みどりの食料システム戦略地域説明会(旭川会場)

持続可能な地域農業を支える農業試験場の取り組み

道総研上川農業試験場 安積 大治

上川農業試験場

みどりの食料システム戦略 2050年までに目指す姿

(農業生産分野)

- ●農林水産業のCO₂ゼロエミッション(温室効果ガス排出ゼロ)
- ●化学農薬の使用量(リスク換算)を50%低減
- ●化学肥料の使用量を30%低減
- ●有機農業取組面積の割合を25%(100万ha)に拡大

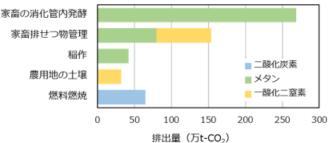
上川農業試験場

21世紀末(2076~2095)の上川は

現在気候(1980~1999)と比較して

- ●年平均気温が約5℃上昇 旭川市の年平均気温(6.9℃)が現在の長野市(11.9℃)と同程度に
- ●真夏日が年に35日程度出現(27日増加) 熱帯夜も5日程度出現
- ◆冬日が現在の2/3(120日)、真冬日が現在の1/3(30日)に※北海道の降雪量は40%程度減少
- ●大雨や短時間強雨の発生日(回数)が増加

北海道地球温暖化予測情報 札幌管区気象台 (2019) より



温室効果ガスの排出(北海道)

北海道の温室効果ガス排出量(2017)

GHG種類 -	万t-CO ₂				
GIIGIEXR -	農業由来			- VH-5	
二酸化炭素	6,373	64	(1%)		
メタン	409	390	(96%)		
一酸化二窒素	308	104	(34%)		
その他	198	-		代替フロンなど	
北海道合計	7,289	559	(8%)	全国:129,200	

要因別温室効果ガス排出量(北海道2017)

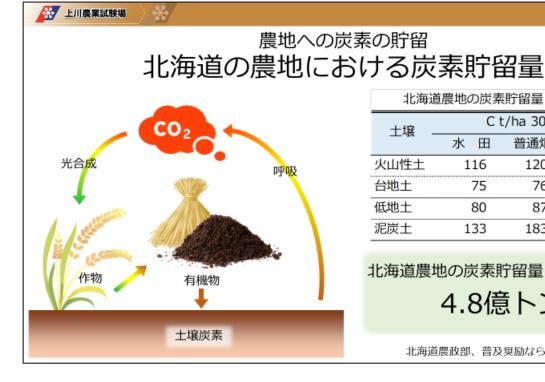
実施状況(北海道環境生活部)より作表

- ・農業由来の温室効果ガス排出割合は全排出量の8%だが、メタンや一酸化二窒素の排 出割合が高い
- ・メタンの排出は、家畜の消化管内発酵、家畜排せつ物、稲作が主要因
- ・一酸化二窒素の排出は、家畜排せつ物や農用地の土壌からの窒素成分の揮散が主要因

☆ 上川農業試験場

温室効果ガスの排出低減 発生を助長する要因

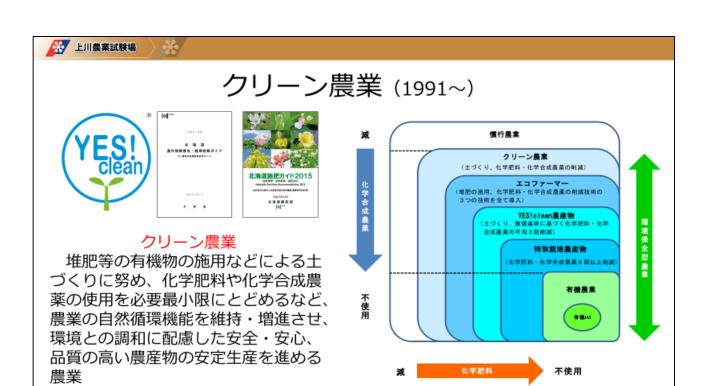
- ●水田 (CH₄)
 - ・排水不良(グライ土>灰色低地土>褐色低地土)
 - ・稲わら春すき込み
 - ・過剰な代かき、過繁茂
- ●畑地・施設(N₂O)
 - · 土壌水分(多) · 地温(高)
 - ・残渣の深層すき込み
 - ・窒素多肥、堆肥と化肥の同時施用
- ●その他
 - ・堆肥化時の高水分


北海道農政部、普及奨励ならびに指導参考事項より

温室効果ガスの排出低減 低減対策

- ●水田 (CH₄)
 - ・疎水材暗渠整備による排水改良
 - ・稲わら持ち出し→堆肥化、または秋すき込み
 - ・中干し、無代かき
- ●畑地・施設(N₂O)
 - ・窒素減肥、緩効性肥料の利用
 - ・化学肥料と併用する有機物量の制限
 - ・施設では、高温時は白マルチ、冬季はビニールをはずす
- ●その他
 - ・堆肥化時の水分調整(固液分離・麦稈など水分調節材)

