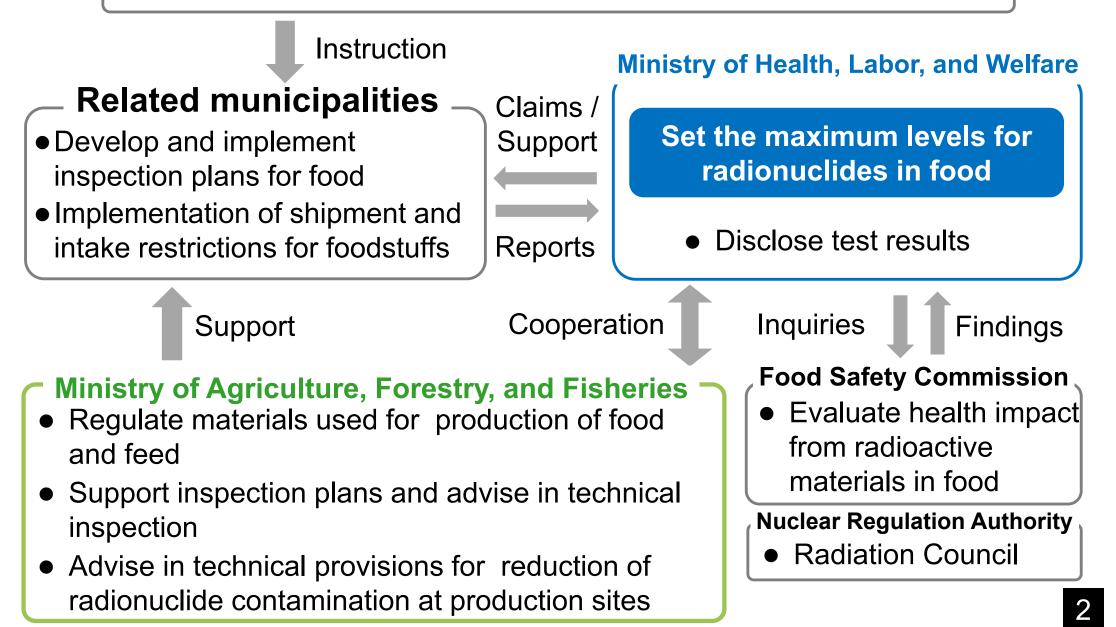
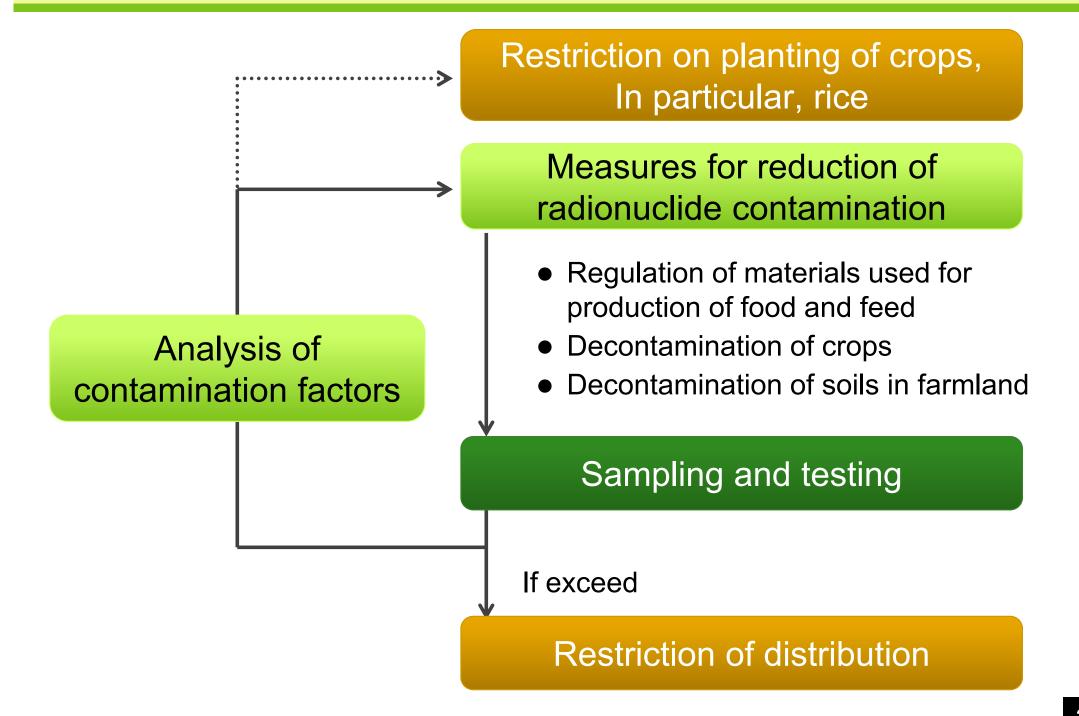
Measures for Reduction of Radionuclide Contamination of Agricultural Produce

