

令和5年度

牛の消化管内発酵由来メタン削減飼料に関する調査委託事業

牛メタン削減飼料調査コンソーシアム

(龍谷大学・(株)ニチレイフレッシュ・家畜改良センター・農研機構)

① 脂肪酸カルシウム長期給与による搾乳牛の飼養成績および 消化管からのメタン発生量削減効果の調査

(農研機構)

方法

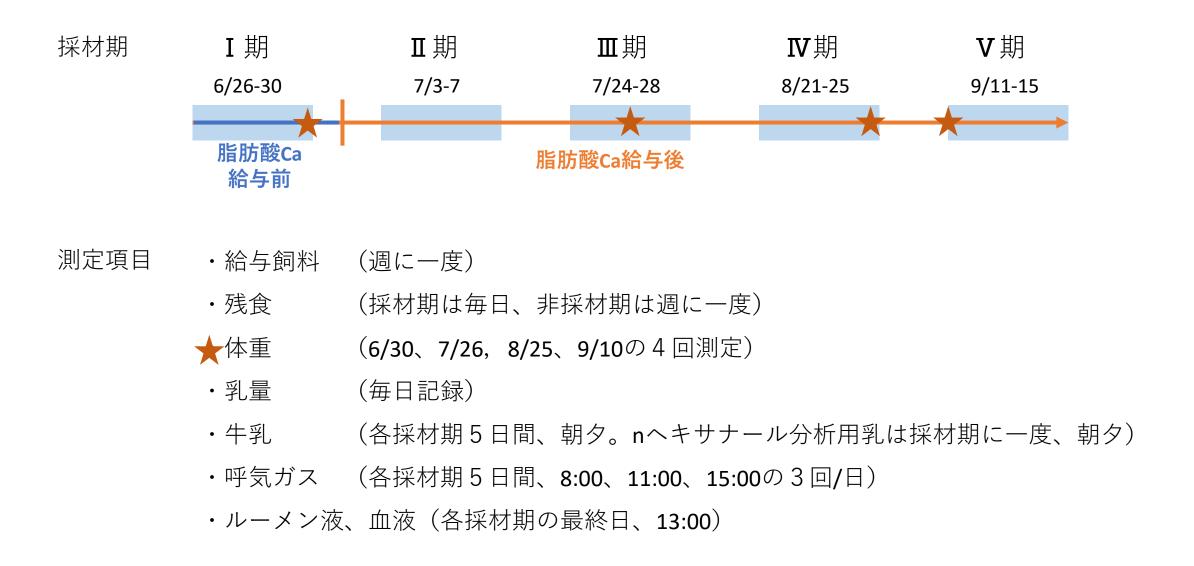
供試動物 ホルスタイン種泌乳牛 9 頭 (試験区 4 頭 + 対照区 5 頭、途中脱落有) 試験開始時点において、平均泌乳日数142 ± 40日

試験期間 令和5年6月26日~9月15日(約3ヵ月間)

試験処理 対照区(基礎飼料)と試験区(基礎飼料+脂肪酸Ca) 基礎飼料はトウモロコシサイレージ、市販配合飼料等を主体としたTMR

脂肪酸Ca → 不飽和脂肪酸含量を高めた脂肪酸Ca製剤を0.7%DMを目安にトップドレス給与

給餌方法 1日4回に分け(9:40、10:30、15:30、18:20) TDN要求量の100%程度になるように個別給餌ガス測定を行う採材期には、1日2回(9:40、18:20) とした 9:40、18:20の給餌の際に脂肪酸カルシウムを添加


搾乳方法 パーラー搾乳 (毎日 8:50 および 17:50)

測定項目 メタン排出量、体重、飼料摂取量、飼料成分、乳量、乳成分、 n-ヘキサナール含量、血液性状、 ルーメン液性状(短鎖脂肪酸組成、pH)

