Overview of estimation of intake (Deterministic and probabilistic estimation)

28 November 2019 MAFF

Outline

- Estimation of dietary intake
 - Deterministic and probabilistic estimation
 - Long-term (chronic) intake
 - > Short-term (acute) intake
 - Uncertainty analysis
- Comparison of the estimated intake with toxicological reference values
- Recent topics: TTC approach
- Exercise 4: Calculation of dietary exposure by point estimates

Four steps of risk assessment in food safety

Necessity of estimating dietary intake

- The concept "only the dose makes the poison"
- A magnitude of risk from ingesting a hazard via food may increase or decrease depending on:
 - Concentration of a hazard in food; and
 - Consumption volume of a food containing the hazard
- Health-based guidance values (e.g. PTDI) do not indicate a magnitude of risk
 - Even if the PTDI is extremely low for a hazard, if it is contained only in foods not frequently consumed in significant amount, risk from this hazard may be negligible.

Use of information obtained from estimated dietary intake

- Qualitative and/or quantitative information on health risks to consumers can be used for the following:
 - Prioritizing hazards
 - Considering necessity of risk management options
 - → Preliminary estimation of risk
 - This usually results in over-estimate
 - Verifying effectiveness of implemented measures
 - Checking appropriateness of maximum levels
 - ★ Ensuring the protection of consumers' health

For estimation of dietary intake

- DO NOT underestimate dietary intake for protecting consumers' health
- Best available data and information should be used
- The following general equation can be applied

Dietary intake (exposure) = $\frac{\sum (Concentration of chemical in food \times Food consumption)}{Body weight (kg)}$

- Target population should cover:
 - the general population; and
 - critical groups that are vulnerable or are expected to have significantly different exposures (e.g. infants, children, pregnant women).

Data required for estimation of dietary intake

- Essential data
 - Concentration of a hazard in foods
 - Food consumption data
 - → information on body weight, age, gender
- Desirable data for refinement
 - Concentration in edible portion
 - Effect of processing (e.g. heating, hydrolysis) on concentration
 - Frequency of food consumption
 - (At national level,) information on the amount of use and percentage of crops/foods treated for chemicals such as pesticides and food additives

Variables in exposure assessment

- Concentration of chemicals in foods
- Amount and frequency of food consumption
 - > may be different among countries/regions

As a result, estimated dietary intake may be different among countries and regions

- Health-based guidance values (e.g. PTDI) or toxicological Point of Departure (e.g. BMDL)
 - values established by relevant international organizations such as JECFA can be used in the absence of national risk assessment

Deterministic (point) estimation of dietary intake

- Provides a single value that describes some parameter of consumer exposure
- Advantages/characteristics:
 - Easy, not expensive, not time consuming
 - Many data points are not necessary
 - Assuming the average or worst-case exposure of a population
- Limitations:
 - No information on
 - distribution of consumer exposure
 - ↑ high-end exposure
 - ⇔ eaters only vs whole population

Probabilistic estimation of dietary intake

- Provides distribution of consumer exposures
- Advantages/characteristics:
 - > Show the information on
 - high-percentile exposure
 - Model the distribution of hazard concentrations
 - Use food consumption data for each individual
 - Use Monte Carlo simulation
- Limitations:
 - Requires extensive data (Occurrence and food consumption)
 - Requires PC and software

Total diet study (TDS)

- Provides the average long-term dietary intake of chemicals in foods actually ingested by a population
- Fit for screening for purposes to identify the major food groups, contributing to dietary intake of chemicals, for further surveillance
- Advantages/characteristics:
 - > A kind of point estimate
 - Based on the data on individual foods or food group composites
 - Can be implemented on a regional basis
 - Analyzed after preparation for consumption
 - → reflect the situation as consumed

Two types of total diet study (TDS)

- 'Market basket survey'
 - provides average exposure for a population
 - is used to estimate food groups that may make a significant contribution to dietary intake
 - ✓ is not appropriate for
 - a population without consumption data for food groups
 - a chemical present inhomogeneously in a lot
- 'Duplicate portion study'
 - provides exposure from the same diet 'as consumed' by an individual in one day
 - may be used in case of urgency
 - does not identify food groups that may make a significant contribution to dietary intake

Market basket survey

- Major steps in "market basket survey" are:
 - To define the population of interest (infants, children, adults, elderly)
 - To identify the core foods using national consumption surveys and estimate their intake by the different populations of interest
 - To sample the selected foods, prepare them "as usually consumed by the population" (i.e. prepared and cooked by the average consumer) and pool relevant food groups
 - To analyze pooled samples for the selected contaminants
 - To multiply consumption data and the analytical data to estimate exposure to the contaminants

