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Exercise 3

3.1 Data aggregation

calculation of basic statistics 

maximum, minimum, mean, median

3.2 Creating a frequency table, histogram

3.3 Calculation of high percentile

2MAFF

Exe 3.1 Data aggregation

3MAFF

Data analysis using occurrence data
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Purpose:  

 To estimate population (e.g. nationwide
situation) form sample data

 For further consideration

• setting maximum level

• evaluating effectiveness of risk management
measures

• time-course analysis

Analysis of surveillance results

• Sampling plan

• Internal quality control
 LOD, LOQ and their definitions
 Calibration curve
 Recovery
Control material(CM) and frequency to test CM

• Analytical results
 Possibility of outliers

Do not remove results without evidence.

1. laboratory conditions

5

Analysis of surveillance results

• Basic statistics
mean, median, maximum and minimum value

• Results below LOD or LOQ

Replace <LOD and <LOQ with appropriate value for
further data analysis.
(depend on ratio of <LOD, <LOQ)

2. Dataset

6

3. Making frequency table

4. Making histogram to check distribution
parametric or non-parametric? multimodal?
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Analysis of surveillance results

• distribution model

• estimation of high percentiles

• exposure assessment

5. Statistical analysis
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Basic statistics

Estimation of  population from sample data.

 Maximum value
 Minimum value
 Range
 Average
 Mean (arithmetic mean)
 Median
 Variance
 Sample standard deviation

8MAFF

Population 
size N
mean μ

standard deviation σ

Sample
size n

mean m
standard deviation s

sampling inference

Median, Mode

• Median
– the middle value in a set of values arranged in

order of size:
– the average of the two middle values if there is

no one middle value.
– a robust measure of central tendency

Comparing to mean, median is robust to outlier
value.

• Mode
– a set of data values in a dataset that appears

most often (most-frequently occurring value)
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Percentile (%ile)

 The values are ranked in ascending order, i.e. from
smallest to largest.

 Percentile is a number where a certain percentage of
observations fall below that number.  For example, the
20th percentile is the value below which 20% of the
observations may be found.

 0 percentile (0%ile): minimum value

 25 percentile (25%ile)： first quartile (Q1)

 50 percentile (50%ile)： median or second quartile (Q2)

 75 percentile (75%ile) ： third quartile (Q3).

 100 percentile (100%ile) : maximum value
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Exercise
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• Let’s calculate basic statistics of Data1

 Maximum value
 Minimum value
 Range
 Average
 Mean (arithmetic mean)
 Median
 Variance
 Sample standard deviation

parameter

・population mean ߤ

・sample mean ݔ̅
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Mean

Standard deviation
・population ߪ

・sample ݏ

Variance
・population 2ߪ

・sample 2ݏ
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Mean

݉ ＝	ݔ̅
1
݊
෍ݔ௜

௡

௜ୀଵ

＝	ߤ
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ܰ
෍ݔ௜

ே

௜ୀଵ

sample mean
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population mean 

Deviation
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•Deviation： difference between the observed value
of a variable and mean





n

i
i xx

1

2)(

௜ݔ െ ݔ̅

• Squared deviation from the mean

needed to calculate sample variance

Unbiased estimation of variance
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• use of n − 1 for sample variance formula
instead of sample size n

Population variance： ＝ଶߪ
1
ܰ
෍ ௜ݔ െ ߤ 2

ே

௜ୀଵ

Sample variance： ＝ଶݏ
1

݊ െ 1
෍ ௜ݔ െ ݔ̅ 2

௡

௜ୀଵ

Standard deviation (SD)

＝ݏ
∑ ሺݔ௜ െ ሻଶ௡ݔ̅
௜ୀଵ

݊ െ 1
N : number of population
݊ :	number of observations in the sample
௜ݔ : observed values of the items
:	ߤ population mean           			̅ݔ : sample mean

σ＝
∑ ሺݔ௜ െ ሻଶேߤ
௜ୀଵ

ܰ
	

a measure to quantify the amount of variation or 
dispersion of a set of data values
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Population standard 
deviation

Sample standard 
deviation

Skewness

Histogram of rnorm(100)^2
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Sk < 0 : left-skewed Sk > 0: right-skewed

Skewness ሺܵ݇ሻ＝
భ
೙
∑ ሺ௫೔ି௫̅ሻయ
೙
೔సభ

௦య

Sk = 0: no skew

݊	: sample size
௜ݔ : observed values
ݔ̅ : sample mean
ݏ : sample SD
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degree of distortion from symmetrical curve

Histgram of -1*rnorm(100)^2

-1*rnorm(100)^2
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Histogram of rnorm(1000)
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High kurtosis is an indication of an outlier (or outliers)

＝	ݏ݅ݏ݋ݐݎݑ݇

1
݊∑ ሺݔ௜ െ ሻସ௡ݔ̅

௜ୀଵ

ସݏ

defined as 0 or 3 for normal distribution 
18

݊	: sample size
௜ݔ : observed values
ݔ̅ : sample mean
ݏ : sample SD
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Analytical results below LOD, LOQ

How to deal with results below LOD, LOQ?