September 2022 Ministry of Agriculture, Forestry and Fisheries


- 1 Control of radionuclides in food 2 4
- 2 Measures to reduce radionuclides migration 5 16

17 - 19


1 Control of radionuclides in food

- Nuclear Emergency Response Headquarters

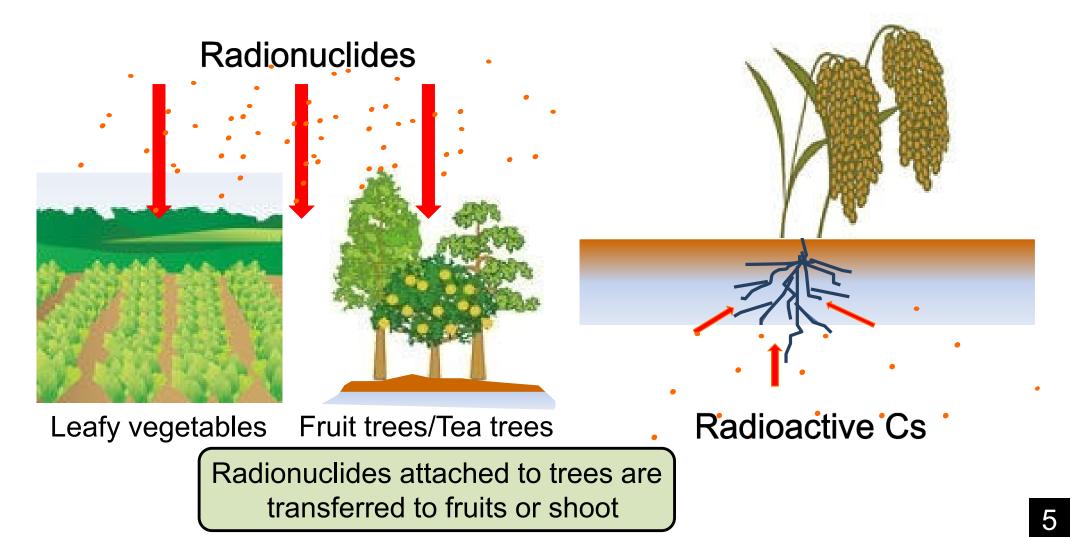
• Restrict food shipments / Set and remove intake limits

1 Control of radionuclides in food

1 Control of radionuclides in food

(Reference) Maximum levels for radioactive Cs in food

The maximum levels have been set in accordance with the table below


Food groups	Maximum level (Bq/kg)
Drinking water	10
Milk	50
General foods	100
Infant foods	50

X Assuming that the intervention exemption level of 1 mSv/year, the same value as for Codex guideline levels.

Pathways of radionuclide contamination of crops

Direct contamination by radionuclide fallout

Uptake of radionuclide from soil

Measures for feed (Provisional tolerance values for radioactive Cs)

Feed for:	Set on 14 Apr. 2011	Revised on 1 Aug. 2011	Revised on 1 Apr. 2012
Cattle	300 Bq/kg*1	300 Bq/kg* ²	100 Bq/kg* ²
Pigs	-	300 Bq/kg*1	80 Bq/kg*2
Chickens	-	300 Bq/kg*1	160 Bq/kg*2
Cultured fish	-	100 Bq/kg*3	40 Bq/kg*3

- * Provisional tolerance values for feed set on a basis of feed consumption and provisional transfer coefficients by:
 - *1 Referring the IAEA documents.
 - *2 Using the results of the transfer studies on dairy cattle, pigs and hens conducted by MAFF in Japan after the accident.
 - *3 Using the result of the cultured fish transfer study conducted by MAFF in Japan after the accident and previous studies.