その他 飲水、鉱塩は自由摂取

測定項目と採材スケジュール

項目	対照区	試験区
乾物摂取量	23kg 前後から 16kg 前後に低下	23kg前後から14kg前後に低下
体重	670kg前後で推移	650kg前後で推移
乳量	37kg前後から24kg前後に低下	35kg前後から17kg前後に低下
乳脂率	3.4%前後で推移	3.7%前後で推移
3.5%脂肪補正乳量	35kg前後から26kg前後に低下	33kg前後から20kg前後に低下

項目	対照区	試験区
 乳汁飽和脂肪酸含量 	 72 %前後で推移	72%前後で推移
乳汁一価不飽和脂肪酸含量	25%前後で推移	25%前後で推移
乳汁多価不飽和脂肪酸含量	3.0%前後で推移	3.4%前後で推移
n-ヘキサナール	区間差なし	
メタン, L/kgDMI	20前後で推移	17前後で推移
メタン, L/kgMilk	13前後で推移	13前後で推移
メタン, L/kg3.5%FCM	13前後で推移	12前後で推移

項目	対照区	試験区
ルーメン液酢酸割合	58%前後で推移	58%前後で推移
ルーメン液プロピオン酸 割合	30%前後で推移	31%前後で推移
ルーメン液酪酸割合	9.3%前後で推移	8.3%前後で推移(有意差)
ルーメンpH	6.8前後で推移	6.8前後で推移
ルーメンVFA,	 99mM 前後で推移	89mM前後で推移(傾向あり)
ルーメン酢酸 / プロピオン酸	2.0前後で推移	2.0前後で推移

項目	対照区	試験区
血しょう総コレステロー ル, mg/dl	136前後で推移	136前後で推移
血しょう遊離脂肪酸, μEq/l	60前後で推移	60前後で推移
血しょう尿素窒素, mg/dl	11前後で推移	10前後で推移
血しょうβヒドロキシ酪 酸, μmol/L	570前後で推移	420前後で推移(有意差)
血しょうアルブミン, g/dl	3.8前後で推移	3.8前後で推移
血しょうクレアチニン, mg/dl	1.1前後で推移	1.0前後で推移
血しょう AST(アスパラギ ン酸 アミノトランスフェ ラーゼ), U/L	63前後で推移	70前後で推移

- ・乾物摂取量、体重、乳量、乳成分、乳中脂肪酸、乳中n-ヘキサナール含量について、 脂肪酸カルシウム給与による影響は認められなかった。
- ・メタン排出量は脂肪酸カルシウム給与区が低く推移したが、明瞭な低減効果は 認められなかった。
- ・ルーメン液酪酸割合、血中βヒドロキシ酪酸濃度に変化がみられたため、脂肪酸カルシウム給与がルーメン発酵に影響を与えた可能性がある。

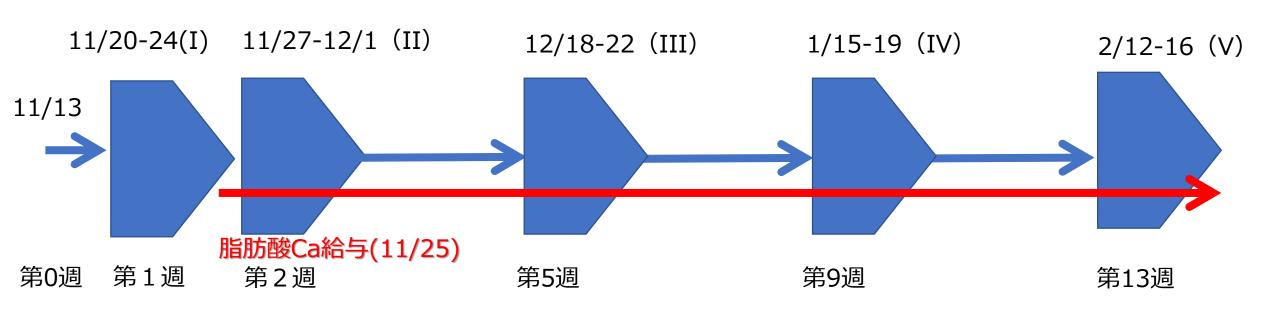
②不飽和脂肪酸含量の異なる脂肪酸カルシウム製剤の給与が 乳汁の自発性酸化臭原因物質発生に及ぼす影響調査