Assume 
LOD = 0.03 mg/kg
LOQ = 0.05 mg/kg

Some results are below LOD or LOQ.

19MAFF

Calculation of LB, MB and UB

 Lower bound (LB)
replacing all the results reported as below the LOD/LOQ by 0

 Medium bound (MB)
i. replacing all the results reported as below the LOD/LOQ by 

half their respective LOD/LOQ

ii. replacing all the results reported as below the LOD by half 
their respective LOD, and retain all the results reported
between LOD and LOQ

 Upper bound (UB)
replacing all the results reported as below the LOD/LOQ to 
their respective LOD/LOQ.
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Examples

Aggregation of two datasets

Can we combine two datasets (data1 and 
data2) for further analysis?

For example, two datasets obtained by 

a. completely different sampling plan for different
purpose

b. slight different sampling plan for the same purpose
c. same sampling plan but different target
d. multi-years surveillance
e. same sampling plan but different basic statistics

21MAFF

Statistical test to compare two datasets

Parametric (normal distribution) or non 
parametric distribution?

a. Statistical normality test

For contaminants, datasets by surveillance usually 
have non parametric distribution

b. Statistical test to compare median
c. Statistical test to compare two distributions
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Exercise two major non parametric 
statistical tests

a. Mann-Whitney U Test
 sometimes called the Mann Whitney Wilcoxon

Test or the Wilcoxon Rank Sum Test
 test whether medians of two independent

datasets come from the same population

(Kruskal–Wallis H test is used to compare medians 
for more than three independent datasets.)

b. Two-sample Kolmogorov–Smirnov test
 test whether the two independent datasets come

from the same distribution
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Mann-Whitney U Test (1)

1. All the observations from both datasets are
independent of each other,

2. The responses are ordinal (i.e., one can at least say,
of any two observations, which is the greater),

3. Under the null hypothesis H0, the distributions of
both populations are equal.

4. The alternative hypothesis H1 is that the distributions
are not equal.

24MAFF

Assumptions of Mann-Whitney U test
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Mann-Whitney U Test (2) 
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1. Assign numeric ranks to all the observations (put the observations 
from both datasets to one set), beginning with 1 for the smallest 
value. Where there are groups of tied values, assign a rank equal 
to the midpoint of unadjusted rankings. 

2. Add up the ranks for the observations which came from dataset 1.

3. Add up the ranks for the observations which came from dataset 2.

4. Statistic U is then given by:

૚ࢁ ൌ ૛࢔૚࢔ െ
૚൅૚ሻ࢔૚ሺ࢔

૛
െ ૚ࡾ

where n1, n2 is the sample size for dataset 1 and dataset 2 
respectively, and R1 is the sum of the ranks in dataset 1.

26

5.  The smaller value of U1 and U2 is the one used when consulting 
significance test.

૛ࢁ ൌ ૛࢔૚࢔ െ
૛൅૚ሻ࢔૛ሺ࢔

૛
െ ૛ࡾ

where n1, n2 is the sample size for dataset 1 and dataset 2 
respectively, and R2 is the sum of the ranks in dataset 2.

Two-sample Kolmogorov–Smirnov test (1)

1. All the observations from both detaset are 
independent of each other,

2. Under the null hypothesis H0, both samples come 
from a population with the same distribution

3. The alternative hypothesis H1 is that both samples 
do not come from a population with the same 
distribution
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Assumptions of two-sample Kolmogorov–Smirnov test 

Two-sample Kolmogorov–Smirnov test (2)

1. First dataset has size m with an observed cumulative 
distribution function of F(x), and the second dataset has 
size n with an observed cumulative distribution function 
of G(x). 