Feed management in accordance with tolerance values

1 Thorough enforcement of appropriate feed management by pastures and others under the provisional tolerance values.

2 Decontamination by deep plowing and others can lead to pasture production under provisionally tolerated level.

Measures for materials used for the cultivation of edible fungi (Reference values for radioactive Cs)

Material	Set on 6 Oct. 2011	Revised on 1 Apr. 2012
Wood logs (for Shiitake)	150 Bq/kg	50 Bq/kg
Cultivation media	150 Bq/kg	200 Bq/kg

Measures for the cultivation of edible fungi

- Introduction of safe production materials, and reduction of pollution due to radionuclides
- Information related to collection of wild edible fungi and wild edible plants

Efforts

- 1. Securing safe wood logs (wood logs procurement support and supply-demand matching for wood logs)
- 2. Support for decontamination of wood logs and introduction of pollution control facilities including simple greenhouses
- 3. Establishment and dissemination of wood log fungi cultivation management guidelines for radionuclides reduction
- 4. Dissemination of cultivation technology that reduces pollution from radionuclides
- 5. Transmission of information via websites and pamphlets, on-site traveling guidance

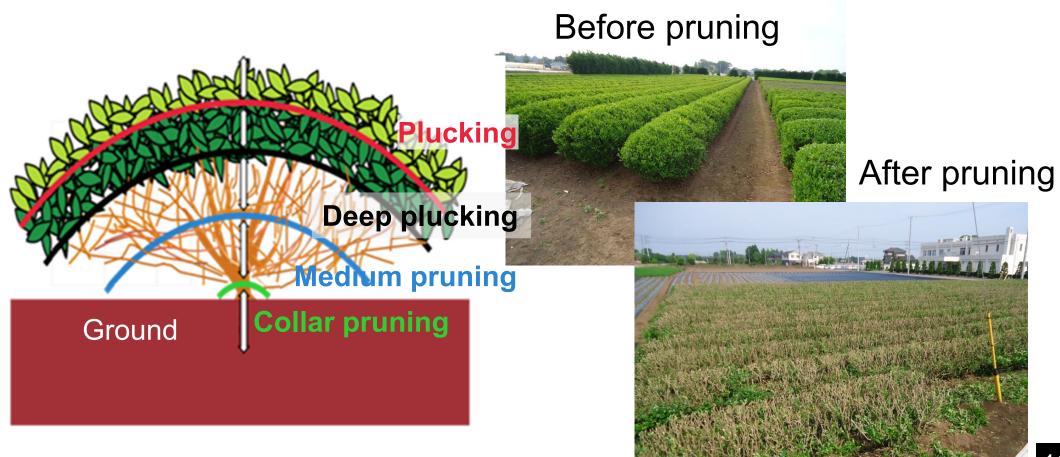
Measures for materials used as fertilizers, soil conditioners, and nursery soils (for radioactive Cs)

Material	Value	Note		
Sludge for manure	200 Bq/kg	Standard value set on 24 Jun. 2011		
Fertilizers (including those from leaves), soil conditioners, nursery soils, etc.	400 Bq/kg	Provisional tolerance value set on 1 Aug. 2011		

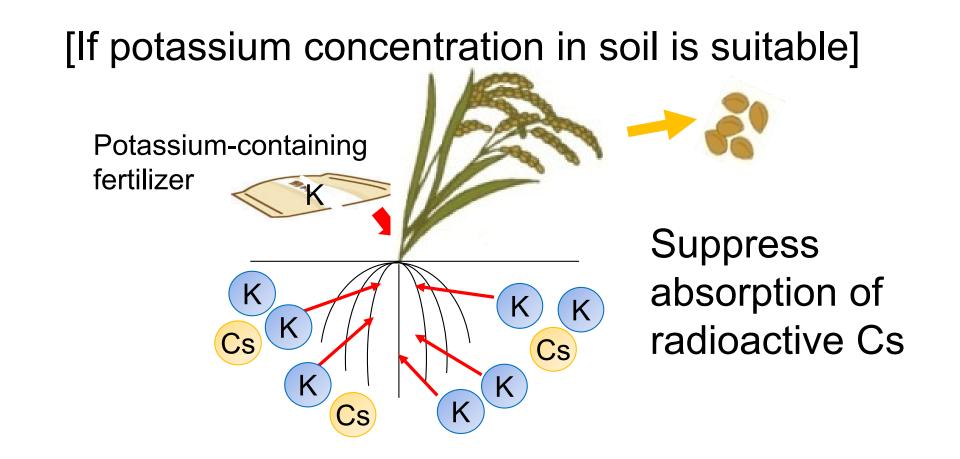
Measures to reduce radionuclides of fruit trees