(農研機構、家畜改良センター新冠牧場)

- ・前年度事業の結果において不飽和脂肪酸含有量の高い脂肪酸カルシウム製剤を 長期給与した場合、乳汁中にn-ヘキサナールが検出された。
- ・そこで本調査では乳牛に不飽和脂肪酸含有量の異なる2種類の脂肪酸カルシウム製剤を長期給与した場合の乳汁中のn-ヘキサナール含量に及ぼす影響を明らかにする。

方法

<飼養条件>


- ・家畜改良センター新冠牧場において乳牛12頭(初産、平均体重613kg、平均分娩後日数150日)を供 試(約3か月間:2023年11月13日~2024年2月16日)
- ・飼料給与は1日2回(10:00、14:00)で飽食。鉱塩および飲水は自由摂取
- ・処理区:不飽和脂肪酸含量を高めた脂肪酸Ca給与(H区) 不飽和脂肪酸含量の低い脂肪酸Ca給与(L区)(各区6頭)
- ・脂肪酸カルシウムは各区の給与TMRに粗脂肪含量が6%程度になるようトップドレスで添加
- ・搾乳1日2回(9:00、16:00)

<調査項目>

- ・採材は5回(各11/20、11/27、12/18、1/15、2/12週の5日間)
- ・給与飼料(採材期に1回サンプリング)
- ・体重(月1回)、乳量(採材期に毎日)
- ・牛乳(各採材期間につき1日、乳成分、n-ヘキサナール)

採材スケジュール

試験飼料

飼料原料の配合割合		飼料の化学成分(設計値)	
	%乾物	有機物,%乾物	93.9
チモシー乾草	13.9	粗タンパク質	15.8
アルファルファキューブ	11.9	非繊維線炭水化物	34.0
圧ペントウモロコシ	5.9	中性デタージェント繊維	38.3
配合飼料	26.5	酸性デタージェント繊維	23.2
綿実	9.9	リグニン	5.5
ビートパルプ	29.7	粗脂肪	5.8
脂肪酸カルシウム	2.2	粗灰分	6.1
Total	100.0	TDN	70.2
		ME, MJ/kgDM	10.8

脂肪酸カルシウム

L脂肪酸Caの特徴

- ・パーム油主体
- ・粗脂肪含量84%DM

H脂肪酸Caの特徴

- ・パーム油、大豆油主体
- ·粗脂肪含量83%DM

(粗脂肪含量は実測値)

脂肪酸組成

	L	Н	
ミリスチン酸(C14), %	1.5	_	
パルミチン酸(C16)	44.0	26.0	
ステアリン酸(C18)	5.0	4.0	
オレイン酸(C18:1)	40.0	33.0	
リノール酸(C18:2)	9.5	32.0	
リノレン酸(C18:3)	_	5.0	
不飽和脂肪酸	49.5	70.0	
	\'/ \/	力 八丰店	1 /

項目	LΣ	H区
体重	600~650kgで推移	640~680kgで推移
乳量	31~28kgで推移	34~31kgで推移
乳脂率	5.2~5.7%で推移	4.9~4.4%で推移
乳タンパク率	3.8~4.0%で推移	3.5~3.4%で推移
乳糖率	4.8~4.7%で推移	4.9~4.7%で推移
3.5%乳脂補正 乳量	44~45kg/dayで推移	47~39kg/dayで推移
牛乳n-ヘキサ ナール濃度	73~149ppbで推移	29~110ppbで推移

