Overview of estimation of intake (Deterministic and probabilistic estimation)

#### Outline

- Estimation of dietary intake
  - Deterministic and probabilistic estimation
  - Long-term (chronic) intake
  - Shor-term (acute) intake
  - Uncertainty analysis
- Comparison of the estimated intake with toxicological reference values
- Recent topics: TTC approach
- Exercise 4: Calculation of dietary exposure by point estimates

4 steps of risk assessment in food safety Occurrence Food Hazard data consumption identification (concentration data Hazard characterization **Exposure** (health-based assessment guidance values) Risk characterization (risk estimates)

### Necessity of estimating dietary intake

- The concept "only the dose makes the poison"
- A magnitude of risk from ingesting a hazard via food may increase or decrease depending on:
  - Concentration of a hazard in food; and
  - Consumption volume of a food containing the hazard
- Health-based guidance values (e.g. PTDI) do not indicate a magnitude of risk
  - Even if the PTDI is extremely low for a hazard, risk from this hazard may be negligible if the hazard is contained only in foods not frequently consumed in significant amount.

# Use of information obtained from estimated dietary intake

- Qualitative and/or quantitative information on health risks to consumers can be used for the following:
  - Prioritizing hazards
  - Considering necessity of risk management options
    - → Preliminary estimation of risk
    - This usually results in over-estimate
  - Verifying effectiveness of implemented measures
    - Comparison of the dietary intake based on occurrence data before and after implementation of code of practice
  - Checking appropriateness of maximum levels
    - Ensuring the protection of consumers' health



# General equation for estimating dietary intake

Σ (Concentration of chemical in food × Food consumption)

Dietary intake (exposure)

Body weight (kg)

- Estimation of dietary intake should cover
  - the general population; and
  - critical groups that are vulnerable or are expected to have significantly different exposures (e.g. infants, children, pregnant women)

## Data required for estimation of dietary intake

- Essential data
  - Concentration of a hazard in foods
  - Food consumption data
    - → information on body weight, age, gender
- Desirable data for refinement
  - > Concentration in edible portion
  - Effect of processing (e.g. heating, hydrolysis) on concentration
  - Frequency of food consumption
  - (At national level,) information on the amount of use and percentage of crops/foods treated for chemicals such as pesticides and food additives

### Variables in exposure assessment

- Concentration of chemicals in foods
- Amount and frequency of food consumption
  - > may be different among countries/regions

As a result, estimated dietary intake may be different among countries and regions

- Health-based guidance values (e.g. PTDI) or toxicological Point of Departure (e.g. BMDL)
  - values established by relevant international organizations such as JECFA can be used in the absence of national risk assessment

# Deterministic (point) estimation of dietary intake

- Provides a single value that describes some parameter of consumer exposure
- Advantages/characteristics:
  - Easy, not expensive, not time consuming
  - Many data points are not necessary
  - Assuming the average or worst-case exposure of a population
- Limitations:
  - No information on
    - distribution of consumer exposure
    - high-end exposure

1

## Probabilistic estimation of dietary intake

- Provides distribution of consumer exposures
- Advantages/characteristics:
  - Show the information on
    - high-percentile exposure
    - → eaters only vs whole population
  - Model the distribution of hazard concentrations
  - Use food consumption data for each individual
  - Use Monte Carlo simulation
- Limitations:
  - Requires extensive data (Occurrence and food consumption)
  - Requires PC and software



#### Total diet study

- Provides the average long-term dietary intake of chemicals in foods actually ingested by a population
- Fit for screening for purposes to identify the major food groups, contributing to dietary intake of chemicals, for further surveillance
- Advantages/characteristics:
  - > A kind of point estimate
  - Based on the data on individual foods or food group composites
  - Can be implemented on a regional basis
  - Analyze after preparation for consumption

→ reflect the situation as consumed

### Two types of total diet study (TDS)

- 'Market basket survey'
  - provides average exposure for a population
  - is used to estimate food groups that may make a significant contribution to dietary intake
  - is not appropriate for
    - a population without consumption data for food groups
    - a chemical present inhomogeneously in a lot
- 'Duplicate portion study'
  - provides exposure from the same diet 'as consumed' by an individual in one day
  - may be used in case of urgency
  - does not identify food groups that may make a significant contribution to dietary intake