(Pennington and Hernandez 2002; Egan et al. 2007, Sirot et al 2009)

13

Examples of procedure for market basket survey

- Select representative foods for analysis
 - based on food consumption data to represent national typical diet
- Purchase food samples
 - In principle, for all food groups
 - considering the seasonal and regional variation

(examples of food groups)

Examples of procedure for market basket survey (for each food group)

- Preparation and grinding
- For each food, grind after cooking as necessary (Example)

Weighing, blending and homogenizing

Analyze the pooled samples

Points to consider when preparing or storing samples

- To select appropriate method for preparation/cooking according to the characteristics target analyte(s)
 - In the case of process-induced contaminants, select cooking method(s) that may lead to their
 - For example, boiling or steaming may not lead to significant formation of acrylamide in foods
- To divide the samples into several portions and store them separately at less than -20 ℃
 - Storage stability and moisture content should be checked when stored longer than one month
 - Repeated freeze/thaw cycles must be avoided

Food groups for TDS

As food consumption patterns vary across counties, food grouping for total diet study may be different

(Example of Japan)

- Uses 17 food groups and 1 group (drinking water)
- e.g. cereals and cereal products
- 17 groups >> 31 sub-groups >> 98 items e.g. wheat and wheat products

e.g. wheat floor; breads; noodles; pasta;

- based on the Japan's National Health and Nutrition Survey (annually conducted by MHLW)
 - classification for nutritional purposes
 - may not appropriate for the estimation of dietary exposure of contaminants

Analysis of the result

- For a target population (region, gender/age group),
- A) Estimation of the intake from each food group
 - analytical result multiplied by consumption data divided by body weight of the population
- B) Estimation of the total intake by summing of the intake from each food group
- Estimation of the contribution of a food group to the total intake (the above A divided by B)
- Some points for consideration
 - Values below LOD and LOQ in estimating mean occurrence (lower- and upper-bound approach)
 - Potential bias in population coverage in the consumption survey

Estimation of long-term (chronic) and short-term (acute) dietary intake

	long-term intake	short-term intake
Period	Lifetime	One day
Chemical conc. in food	Average/median	High percentile
Food consumption Data	Average/median or high percentile of whole population	High percentile of eaters only
Target food	All the foods	Individual food
Tox reference values to compare with	PTDI, BMDL etc.	ARfD

Short-term dietary exposure assessment

- Some substances could give rise to acute health effects in relation to short periods of intake
- JECFA and JMPR set an acute reference dose (ARfD) for such substances
- For pesticide residues, JMPR calculates the Internationally Estimated Short-term Daily Intake (IESTI) using:
 - > 97.5th percentile consumption of food (eaters only) with
 - potentially highest concentration
- The IESTI are compared with ARfD (general population, children <6 yr or women of child bearing age)

20

Short-term dietary exposure assessment

- Several types of IESTI equations used by the JMPR depending on the unit size of a commodity
 - Case 1: unit weight < 25 g
 - Case 2: unit weight > 25 g
 - Case 3: processed commodity, bulked or blended

IESTI (mg/kg bw) = highest large portion (97.5th percentile of eaters) of the commodity (kg food per day) × median residue in a composite sample of edible portion (mg/kg) / mean body weight associated with the population for which the large portion was used (kg bw)

- For contaminants, JECFA set the group ARfD for deoxynivalenol (DON) and its acetylated metabolites
- High contribution of wheat to dietary intake of DON
 - \triangleright The equation for the above Case 3 can be used $_{21}$

Whole population v.s. Eaters only

- Consumption data for the whole population of a food
 - include the consumption amount of "eaters" as well as "non-eaters" of that food
 - will generally be lower than the "eaters only" amount (i.e., the amount of food consumed only by those individuals who actually consumed the food)
- Consumption data for the "eaters only" of a food
 - used to estimate "worst-case" dietary exposure for high consumers
- Check whether the consumption data to be used are based on "whole population" or "eaters only"

Uncertainty analysis in dietary exposure assessment

- Every dietary exposure assessment is associated with scientific uncertainties, which needs to be taken into account by risk managers
- Each uncertainty may be analyzed at one of 3 tiers: qualitative, deterministic or probabilistic
- Can be used to identify data gaps
- Procedure for qualitative analysis
 - 1. Identify sources and nature of uncertainty
 - Give some indication of the direction (over- or under- estimate) and magnitude (high, medium, low) of each uncertainty on the assessment outcome
 - Estimate the overall effect of the uncertainties 23