2. Calculate
࢔,࢓ࡰ ൌ ܠ܉ܕ

࢞
ࡲ ࢞ െ ሻ࢞ሺࡳ

3.  The null hypothesis is rejected at level α if 
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,࢔,࢓ࡰ ൒ ሻࢻሺࢉ
ሺ࢓ା࢔ሻ

࢔࢓

Two-sample Kolmogorov–Smirnov test (2)
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α 0.10 0.05 0.025 0.01 0.005 0.001 

c ( α ) 1.073 1.224 1.358 1.517 1.628 1.858 

The value of  ࢉሺࢻሻ is given in the table below for the 
most common levels of ࢻ.

In general

ሻࢻሺࢉ ൌ െ૚

૛
ࢻܖܔ

Data aggregation

Exercise:
Let’s try to test using data1 and data2 if 
they can combine for further analysis.

 Mann Whitney U test
 Two-sample Kolmogorov–Smirnov test

30MAFF
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Exe 3.2 Creating a frequency table, 
histogram

31MAFF

Graphical expression

 P-P plot (Probability-Probability Plot)

 QQ plot (Quantile-Quantile Plot)

 Histogram

 Box plot (box and whisker plot)

 drawing histograms with various bin width 
 kernel density estimation

32

Creating a frequency table, and histogram

Exercise:
Let’s try to make frequency table and 
histogram using new dataset, combining 
dataset 1 and dataset 2.
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Making histogram

Making frequency table
 Frequency table

• decide class interval or bin size, usually ten or more
• need to consider border value to include lower or 

upper class

 Calculating relative frequency, cumulative frequency
Making bar plot with no gap width between each bar

1. Purpose
to graphically summarize the distribution of a 
data set

34

2. Steps to make histogram 
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Histogram of data1
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Effect of bin size using same dataset

Try to make histograms with various bin size

Examples to selecting bin size
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݇ ൌ ݊

݇ ൌ logଶ ݊ ൅ 1

݁ݖ݅ݏ	݊݅ܤ ൌ
2 ൈ ሻݔሺܴܳܫ

݊ଵ/ଷ

݁ݖ݅ݏ	݊݅ܤ ൌ
3.5 ൈ ߪ
݊ଵ/ଷ

Square-root choice

Sturges' formula

݁ݖ݅ݏ	݊݅ܤ ൌ
max	ሺݔሻ െ min	ሺݔሻ

݇

Scott's choice

Freedman–Diaconis' choice
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Shape of histogram and distribution
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Density Curves
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Histogram and Density histogram 
Y： Frequency
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Y： Frequency density
density＝relative frequency / bin width
relative frequency ＝ frequency / sample size

Density histogram is comparable to theoretical probability 
density distributions. 38
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Kernel density estimation (1)

Estimation of distribution not depend on bin number 
or class interval of histogram

The KDE smoothes each data point Xi into a small 
density bumps and then sum all these small bumps 
together to obtain the final density estimate.

መ݂
݇ ݔ 	below is called the kernel function that is generally a smooth, 

symmetric function.

መ݂
ܭ ݔ ൌ 	

1
݄݊

෍ܭ
ݔ െ ௜ܺ

݄

௡

௜ୀଵ

መ݂
݇ ݔ ：Kernel density estimator
kernel function :ܭ
݄: h> 0, smoothing bandwidth 

that controls the amount of 
smoothing 39

Kernel density estimation (2)

Band width (h) plays key role same as bin width of histogram.

መ݂
ܭ ݔ ൌ 	

1
݄݊

෍ܭ
ݔ െ ௜ܺ

݄

௡

௜ୀଵ

Example of kernel functions

Gaussian kernel

Epanechnikov kernel

Rectangular kernel

ܭ ݖ ൌ
ଵ

ଶగ
݁ି

೥మ

మ

ܭ ݖ ൌ య
ర
1 െ భ

ఱ
ଶݖ / 5 ሺݖ ൏ 5）

ሺݖ ൒ ܭ（5 ݖ ൌ 0

ܭ ݖ ൌ ଵ
ଶ

ܭ ݖ ൌ 0

ሺ ݖ ൏ 1）

ሺ ݖ ൒ 1）
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መ݂
݇ ݔ ：Kernel density 

estimator
kernel function :ܭ
݄: h> 0, bandwidth

Kernel density estimation (3)

Similar to bin size of histogram, KSD need to decide 
bandwidth to control amount of smoothing.

݄ ൌ
ߪ0.9
݊ଵ/ହ

Try to change h value to choose appropriate bandwidth.
The following is one example formula for selecting h.