北海道農政部、普及奨励ならびに指導参考事項より


北海道農地の炭素貯留量(2018) C t/ha 30cm深

十锤		-		4
4x -	水 田	普通畑	草地	
火山性土	116	120	120	_
台地土	75	76	110	
低地土	80	87	90	
泥炭土	133	183	247	_

北海道農地の炭素貯留量(CO₂換算)

4.8億トン

北海道農政部、普及奨励ならびに指導参考事項より

上川農業試験場 クリーン農業 (1991~) 技術開発成果数(~2121.3) · I P M技術など化学合成農薬の削減技術 化学肥料削減 118 ・未利用資源の有効活用など化学肥料の削減技術 クリーン 化学農薬削減 183 ・クリーン農業の土壌環境や経済性の評価・安定し 農業技術 その他 112 た高度クリーン農業技術 有機農業技術 31 有機農業技術 ■ 単位面積当たりの主要肥料出荷量の推移 ■ 単位面積当たりの農薬出荷量の推移 (kg/ha) 80.0

元 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

NESIclean 数值基準導入

北海道農政部資料より

マ クリーン農業 スタート

元 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

YESiclean 数值基準導入

クリーン農業 (1991~) 温室効果ガスの削減効果

地目・作目		削減率	主な要因		
			削減	増加	
水田	水稲	-64%	稲わら搬出、窒素減肥、		
,,щ	лш л на 	0470	減農薬*		
	秋まき小麦	-16%	窒素減肥、減農薬*		
	大 豆	-16%	減農薬*、窒素減肥	中耕(燃料消費)	
畑	馬鈴しょ	-8%	窒素減肥、減農薬*		
	トマト ±0%		窒素減肥、有機質肥料への転換 (資材製造)	微生物農薬(資材製造)	
草地	牧 草	-4%	窒素減肥 (資材製造)	堆肥散布、追肥(資材製造)	

^{*:}減農薬は資材製造時の排出低減

北海道農政部、普及奨励ならびに指導参考事項より

上川農業試験場

北海道農地の減肥可能量(リン酸、カリ)

減肥可能量(2018)					
地目・作目		要素	減肥可能量		
			kg/10a	全道 t	
水田	水稲	リン酸	4.5	5,100	
	חווייני	カリ	-1.1	0	
畑	小麦	リン酸	3.0	3,500	
	小支	カリ	-0.3	0	
	馬鈴しょ	リン酸	1.5	800	
		カリ	-1.0	0	
	豆類	リン酸	-3.2	-1,900	
		カリ	0.4	200	
	てんさい	リン酸	9.6	6,200	
	Chen	カリ	0.2	100	
	青刈り	リン酸	1.6	700	
	とうもろこし	カリ	-1.3	0	
	合計	リン酸		9,300	
		カリ		300	
注)施用有機物施からの養分供給量を除く					