15

まとめ

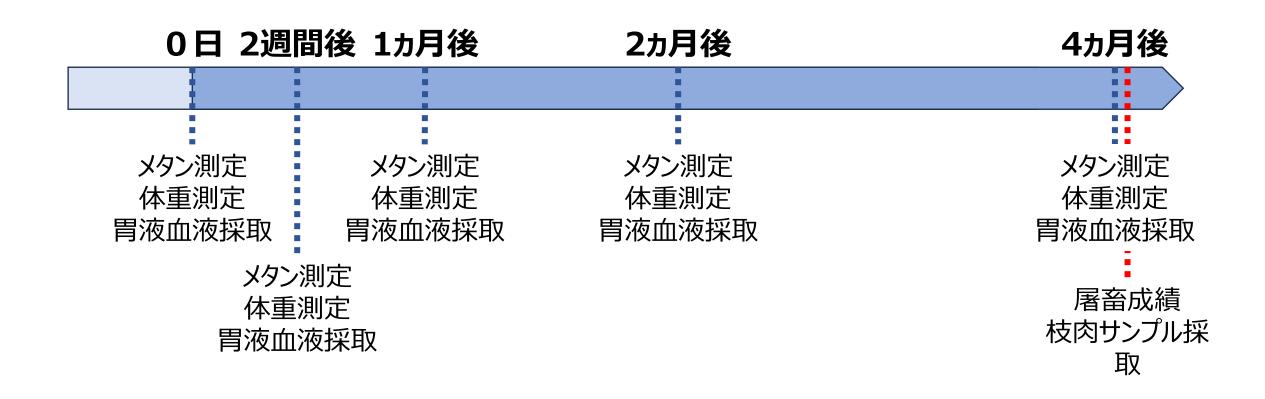
- ・体重、乳量には脂肪酸カルシウム製剤の不飽和脂肪酸含量の影響は認められなかった。
- ・乳脂率はL区で高くなったが、乳脂肪生産量としては両区で差はなかった。
- ・乳中n-ヘキサナール濃度に対する脂肪酸カルシウム製剤の不飽和脂肪酸含量の 影響は認められなかった。

③ 脂肪酸カルシウム長期給与による肉用牛の飼養成績および消化管からのメタン発生量削減効果の調査 (ニチレイフレッシュ、農研機構)

供試牛;

- ・黒毛和種×ホル種F1雌約18ヵ月齢20頭
- ・不飽和脂肪酸カルシウム給与区(試験区)10頭 vs. 対照区10頭

試験期間;


約4ヵ月間(18ヵ月齢~22ヵ月齢)。22ヵ月齢でと畜。

給与飼料;

- ・粗飼料;ウィートストロー、アルファルファ乾草
- ・指定配合飼料;試験区は不飽和脂肪酸カルシウムを混合(配合飼料の2%量)

現地測定・サンプリング項目;

残飼量; 毎日

呼気中メタン・二酸化炭素濃度;

試験開始中に5回測定。

※各測定時には1日2回(午前・午後)の測定を2日間実施。1回の測定は約7分。バックグラウンド測定は5分程度。1~3頭の測定毎にバックグラウンドを測定。

反すう胃液・血液 ; 同5回(ガス採取に合わせて測定)

体重; 同5回(ガス採取に合わせて測定)

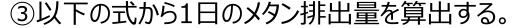
枝肉重量・格付け

評価項目;

乾物摂取量、飼料成分、メタン排出量、増体速度、反すう胃液中揮発性脂肪酸組成、

ロース芯化学成分・物性・食味、血中代謝産物、反すう胃内微生物相

メタン排出量の評価方法



①ウシの飼槽で呼気を含むガスを7分程度連続的に採取し、メタンと二酸化炭素濃度を測定する。

②バックグラウンドの影響を除いた牛ごとのメタン/二酸化炭素濃度比を算出する。

メタン排出量 (L/day) = メタン/二酸化炭素濃度比×(HP / 4.9) × RQ ここで,

RQ = 1.074-0.003283×粗飼料比率% + 0.6478×MEI/体重0.75

HP = [(MEI-体重0.75×MEm)×0.48 + 体重0.75×MEm]×1000

 $MEI = TDN \times DMI \times 3.62$

MEm; 0.1108 (雌牛)