The levels of radioactive Cs deposited onto above-ground parts of fruit trees have been reduced by cleaning the surface of bark with high-pressure water.

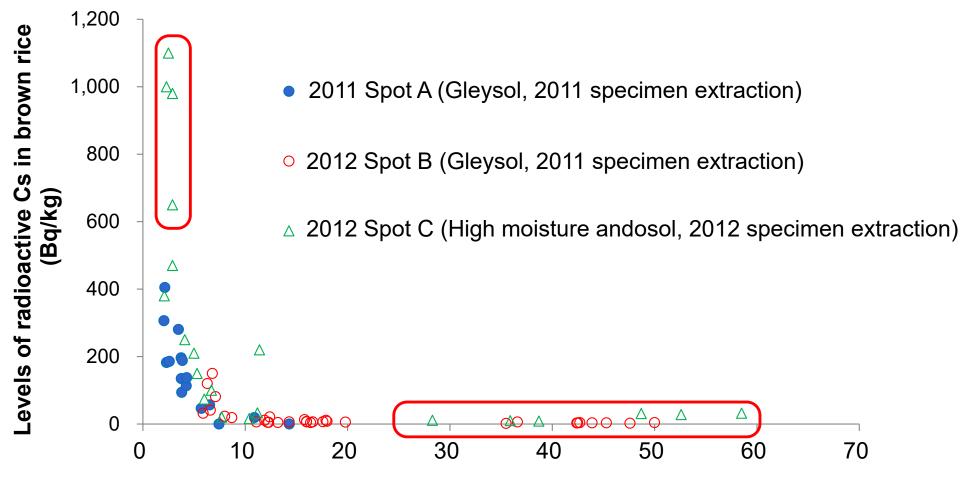
High-pressure washing of peach trees



Scraping bark for pear


Measures to reduce radionuclides of tea trees

To prevent the transfer of radioactive Cs from leaves and branches to new leaves, leaves and branches were plucked or pruned further than in usual practice.



Absorption control through potassic fertilization to rice

- Soil in paddy fields where rice with high-level radioactive Cs was produced tend to contain low-level potassium
- Having similar chemical characteristics to Cs, potassium in soil can suppress absorption of Cs by root uptake

(Reference) Application of potassium (Test results in farmlands with over 500 Bq/kg)

Levels of exchangeable K2O in soil (mg /100g)

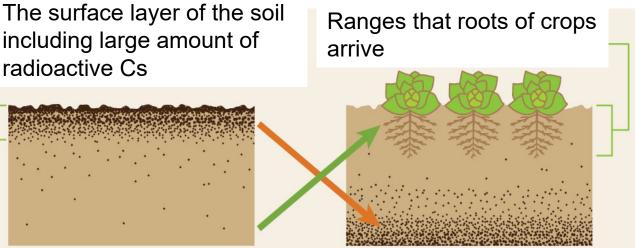
Decontamination of farmland (Removal to topsoil)

Remove the surface soil to remove the nuclides in soil surface

Results of removal of topsoil (2011,litatemura)

Removal of topsoil

Before: 10,370 Bq/kg After: 2,599 Bq/kg (75% reduction)


Ambient dose level (Surface)

Before: 7.1 μ Sv/hr After: 3.4 μ Sv/hr (52% reduction) After harvest: 1.9 μ Sv/hr

Decontamination of farmland (Deep plowing)

Deep plowing to replace top soil with subsoil to kept the most of fallen radionuclides deeper than the range of plant root

Deep plowing (30 cm)

