consultations to provide advice on MRA

2000: Codex activities Adoption of Codex Principles and Guidelines for MRA

FAO/WHO Expert Cons. on MRA

JEMRA
Assessing the risk associated with foodborne pathogens

Developing guidelines on how to assess risks

Developing risk assessment tools

Providing guidance on data generation and access to relevant data

Providing guidance on application of risk assessment
The activities of JEMRA

1. Risk Assessments
 Generate scientific information of quantitative risk assessments of specific pathogen-commodity combinations as the basis for scientific advice to Codex and member countries.

2. Guideline documents
 Develop guidelines to help the risk assessors do a risk assessment and the risk managers and other interested parties to understand the principles and science behind the risk assessment steps.

3. Data collection and generation
 Identify the types and characteristics of data that can be used in MRA.

4. Information and technology transfer
 - Make all JEMRA information available to all stakeholders such as national governments, risk managers, Codex
 - Basic Awareness Course on MRA

5. Application of risk assessment in risk management:
 A further aim of JEMRA is to provide guidance on how risk assessment can be effectively used by risk managers as a decision support tool.

Microbiological risk assessment

Hazard identification
- Is there a problem?
- What is it: pathogen? associated food?

Hazard characterization
- What happen when pathogen is ingested?
- How likely people get sick after the exposure to the contamination food at the given dose?
- Establish Dose Response

Exposure assessment
- How likely the food is contaminated??
- How many pathogens are likely to be in the food when you consume it?
- How much and How often the contaminated food is consumed.

Risk characterization
- What are the nature and likelihood of the health risk? / How likely the adverse health effect?
- Who is likely to become ill ? How many?
- What are the sources of variability and uncertainty in the information uses?
- Advice to find effective interventions.
Microbiological hazards vs chemical hazards

<table>
<thead>
<tr>
<th>Microbiological hazards:</th>
<th>Chemical hazards:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Usually acute effect</td>
<td>• Usually cumulative effect</td>
</tr>
<tr>
<td>• Single exposure</td>
<td>• Multiple exposures</td>
</tr>
<tr>
<td>• Pathogen/commodity combination</td>
<td>• One chemical - many foods</td>
</tr>
<tr>
<td>• Living hazards - numbers can change up or down</td>
<td>• Toxic levels stable or decrease during storage</td>
</tr>
<tr>
<td>• Dynamic and adaptable - different characteristics & variable response</td>
<td>• Processing has minimal effect</td>
</tr>
<tr>
<td>• Difficult to define acceptable levels</td>
<td>• Acceptable levels defined for many chemical hazards</td>
</tr>
</tbody>
</table>
Examples of outcomes of MRAs

1. The chance of a person falling ill by consuming a food
2. The estimated number of cases of a certain illness (e.g. per 100 000 per year in a country) due to consumption of a specific food
3. The relative risk posed by a pathogen in different food products or uses
4. Risk estimates for different processing, distribution and consumer use conditions and risk reduction scenarios
Example of Risk characterisation

It is estimated that c. 30 cases of listeriosis per year in the USA (280 million inhabitants) are caused by eating cold frankfurters
Pathogen-commodity risk assessment

- Shiga toxin-producing *Escherichia coli* (STEC) and food: attribution, characterization and monitoring
- Microbiological safety of foods for malnourished populations
- Microbiological hazards associated with fresh produce
- Viruses in foods
- Enterohaemorrhagic *Escherichia coli* (EHEC) in meat and meat products
- *Salmonella* in eggs and broiler chickens
- *Listeria monocytogenes* in ready-to-eat foods
- *Vibrio* spp. In seafoods
- *Campylobacter* spp. In broiler chickens
- *Enterobacter sakazakii* and other micro-organisms in powdered infant formula
- Foodborne parasites

Guidelines

Codex has developed Principles and Guidelines for the conduct of Microbiological Risk Assessment (1999). To complement and supplement these following guidelines FAO/WHO are developing guidelines on each of the components of the risk assessment process.

- Hazard characterization
- Exposure assessment
- Risk characterization
- Using microbiological risk assessment in risk management (in the process of development)
Merci
¡Gracias
Thank You
谢谢
Спасибо
شكرا