HP, 熱発生量(kcal/日); 体重(kg); MEI, 代謝エネルギー摂取量(Mcal/日); MEm, 維持に必要な代謝エネルギー (Mcal/体重0.75 kg); TDN, 可消化養分総量 (%乾物当り); DMI, 乾物摂取量 (kg/日) Oikawa et al. (2022) 21

			対照区	試験区
配合飼料	粗タンパク質	%原物	12.5	12
	粗脂肪	%原物	2.5	3
	粗繊維	%原物	8	8
	粗灰分	%原物	8	8
	TDN	%原物	76	76.5
粗飼料	TDN	%乾物	48.3	48.3

	対照区	試験区
体重	約650から780まで増加	約640から770kgまで増加
日増体量	1.0kg/日前後で推移	1.0kg/日前後で推移
乾物摂取量	約9kg/日から11kg/日まで増加	約9kg/日から11kg/日まで増加
增体量/乾物摂取量	100g/kg前後で推移	101g/kg前後で推移
CH4排出量	約310L/日から390L/日まで増加	約290L/日から380L/日まで増加
CH4/乾物摂取量	32 L/kg前後で推移	32.4 L/kg前後で推移
CH4/增体量	320.7 L/kg前後で推移	326 L/kg前後で推移

全ての項目で対照区、試験区の間に有意な差は認められなかった。

	対照区	試験区
反すう胃液pH	7.0前後を推移	7.2前後を推移
反すう胃内短鎖脂肪酸		
酢酸	58.2 mol%前後を推移	58.8 mol%前後を推移
プロピオン酸	23.7 mol%前後を推移	23.4 mol%前後を推移
酪酸	11.8 mol%前後を推移	12.4 mol%前後を推移
酢酸/プロピオン酸比	2.7 mol%前後を推移	2.7 mol%前後を推移

全ての項目で対照区、試験区の間に有意な差は認められなかった。

枝肉成績および血液成分分析

枝肉成績 	試験区と対照区の差 (試験区平均値-対照区平均値)
枝肉重量, kg	-7.7
□−ス面積, cm2	5.9
バラの厚さ, cm	-0.1
皮下脂肪, cm	-0.8
歩留基準値	1.5
BMS	0.7
等級(脂肪交雑)	0.2
BCS	0
光沢	0.3
等級(色沢)	0.3
締まり	0.5
きめ	0.2
等級(締まり及びきめ)	0.5
BFS	0
光沢と質	0
等級(脂肪の色沢と質)	0

試験区で皮下脂肪が有意に薄く、歩留まり基準値が向上した。その他成績に差はなかった。

血液成分分析	試験区と対照区の差
	(試験区平均値-対照区平均値)
総蛋白, g/dL	-0.12
アルブミン, g/dL	-0.02
総コレステロール, mg/dL	23.5
中性脂肪, mg/dL	1.9
AST, GOT, U/L	-8.1
ALT, GPT, U/L	0.4
ALP/IFCC, U/L	-5.8
LD/IFCC, U/L	192.9
γGTP, U/L	1.3
CK, U/L	-3.6
尿素窒素, mg/dL	-0.85
クレアチニン, mg/dL	39
Na, mM	-0.5
K, mM	-0.01
Cl, mM	0.6
Ca, mg/dL	-0.03
NEFA, mg/dL	0.08
リン脂質, mg/dL	16.4
IP, mg/dL	0.14
Mg, mg/dL	0.06
A/G比	0.03
コルチソ゛ール, μg/dL	-0.05
総ケトン体, μM	50.8
アセト酢酸, μΜ	-2.2
3-ハイドロキシ酪酸, μM	53
血糖 mg/dL	-1.3
試験区で総コレステロールが高い傾	「向があり、良好なエネルギー供給が伺える。