Uncertainty analysis in dietary exposure assessment

assessifient			
sources		examples	
Exposure scenario		target population •target chemicaltarget food(s) or food group(s)	
Exposu	ure model	•formula for calculation •(for probabilistic approach,) fitted distributional curve	
Model inputs	Conc. of chemicals	sampling method	
	consump tion	(For dietary survey) ·method ·age ·No. of respondents ·survey period (and frequency)	
	others	 body weight •effect of processing/cooking types and amounts of raw ingredients 	

Comparison of the estimated dietary intake with toxicological reference values

Type of carcinogens

- Substances that induce cancer in experimental animals by non-genotoxic mechanisms
 - → Considered to "have a threshold"
 - → health-based guidance values can be established
- Substances that are both genotoxic and carcinogenic
 - → generally considered to "have no threshold"
 - → health-based guidance values cannot be established
 - → Introduction of BMD, MOE approach, which provides a qualitative description of a possible prioritization of risks

2

Estimation of P(M)TDI

 No-observed-adverse-effect-level (NOAEL) or no-observed-effect-level (NOEL)

Safety factor (usually 100)
inter-species (10)
x
intra-species (10)

■ P(M)TDI

permissible human exposure as a result of the natural occurrence of the substance in food Instead of P(M)TDI, PTWI or PTMI is established depending on the properties of contaminants

Dose-response curve

- Benchmark dose: BMD
 - Estimated from dose-response models of data
 - ➤ A dose producing a low but measurable adverse response, corresponding to a specified change in effect (generally 1–10%) over background

20

Dose-response curve

- Benchmark Dose Lower Confidence Limit: BMDL
 - 95 % lower confidence limit of BMD
 - Accounts for the uncertainty in the data
 - Enables determination of toxicological reference values for a substance without threshold

Margin of exposure (MOE) approach

- MOE = the dose causing a low but defined incidence of adverse response (e.g. BMDL₁₀) / estimated human exposure
- MOE approach
 - provides advice to risk managers of how close estimates of human exposures are to those that produce a measurable effect in laboratory animals or humans
 - is used for both genotoxic carcinogens and nongenotoxic chemicals for which the database is not sufficient to set health-based guidance values
 - can be used for prioritizing chemical hazards for risk management actions

Implication of MOE

- For substances that are genotoxic and carcinogenic
 - MOE of 10,000 or higher (if it is based on the BMDL₁₀ from an animal carcinogenicity study)
 - → low concern for public health
 - considered as a low priority for risk management actions
- For substances that are not genotoxic
 - MOE of 100 or higher
 - → low concern for public health
- MOE only indicates a level of concern and does not quantify risk

Recent topics

32

Threshold of Toxicological Concern (TTC) approach

- The concept of TTC comes from "only the dose makes a poison"
- TTC approach
 - is a pragmatic screening and prioritization tool for the safety assessment of chemicals of unknown toxicity when the chemical structure is known and human exposure can be estimated
 - uses threshold values that represent life-long human exposure >> classified into 3 classes depending on chemical structure
 - Exposure below the corresponding threshold values is considered of low probability of adverse health effects
 - Enables efficient use of available resources

Establishment of TTC Value

- Chemicals are classified into three classes (Cramer et al, 1978)
- Threshold values are calculated from the distribution of NOELs for each class (Munro et al, 1996)

Class	Description	TTC value (µg/kg bw/d)	
I	Substances of simple structure, with known metabolic pathways and innocuous end products which suggest low oral toxicity	30 9	
II	Substances with structures less innocuous than Cramer Class I but without features suggesting significant toxicity		
III	Substances with structures suggesting significant toxicity or which did not permit any strong initial presumption of safety	1.5	
	Substances that have the potential to be genotoxic carcinogens	0.0025	

Summary

- Estimation of dietary intake
 - > is an essential element for quantifying health risk
 - is used for prioritizing hazards, determining the necessity of risk management options, and verifying the effectiveness of the measures
 - requires food consumption data and concentration data of chemicals in food
 - requires the data based on the objectives and needs of risk management
 - uses as much data as possible