Number of samples

		Year (FY)									
	2011 ²⁾	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Test samples Total ¹⁾	93,288	212,922	248,273	233,738	260,794	249,833	245,086	240,002	229,333	44,258	34,235
Available for cultivation/feed management ³⁾	83,676	190,376	222,725	207,484	237,741	225,662	223,239	219,977	212,332	28,354	15,846
Difficult for cultivation/feed management ⁴⁾	6,491	20,530	23,707	24,794	21,596	22,812	20,833	19,040	16,080	15,115	17,806
Others (Processed food, etc.)	3,121	2,016	1,841	1,460	1,457	1,359	1,014	985	921	789	583

1: Prefectural product pre-shipment test samples in 17 prefectures (Aomori, Iwate, Akita, Miyagi, Yamagata, Fukushima, Ibaraki, Tochigi, Gunma, Chiba, Saitama, Tokyo, Kanagawa, Niigata, Yamanashi, Nagano, Shizuoka)

- 2: Including March 2011
- 3: Vegetables, Tubes, Fruits, Seeds, Rice, Grains, Legumes, Cereals, Meat, Eggs, Fresh Milk, Tea(ready for consumption), Edible Fungi (cultivated), Wild Plants for Food (cultivated)
- 4: Wild edible fungi, Wild plants for Food (wild), Game meat, Fishery Products, Honey

Radioactive Cs concentration in food

(Available for cultivation/feed management)

Vegetables, Tubes, Fruits, Seeds, Rice, Grains, Legumes, Cereals, Meat, Eggs, Edible Fungi (cultivated), Wild Plants for Food (cultivated)

Radioactive Cs concentration (Bq/kg)	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Less than	79,229	184,396	217,785	204,941	235,781	223,779	222,109	219,084	211,635	27,945	15,465
25	(96.17%)	(98.53%)	(98.92%)	(99.79%)	(99.84%)	(99.84%)	(99.90%)	(99.90%)	(99.93%)	(99.54%)	(98.98%)
25–50	1,293	1,237	1,340	382	321	332	209	194	141	116	146
	(1.57%)	(0.66%)	(0.61%)	(0.19%)	(0.14%)	(0.15%)	(0.09%)	(0.09%)	(0.07%)	(0.41%)	(0.93%)
50-100	1036	1123	960	45	46	31	17	30	16	14	13
	(1.26%)	(0.60%)	(0.44%)	(0.02%)	(0.02%)	(0.01%)	(0.01%)	(0.01%)	(0.01%)	(0.05%)	(0.08%)
More than	825	392	87	5	5	0	2	0	2	0	0
100	(1.00%)	(0.21%)	(0.04%)	(0.002%)	(0.002%)	(0%)	(0.001%)	(0%)	(0.001%)	(0%)	(0%)

1: Upper row: detected samples, lower row: detected samples rate for inspected samples

2: Excluding fresh milk and tea, for which maximum levels differ from general foodstuffs.

□ Radioactive Cs concentration in food

(Difficult for cultivation/feed management)

Wild edible fungi, Wild plants for Food (wild), Game meat, Fishery Products, Honey

Radioactive Cs concentration (Bq/kg)	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Less than	3,567	14,835	20,455	22,506	20,412	21,092	19,855	17,696	15,207	14,234	17,180
25	(54.95%)	(72.26%)	(86.28%)	(90.77%)	(94.52%)	(92.46%)	(95.31%)	(92.94%)	(94.57%)	(94.17%)	(96.48%)
25–50	781	2,241	1,336	1,068	573	845	534	700	541	627	367
	(12.0%)	(10.92%)	(5.64%)	(4.31%)	(2.65%)	(3.70%)	(2.56%)	(3.68%)	(3.36%)	(4.15%)	(2.06%)
50-100	800	1,626	1,014	678	352	425	259	350	175	151	153
	(12.3%)	(7.92%)	(4.28%)	(2.73%)	(1.63%)	(1.86%)	(1.24%)	(1.84%)	(1.09%)	(1.00%)	(0.86%)
More than	1,343	1,828	902	542	259	450	185	294	157	103	106
100	(20.69%)	(8.90%)	(3.80%)	(2.19%)	(1.20%)	(1.97%)	(0.89%)	(1.54%)	(0.98%)	(0.68%)	(0.60%)

Upper row: detected samples, lower row: detected samples rate for inspected samples