σ: standard deviation (sd) 
or IQR instead of sd

41

 When h is too small, there are many wiggly structures on 
our density curve. 

 When h is too large, some important structures are 
obscured by the huge amount of smoothing.

Examples of kernel density estimation
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Rectangular kernel

42
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Probability plot

43

Comparing two distribution F(x) and G(x) in 
graphical expression

⇒ Usually compare an empirical distribution with a 
theoretical distribution.

 Q-Q plot, P-P plot, CDF plot
(Normal Q-Q plot and normal P-P plot is used to compare whether empirical 
distribution follow a normal distribution.  The general QQ plot or PP plot is used to 
compare the distributions of any two datasets.)

Q-Q plot and P-P plot follows the 45°line ݕ ൌ ݔ
if the two distributions agree.

Q-Q (Quantile-Quantile) Plot (1)

44

 comparing two probability distributions by plotting 
their quantiles against each other

Q-Q plot follows the 45°line 
y = x if the two distributions 
agree.
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Example of calculating quantiles of items
 Order items from minimum (1) to maximum(n)
 Calculate quantiles using the following formula

(݅ ൌ 1~݊)݂݅ ൌ
݅ െ 0.5
݊

Observed
value

fi Observed
value

fi

0.21 0.05 0.90 0.55

0.35 0.15 1.00 0.65

0.50 0.25 1.01 0.75

0.64 0.35 1.12 0.85

0.79 0.45 5.56 0.95

example

݂݅ ൌ
݅

݊ ൅ 1
or

Q-Q (Quantile-Quantile) Plot (2) P-P plot, CDF plot
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 Plots the two cumulative distribution functions
(CDF) against each other

The cumulative distribution function (cdf) is the 
probability that the variable takes a value less 
than or equal to x.

CDF plot

PP (probability–probability) plot

P-P (probability–probability) Plot

47

 plots the two cumulative distribution functions
(CDF) against each other
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P-P plot follows the 45°line y 
= x if the two distributions 
agree.

P-P plot
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Example of calculating CDF

Data1 Rank Cumulative 
Probability

0.21 1 0.11 
0.35 2 0.22 
0.50 3 0.33 
0.64 4 0.44 
0.79 5 0.56 
0.90 6 0.67 
1.00 7 0.78 
1.01 8 0.89 
1.12 9 1.00 

example
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Cumulative distribution function (CDF)

• 68% in ±1 σ

• 95% in ±2 σ
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CDF: The area under the probability distribution 
function  from −∞ to x

68%
95%

+
σ

+
2σ

+
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m
ean

CDF of normal distributionExample: normal distribution

Graphical Distribution, Box-plot

-4
-2

0
2

4 Outlier ( outside 1.5 IQR)

Median
1st Quadrant

3rd Quadrant

+1.5 IQR

Outlier ( outside 1.5 IQR)

-1.5 IQR

 Inter-Quartile Range (IQR)
3rd quartile (75%th quantile)  - 1st quartile (25%th quantile)

 Normalized IQR:  0.7413×IQR
If data is normally distributed, converge to standard deviation
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Example of box plot

Exe 3.3 Calculation of high percentile

52MAFF

Exercise 3.3

Not only high percentiles of sample data, we 
want to estimate high percentiles of population. 

53MAFF

High percentiles of population are estimated from 
model distribution from real dataset using 
statistical computing software.

Using @risk for curve fitting 

Let’s try to calucurate basic statistics using 
data1 in excel.

 Maximum value
 Minimum value
 Range
 Average
 Mean (arithmetic mean)
 Median
 Variance
 Sample standard deviation

54MAFF
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Select data set for fit distribution

Let’s try to calucurate basic statistics using 
data1 in excel.

 Maximum value
 Minimum value
 Range
 Average
 Mean (arithmetic mean)
 Median
 Variance
 Sample standard deviation

55MAFF

Moving slider to calculate high percentile in theoretical 
distribution

56MAFF

Example estimate 95 percentile

57MAFF

58

Check P-P plot for assessing how closely two 
data sets agree

Exercise 3.3

Let’s calculate high percentiles fitting with 
inverse gaussian distribution.

 97.5 percentile
 99 percentile

59MAFF

Well done !

60MAFF
This Photo by Unknown Author is licensed under CC BY-SA
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Summary– important points

61

 Data analysis is critical for risk management.

 Exercise by yourself for better understanding.

 In actual situation, collaboration with 
government scientists, laboratory analytical 
chemists, and statisticians is needed.
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