食肉の脂肪酸分析および化学分析

脂肪酸分析(全脂肪酸中に占める割合)	試験区と対照区の差 (試験区平均値-対照区平均値)
C14:0 (ミリスチン酸),%	-0.04
C15:0(ペンタデカン酸),%	0.03
C16:0 (パルミチン酸),%	-1.69
cis C16:1(パルミトレイン酸),%	-0.16
C17:0(マルガリン酸),%	0.07
cis C17:1(ヘプタデカン酸),%	0.04
C18:0 (ステアリン酸),%	0.24
trans C18:1 (エライジン酸),%	0.08
cis C18:1 (オレイン酸),%	1.63
transC18: 2,%	-0.1
C18:2n-6(リノール酸),%	0.05
C18:3n-3(αリノレン酸),%	0.02
C20:0 (アラキジン酸),%	-0.01
C20:1(エイコエン酸),%	-0.01
C L A (c 9- t 11) (共役リノール酸),%	0
=上正人 ロファククイロロビロナエムマ ナフュウリ ンズン・エム だがくし	

試験区で飽和脂肪酸であるパルミチン酸が低い傾向、多価不飽和脂肪酸である αリノレン酸が高い傾向が見られた。

化学分析(可食部100gあたり)	試験区と対照区の差 (試験区平均値-対照区平均値)
	0.2
スレオニン,mg	0.6
セリン,mg	1.2
グルタミン酸,mg	0.1
グリシン,mg	1.5
アラニン,mg	3.6
バリン,mg	0.7
シスチン,mg	0.1
メチオニン,mg	0.2
イソロイシン,mg	0.3
ロイシン,mg	0.9
チロシン,mg	0.6
フェニルアラニン,mg	0.4
トリプトファン,mg	-0.3
プロリン,mg	0.8
リジン,mg	0.5
ヒスチジン,mg	0.8
アルギニン,mg	1.1
イノシン酸,mg	12.2
グリコーゲン,g	0.04
グルコース,g	検出限界以下~0.1

食肉の肉質分析および官能検査

官能検査 (対照区を「0点」としたときの試験区の各項目の強さを-複 数の官能検査員によって3から+3の7段階で評価した。)		
	-1から0の範囲	
	1から2の範囲	
	1万92011世	
	0から1の範囲	
	1から2の範囲	
	1	
	1	
がはできます。	1から3の範囲	
その強さ	0から1の範囲	
強さ(コク)	0から1の範囲	
	のうりの靶西	
しい香り	0から1の範囲	
	1から2の範囲	
	・合吐の白 トがコレめこれた	

脂肪酸組成の変化によって、脂肪融点の低下が見られた。

試験区で食味の向上がみとめられた。

- Prevotellaceae科の未分離菌、Escherichia属、Puniceicoccales目の未分離菌が試験区で対照区と 比較して有意に存在率が高かった。
- また、機能解析の結果、Nitrotoluene degradationのパスウェイが対照区で試験区と比較して高く、
 Other glycan degradationのパスウェイが試験区で対照区と比較して有意に高かった。

黒毛和種F1雌牛に18ヵ月齢~22ヵ月齢の期間において不飽和脂肪酸カルシウムを給与した場合、

- メタン排出量、反すう胃内短鎖脂肪酸組成および飼養成績に影響はみられない。
- 脂肪酸カルシウムの長期的給与は、肥育後期牛の健康状態に負の影響を与えず、慣行肥育と同等の枝肉成績を達成できた。血液成分分析からは良好なエネルギー供給が示唆された。
- 肉質成績においては、対照区と比較して有意に好ましい項目が確認され、食味の向上が示唆された。
- メタゲノム解析に関しては、メタン産生に関わる変化は見いだせなかった。
- 生産された畜産物の品質・食味は消費・流通上重要であり、上記の特性は脂肪酸カルシウムの普及上、重要なものと思われる。

④ 脂肪酸カルシウムの国内利用調査

(龍谷大学)

調査研究の内容

• 脂肪酸製剤の利用実態を把握するためのアンケート調査 酪農経営対象(回収率)

東北1県 (Y地域:59%)

中国3県(O地域:100%、H地域83.9%、T地域100%)