### Market basket survey

- Major steps in "market basket survey" are:
  - To define the population of interest (infants, children, adults, elderly)
  - To identify the core foods using national consumption surveys and estimate their intake by the different populations of interest
  - To sample the selected foods, prepare them "as usually consumed by the population" (i.e. prepared and cooked by the average consumer) and pool relevant food groups
  - To analyze pooled samples for the selected contaminants
  - To multiply consumption data and the analytical data to estimate exposure to the contaminants

(Pennington and Hernandez 2002; Egan et al. 2007, Sirot et al 2009)

### Examples of procedure for market basket survey

- Select representative foods for analysis
  - based on food consumption data to represent national typical diet
- Purchase food samples
  - In principle, for all food groups
  - considering the seasonal and regional variation

(examples of food groups)











## Examples of procedure for market basket survey (for each food group)

- Preparation and grinding
- For each food, grind after cooking as necessary (Example)









Spinach Weighing, blending and homogenizing







Analyze the pooled samples

### Food groups for TDS

As food consumption patterns vary across counties, food grouping for total diet study may be different

#### (Example of Japan)

- Uses 17 food groups and 1 group (drinking water)
- 17 groups >> 31 sub-groups >> 98 items
  - e.g. wheat and wheat products

e.g. wheat floor; breads; noodles; pasta;

- e.g. cereals and cereal products based on the Japan's National Health and Nutrition
  - Survey (annually conducted by MHLW) classification for nutritional purposes
  - may not appropriate for the estimation of dietary exposure of contaminants

### Analysis of the result

- For a target population (region, gender/age group),
- A) Estimation of the intake from each food group
  - analytical result multiplied by consumption data divided by body weight of the population
- B) Estimation of the total intake by summing of the intake from each food group
- Estimation of the contribution of a food group to the total intake (the above A) divided by B))
- Some points for consideration
  - Values below LOD and LOQ in estimating mean occurrence (lower- and upper-bound approach)
  - Potential bias in population coverage in the consumption survey

# Estimation of chronic (long-term) and acute (short-term) dietary intake

|                                      | long-term intake                                      | short-term intake              |  |
|--------------------------------------|-------------------------------------------------------|--------------------------------|--|
| Period                               | Lifetime                                              | One day                        |  |
| chemical conc. in food               | average/median                                        | high percentile                |  |
| Food<br>consumption<br>Data          | average/median or high percentile of whole population | High percentile of eaters only |  |
| Target food                          | All the foods                                         | Individual food                |  |
| Tox reference values to compare with | PTDI, BMDL etc.                                       | ARfD                           |  |
| values to                            | PTDI, BMDL etc.                                       | ARfD                           |  |

### Acute dietary exposure assessment

- Some substances could give rise to acute health effects in relation to short periods of intake
- JECFA and JMPR set an acute reference dose (ARfD) for such substances
- For pesticide residues, JMPR calculates the Internationally Estimated Short-term Daily Intake (IESTI) using:
  - 97.5<sup>th</sup> percentile consumption of food (eaters only) with
  - potentially highest concentration
- compare the IESTI with ARfD (general population, children <6 yr or women of child bearing age)</li>

20

### Acute dietary exposure assessment

- Several types of IESTI equations used by the JMPR depending on the unit size of a commodity
  - Case 1: unit weight < 25 g
  - Case 2: unit weight > 25 g
  - Case 3: processed commodity, bulked or blended

IESTI (mg/kg bw) = highest large portion (97.5<sup>th</sup> percentile of eaters) of the commodity (kg food per day)  $\times$  median residue in a composite sample of edible portion (mg/kg) / mean body weight associated with the population for which the large portion was used (kg bw)

- For contaminants, JECFA set the group ARfD for deoxynivalenol (DON) and its acetylated metabolites
- High contribution of wheat to dietary intake of DON
  - > The equation for the above Case 3 can be used

### Whole population v.s. Eaters only

- Consumption data for the whole population of a food
  - include the consumption amount of "eaters" as well as "non-eaters" of that food
  - will generally be lower than the "eaters only" amount (i.e., the amount of food consumed only by those individuals who actually consumed the food)
- Consumption data for the "eaters only" of a food
  - used to estimate "worst-case" dietary exposure for high consumers
- Check whether the consumption data to be used are based on "whole population" or "eaters only"