Summary

- Deterministic (Point) estimation
 - is easy, not expensive, not time-consuming
 - does not show distribution of exposure
- Probabilistic estimation
 - provides the distribution of exposures
 - > requires extensive data, PC and software
- Long-term exposure assessment
 - covers average (and if necessary, high-percentile) intake
- Short-term exposure assessment
 - covers high-percentile ("worst-case") intake
- Uncertainty analysis
 - can identify data gaps and serve as a basis for informed decision-making

Exercise 4 : Calculation of dietary exposure by point estimates

Exercise 4.1 : Exposure estimate based on occurrence data and food consumption data

- Concentration of chemical X and X_{-ester} in food Y: use the data in the Excel sheet "Ex.4 occurrence data"
- Molecular weight: X; 296.32, X_{-ester}; 338.35
- Consumption data of food Y (raw commodity) and Y_p (processed commodities of Y):

Food	Mean Consumption (whole population) (g/person/day)	Processing factor
Υ	12.4	1
Y_p	4.4	0.4

- Average body weight: 55 kg/person
- X_{ester} is known to be 100% hydrolyzed to X in human body
- Group PTDI for X and X_{-ester} (expressed as X) : 0.5 μg/kg bw
- Calculate the following a) and b):
- a. Average long-term dietary intake (μg/kg bw/day)
- b. Percentage of the above intake to PTDI (%)

38

Exercise 4.2 : Exposure estimate based on total diet studies

- Market basket study was carried out for chemical X for the general population in a country A.
- Analytical results (n =8) and consumption data for each food group is shown in next page and worksheet
- Average body weight: 55 kg/person
- Calculate the following a) and b)
 - a. Average dietary intake (µg/kg bw/day)
 - b. Contribution of the dietary intake from "fats and oils" to the total dietary intake (%)

Food group	Mean analytical result (µg/kg)	Food consumption (g/person/day)
Cereals	2.4	432.4
Root and tuber vegetables	1.5	53.4
Pulses	9.2	58.2
Other vegetables	3.2	284.7
Edible fungi	0.3	17.3
Fruits	0.9	101.7
Algae	0.5	7.8
Fish and shellfishes	6.4	84.8
Meats	13.6	76.0
Eggs	2.8	36.3
Dairy products	9.7	130.7
Fats and oils	177.0	9.8
Confectionaries	65.4	32.0
Non-alcoholic beverages	1.3	596.1
Seasonings and condiments	15.3	110.4
Drinking water	0.1	2000

39

37

Exercise 4.3 : Short-term (acute) exposure estimate

- Food Y is a blended commodity
- Consumption data of food Y (raw commodity)
- Concentration of chemical X and X_{-ester} in food Y: use the data in the Excel sheet "Ex.4 occurrence data"
- Molecular weight: X; 296.32, X_{-ester}; 338.35
- X_{-ester} is known to be 100% hydrolyzed to X in human body
- Group ARfD for X and X_{-ester} (expressed as X): 8 μg/kg bw
- Calculate the 99.9th percentile of short-term dietary intake (eaters only) of sum of X and X_{ester} in food Y (μg/kg bw/day)
- Compare the estimated intake with the ARfD (%)

Exercise 4.4 : Consideration of uncertainty in point estimates

- Background information on both concentration data and food consumption data in Exercise 4.1 are provided in the next page and the Word file "Ex.4.4 Worksheet"
- List sources of uncertainty affecting the estimated dietary intake of chemical X as much as possible
- Indicate the direction (over- or under- estimate) of each uncertainty on the estimated dietary intake

41

Exercise 4.4 Background information on concentration data

- Surveillance of chemical X and X_{-ester} in domestically produced foods (food Y and its processed commodities) was conducted in country A in 2015.
- Samples were collected in 2015 and stored at -20 ℃ until analysis in 2018.
- Conc. of X and X_{-ester} were determined separately.
- 80% of X was retained during storage for 3 years at -20 °C according to the storage stability study.
- Conc. of X and X_{ester} are known to vary from year to year.
- Food Y: 30% domestically produced, 70% imported
- While food Y is produced throughout country A, samples were collected only from the southern part of the country
- JECFA established the group PTDI for the sum of X and X_{-ester} (expressed as X)

Exercise 4.4 Background information on food consumption data

- Food consumption survey was conducted throughout country A, in a total of 25 cities from 2005 to 2007
- The survey was conducted by 24 h dietary recall
- The survey covered only one season (rainy season), while there is another season (dry season) in country
- The survey covered a three-day weekend for each subject (individual) .
- Total number of subjects: 9,510 (>1yr), 227 (1 6 yr)
- Total number of participating person days: 24,389

Well done !!!