病害抵抗性品種の開発

●水稲: いもち病

「きたくりん」(2012):いもち病の本田防除省略可能

●小豆:落葉病・茎疫病

「エリモ167」(2017): 「エリモショウズ」に落葉病抵抗性を導入

「十育170号」(2021): 茎疫病、落葉病抵抗性

●馬鈴しょ:ジャガイモシストセンチュウ

●大 豆:ダイズシストセンチュウ

新たに開発される品種は抵抗性品種

●小麦:縞萎縮病

上川農業試験場

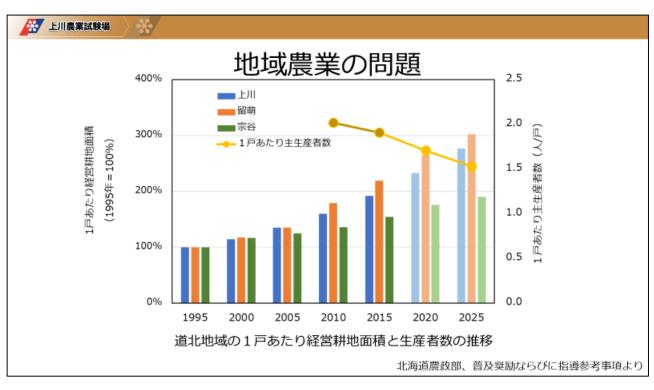
北海道

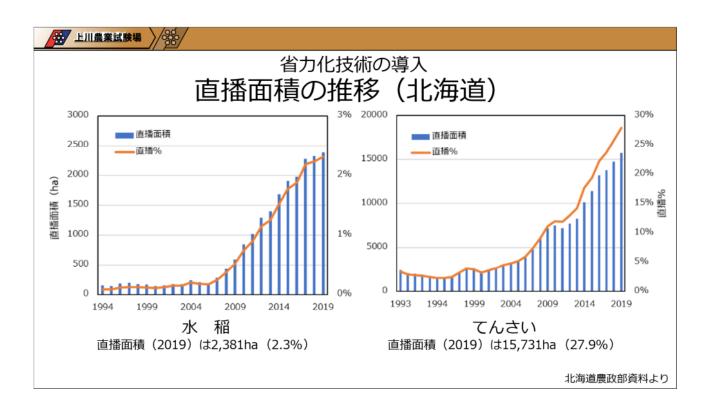
「ゆめちから」(2009): コムギ縞萎縮病抵抗性「強し

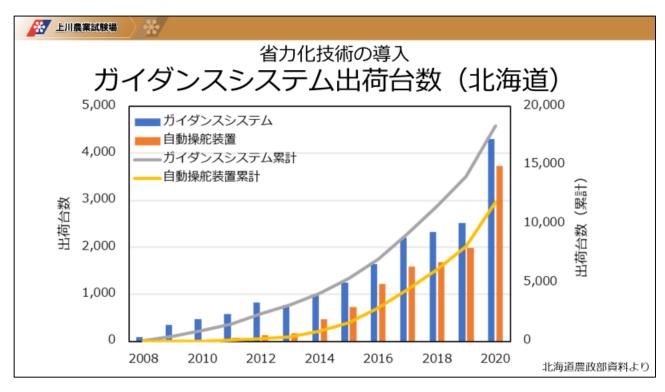
有機農業の拡大に向けて 有機JAS面積 (2019) 面積 (ha) 比率 全国 11,002 0.25%

2,600

0.23%




技術革新(イノベーション)の方向性


- ・農地の生態系機能を向上させ、安定した作物生産と生態系保全の両立に資する 技術の開発を重視
- ・国主導のトップダウン型イノベーションと共に、全国の生産現場の技術交流や、 農家と試験研究機関の共同研究などを通じた、ボトムアップ型のイノベーションの促進が不可欠

有機農業学会提言(2021.3)より

持続可能な地域農業を支える品種・技術 水稲「えみまる」

道内の米農家の農作業の47%が育苗と田植えに費やされている

- 低温時の出芽が不安定
- ・播種後の落水時に窒素が流亡
- ・収量・品質の不安定さ
- ・主要品種と比べて食味が劣る

低温苗立ち性に優れ

- →窒素流亡も低減?
- ·落水期間短縮
- ・収量・品質が安定 ・「ななつぼし」なみの良食味

播種の様子

低温条件でも苗立ちが良好

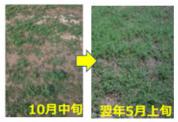
持続可能な地域農業を支える品種・技術無加温ハウスの周年生産技術

道内のハウスのうち、周年利用されているのは数%

- ・加温設備、燃油コストがかかる
- ・冬期間の収入や雇用がない
- ・冬季の生鮮野菜は道外産に依存
- ・無加温で周年栽培 →CO₂排出も軽減?
- ・収入増、周年雇用の創出
- ・収量・品質が安定

保温装備(二重膜、内張、トンネル)で、外気温-25℃でも,ハウス内は0℃程度に保たれる 冬季生産できるのは・・・リーフレタス、こまつな、チンゲンサイ、小かぶ、からしな・・・など

詳しくは「冬どり栽培マニュアル」で検索


持続可能な地域農業を支える品種・技術 越冬緑肥を使った有機野菜栽培 (2021)

緑肥は有機物給源として重要だが、後作緑肥は生育期間が限られ、生育量が少ない

- ・北海道では後作緑肥の生育期間が短い
- ・有機栽培では雑草が問題
- ・緑肥の肥効成分は重要

- ・マメ科緑肥「ヘアリーベッチ」は越冬可能
- ・雑草発生を低減
- ・後作の有機野菜で窒素減肥が可能
- ・慣行栽培でも活用可能

後作(有機かぼちゃ)の栽培

上川農業試験場

持続可能な地域農業を支える品種・技術 SDGsの達成にむけて

ターゲット2.4

持続的な農業生産のための 農地の適正管理

ターゲット13.2

農地の炭素貯留能 農地からのGHG排出抑制

ターゲット3.9・12.4 農地の土壌汚染 防止対策

ターゲット15.3

農地の土壌劣化の防止と 回復

ターゲット6.3

農地に由来する水質汚染対策、 水質保全

SDGs

みどりの食料 システム戦略

地域農業の 持続的発展

スマート農業など 最先端技術

ICT、AI、センシング、 ロボット技術、バイテク

これまでとりくまれ てきた様々な技術

土壌診断、クリーン農業 新品種開発、栽培管理

生産現場で実践されている技術

有機農業、土づくり 民間農法

√ E