22

## Uncertainty analysis in dietary exposure assessment

- Every dietary exposure assessment is associated with scientific uncertainties, which needs to be taken into account by risk managers
- Each uncertainty may be analyzed at one of 3 tiers: qualitative, deterministic or probabilistic
- Can be used to identify data gaps
- Procedure for qualitative analysis
  - 1. Identify sources and nature of uncertainty
  - Give some indication of the direction (over- or under- estimate) and magnitude (high, medium, low) of each uncertainty on the assessment outcome
  - Estimate the overall effect of the uncertainties

## Uncertainty analysis in dietary exposure assessment

| 3.55500110110     |           |                                                                                              |  |
|-------------------|-----------|----------------------------------------------------------------------------------------------|--|
| sources           |           | examples                                                                                     |  |
| Exposure scenario |           | <ul><li>target population •target chemical</li><li>target food(s) or food group(s)</li></ul> |  |
| Exposu            | ire model | •formula for calculation • (for probabilistic approach,) fitted distributional curve         |  |
| Conc. o           |           | *sampling method                                                                             |  |
| Model<br>inputs   | consump   | (For dietary survey)  ·method ·age ·No. of respondents  ·survey period (and frequency)       |  |
|                   | others    | ·body weight ·effect of processing/cooking ·types and amounts of raw ingredients             |  |

Comparison of the estimated dietary intake with toxicological reference values

### Type of carcinogens

- Substances that induce cancer in experimental animals by non-genotoxic mechanisms
  - → Considered to "have a threshold"
  - → health-based guidance values can be established
- Substances that are both genotoxic and carcinogenic
  - → generally considered to "have no threshold"
  - → health-based guidance values cannot be established
  - → Introduction of BMD, MOE approach, which provides a qualitative description of a possible prioritization of risks

25

### Estimation of P(M)TDI

 No-observed-adverse-effect-level (NOAEL) or no-observed-effect-level (NOEL)

Safety factor (usually 100)
intra-species (10)
x
inter-species (10)

■ P(M)TDI

> permissible human exposure as a result of the natural occurrence of the substance in food

Instead of P(M)TDI, PTWI or PTMI is established depending on the properties of contaminants

#### BMD: Benchmark Dose **BMD** Estimated from dose-response models of data a dose producing a low but measurable adverse response, corresponding to a specified change in effect (generally 1-10%) over background **BMDL** Lower bound 95 % confider limit of BMD accounts for the uncertainty in the data Enables determination of toxicological reference values for

### Margin of exposure (MOE) approach

- MOE = the dose causing a low but defined incidence of cancer (e.g. BMDL<sub>10</sub>) / estimated human exposure
- MOE approach
  - provides advice to risk managers of how close estimates of human exposures are to those that produce a measurable effect in laboratory animals or humans
  - is used for both genotoxic carcinogens and nongenotoxic chemicals for which the database is not sufficient to set health-based guidance values
  - can be used for prioritizing chemical hazards for risk management actions

### Implication of MOE

- For substances that are genotoxic and carcinogenic
  - MOE of 10,000 or higher (if it is based on the BMDL<sub>10</sub> from an animal carcinogenicity study)
  - → low concern for public health

a substance without threshold

- considered as a low priority for risk management actions
- For substances that are not genotoxic
  - ➤ MOE of 100 or higher
  - → low concern for public health
- MOE only indicates a level of concern and does not quantify risk



# Threshold of Toxicological Concern (TTC) approach

- The concept of TTC comes from "only the dose makes a poison"
- TTC approach
  - is a pragmatic screening and prioritization tool for the safety assessment of chemicals of unknown toxicity when the chemical structure is known and human exposure can be estimated
  - uses threshold values that represent life-long human exposure >> classified into 3 classes depending on chemical structure
    - Exposure below the corresponding threshold values is considered of low probability of adverse health effects
  - Enables efficient use of available resources

### Establishment of TTC Value

- Division of a database of 613 chemicals into the three classes developed by Cramer et al. 1978
- Threshold values are calculated from the distribution of NOELs for each of the three classes (Munro et al, 1996)

| Class I   | Chemicals of simple structure, with efficient mode of metabolism suggesting low oral toxicity                              |
|-----------|----------------------------------------------------------------------------------------------------------------------------|
| Class II  | Chemicals with structures less innocuous than Cramer Class I but without features suggesting significant toxicity          |
| Class III | Chemicals with structures suggesting significant toxicity or which did not permit any strong initial presumption of safety |

### Summary

- Estimation of dietary intake
  - is an essential element for quantifying health risk
  - is used for prioritizing hazards, determining the necessity of risk management options, and verifying the effectiveness of the measures
  - requires food consumption data and concentration data of chemicals in food
  - requires the data based on the objectives and needs of risk management
  - uses as much data as possible

2.

#### Summary

- Point estimation
  - > is easy, not expensive, not time-consuming
  - does not show distribution of exposure
- Probabilistic estimation
  - provides the distribution of exposures
  - > requires extensive data, PC and software
- Long-term exposure assessment
  - covers average (and if necessary, high-percentile) intake
- Short-term exposure assessment
  - covers high-percentile ("worst-case") intake
- Uncertainty analysis
  - can identify data gaps and serve as a basis for informed decision-making

Exercise 4 : Calculation of dietary exposure by point estimates

36

## Exercise 4.1 : Exposure estimate based on occurrence data and food consumption data

- Concentration of chemical X in food Y: use the data in the Excel sheet "Ex.4 occurrence data"
- Consumption data of food Y (raw commodity) and Y<sub>p1</sub>,

| Y <sub>p2</sub> , al Food | Mean Consumption<br>(whole population)<br>(g/person/day) | Processing factor |
|---------------------------|----------------------------------------------------------|-------------------|
| Υ                         | 14.8                                                     | 1                 |
| Y <sub>p1</sub>           | 5.6                                                      | 0.4               |
| Y <sub>p2</sub>           | 3.8                                                      | 1.1               |
| Y <sub>p3</sub>           | 7.2                                                      | 0.1               |

- Average body weight: 60 kg/person
- PTDI for chemical X: 0.3 µg/kg bw
- Calculate the following a) and b):
  - a. Average long-term dietary intake (μg/kg bw/day)
  - b. Percentage of the above intake to PTDI (%)

## Solutions: Exercise 4.1

a. Average dietary intake (µg/kg bw/day)

Calculation based on median conc. of chemical X in food Y

- $(0.153 \text{ (mg/kg)} \times 14.8 \text{ (g/person/day)})$
- + 0.153 (mg/kg)  $\times$  0.4  $\times$  5.6 (g/person/day)
- + 0.153 (mg/kg)  $\times$  1.1  $\times$  3.8 (g/person/day)
- + 0.153 (mg/kg) × 0.1 × 7.2 (g/person/day) ) / 60 (kg/person)
- =  $0.06 (\mu g/kg bw/day)$

Calculation based on mean conc. of chemical X in food Y

- (0.205 (mg/kg) × 14.8 (g/person/day)
- + 0.205 (mg/kg) × 0.4 × 5.6 (g/person/day)
- + 0.205 (mg/kg) × 1.1 × 3.8 (g/person/day)
- + 0.205 (mg/kg) × 0.1 × 7.2 (g/person/day) ) / 60 (kg/person)
- = 0.08 (µg/kg bw/day)

### Solutions: Exercise 4.1

a. Percentage of the above intake to PTDI (%)

Calculation based on median conc. of chemical X in food Y

0.06 (µg/kg bw/day) / 0.3 (µg/kg bw)

= 19%

Calculation based on mean conc. of chemical X in food Y 0.08 (µg/kg bw/day) / 0.3 (µg/kg bw)

= 25%

## Exercise 4.2 : Exposure estimate based on total diet studies

- Market basket study was carried out for chemical X for the general population in a country A.
- Analytical results (n =8) and consumption data for each food group is shown in next page and worksheet
- Average body weight: 60 kg/person
- Calculate the following a) and b)
  - a. Average dietary intake (µg/kg bw/day)
  - b. Contribution of the dietary intake from "fish and shellfishes" to the total dietary intake (%)

4

| Food group                | Mean analytical result (µg/kg) | Food consumption<br>(g/person/day) |
|---------------------------|--------------------------------|------------------------------------|
| Cereals                   | 3.7                            | 439.7                              |
| Root and tuber vegetables | 7.4                            | 53.3                               |
| Other vegetables          | 1.5                            | 268.1                              |
| Nuts and seeds            | 1.7                            | 55.4                               |
| Edible fungi              | 0.9                            | 16.8                               |
| Fruits                    | 5.8                            | 101.7                              |
| Algae                     | 6.9                            | 11.0                               |
| Fish and shellfishes      | 33.9                           | 72.5                               |
| Meats                     | 1.2                            | 82.5                               |
| Eggs                      | 6.5                            | 34.8                               |
| Dairy products            | 1.7                            | 117.3                              |
| Fats and oils             | 18.7                           | 10.1                               |
| Confectionaries           | 8.9                            | 25.1                               |
| Non-alcoholic beverages   | 1.3                            | 598.5                              |
| Seasonings and condiments | 2.2                            | 87.0                               |
| Drinking water            | 0.3                            | 2000                               |

#### Solutions: Exercise 4.2

Calculation average dietary intake (total)

{3.7 (µg/kg) x 439.7 (g/person/day) + 3.7 (µg/kg) x 439.7 (g/person/day)

- + 1.5 (μg/kg) x 268.1 (g/person/day) + 1.7 (μg/kg) x 55.4 (g/person/day)
- + 0.9 ( $\mu$ g/kg) x 16.8 (g/person/day) + 5.8 ( $\mu$ g/kg) x 101.7 (g/person/day)
- + 6.9 (μg/kg) x 11 (g/person/day) + 33.9 (μg/kg) x 72.5 (g/person/day)
- + 1.2 (μg/kg) x 82.5 (g/person/day) + 6.5 (μg/kg) x 34.8 (g/person/day)
- + 1.7 (μg/kg) x 117.3 (g/person/day) + 18.7 (μg/kg) x 10.1 (g/person/day)
- + 1.7 (µg/kg) x 117.3 (g/person/day) + 16.7 (µg/kg) x 10.1 (g/person/day) + 8.9 (µg/kg) x 25.1 (g/person/day) + 1.3 (µg/kg) x 598.5 (g/person/day)
- + 2.2 (μg/kg) x 87 (g/person/day) + 0.3 (μg/kg) x 2,000 (g/person/day) }
- + 2.2 (μg/kg) x 87 (g/person/day) + 0.3 (μg/kg) x 2,000 (g/person/day) / 60 (kg/person)
- =  $0.14 (\mu g/kg bw/day)$
- b. Contribution of "fish and shellfishes" to the total exposure
  33.9 (μg/kg) x 72.5 (g/person/day) / 60 (kg/person) / 0.14 (μg/kg
  bw/day) x 100 (%) = 30 (%)

### Exercise 4.3 : Acute exposure estimate

- Food Y is a blended commodity
- Consumption data of food Y (raw commodity)
- Concentration of chemical XX in food Y: use the data in the Excel sheet "Ex.4 occurrence data"
- ARfD for chemical XX : 8 μg/kg bw
- Calculate the 99.9<sup>th</sup> percentile of short-term dietary intake (eaters only) of XX in food Y (μg/kg bw/day)
- Compare the estimated intake with the ARfD (%)



## Exercise 4.4 : Consideration of uncertainty in point estimates

- Background information on both concentration data and food consumption data in Exercise 4.1 are provided in the next page and the Word file "Ex.4.4 Worksheet"
- List sources of uncertainty affecting the estimated dietary intake of chemical X as much as possible
- Indicate the direction (over- or under- estimate) of each uncertainty on the estimated dietary intake

45

# Exercise 4.4 Background information on concentration data

- Surveillance of chemical X in domestically produced foods (food Y and its processed commodities as mentioned in Exercise 4.1) was conducted in country A in 2013.
- Samples were collected in 2013 and stored at -20 degree Celsius until analysis in 2015.
- 80% of chemical X was retained during storage for 2 years at
   -20 degree Celsius, according to the storage stability study.
- Concentrations of X are known to vary greatly from year to
- Food Y: 40% domestically produced, 60% imported
- While food Y is produced throughout country A, samples were collected only from eastern part of the country
- Analyte: chemical X only
- JECFA established the group PTDI for chemical X and its metabolite X<sub>m</sub> (expressed as X).

.\_\_\_\_

# Exercise 4.4 Background information on food consumption data

- Food consumption survey was conducted throughout country A, in a total of 25 cities from 2005 to 2007
- The survey was conducted by 24h dietary recall
- The survey covered only one season (dry season) per year, while there is another season (rainy season) in country A.
- The survey covered three independent weekdays for each subject (individual).
- Total number of subjects: 9.510 (>1vr), 227 (1 6 vr)
- Total number of participating person days: 24,389

Well done !!!

40