- 関係機関、酪農経営ヒアリング調査
- 主な調査ポイント

脂肪酸製剤の利用率、利用経営の特徴、利用方法、利用量

脂肪酸製剤の使用と頭数規模・乳量・乳質

						飼養頭数	女(頭)	経産牛1頭当	亞 子	儿成分率(%)		飼養方式
	区分		回答戸数	割合 (%)	経産牛	末経産	たり乳量 (kg)	脂肪率	無脂固形率	蛋白質率	フリース トール率	
			全体	51	100%	49.1	14.9	8,870	3.91	8.78	3.38	15.7%
東北	Y地域	使用	現在使用	10	19.6%	61.5	16.5	10,471	3.90	8.81	3.38	50.0%
		状況	過去使用	9	17.6%	50.6	19.2	8,642	3.93	8.81	3.41	22.2%
			使用なし	32	62.7%	44.8	12.9	8,434	3.91	8.76	3.37	3.1%
			全体	155	100%	49.1	14.9	8,870	3.91	8.78	3.38	15.7%
	O地域	使用	現在使用	54	34.8%	61.5	16.5	10,471	3.90	8.81	3.38	50.0%
		状況	過去使用	17	11.0%	50.6	19.2	8,642	3.93	8.81	3.41	22.2%
中国			使用なし	84	54.2%	44.8	12.9	8,434	3.91	8.76	3.37	3.1%
			全体	78	100%	43.0	19.4	8,122	4.01	8.82	3.40	25.6%
	H地域		現在使用	10	12.8%	53.5	27.7	8,421	3.86	8.83	3.40	40.0%
		使用 状況	過去使用	21	26.9%	53.9	27.0	9,367	3.96	8.82	3.38	38.1%
			使用なし	47	60.3%	36.3	14.5	7,541	4.06	8.81	3.41	17.0%
				91	100.0%	66.5	39.7	9,210	3.96	8.87	3.39	33.0%
	T地域		現在使用	35	38.5%	99.1	59.5	9,871	3.91	8.87	3.38	65.7%
		使用 状況	過去使用	7	7.7%	44.6	29.4	9,725	3.91	8.84	3.36	14.3%
		1人)兀	使用なし	49	53.8%	46.4	27.0	8,664	4.00	8.87	3.40	12.2%

使用経営の特徴:多頭飼養、高乳量、乳脂肪率が相対的に低い

脂肪酸製剤の使用状況(総括)

	北海道	東北	東海	中国	九州
現在使用	24.5%	19.6%	36.0%	30.6%	38.3%
過去に使用	21.7%	17.6%	11.8%	13.9%	8.5%
使用経験なし	53.8%	62.7%	52.2%	55.6%	53.2%

温暖な地域になるほど使用する経営が多くなる

脂肪酸製剤の使用開始時期(「現在使用の経営」)

	Y地域	O地域	H地域	T地域	全体
2000年より前	0	3	0	0	3
2000年~2009年	0	6	0	11	17
2010年~2019年	3	24	2	18	47
2020年以降	4	17	7	15	43
無回答	3	4	1	1	9

1987年に生乳取引基準:乳脂肪3.2%→3.5% 1990年代はじめに暑熱対策として注目

この当時から継続して使用している経営は 少ないとみられる

多くは、2010年以降とくに2020年以降に使用開始

脂肪酸製剤の使用目的

	Y址	Y地域		O地域		H地域		T地域		全体	
	回答数	割合 (%)									
乳量UP	3	30.0%	10	18.5%	1	10.0%	11	31.4%	25	22.9%	
乳脂肪UP	7	70.0%	45	83.3%	10	100.0%	22	62.9%	84	77.1%	
繁殖成績UP	4	40.0%	8	14.8%	0	0.0%	12	34.3%	24	22.0%	
その他	0	0.0%	3	5.6%	0	0.0%	1	2.9%	4	3.7%	
「現在使用」 戸数	10		54		10		35		109		

注:重複回答あり

- ・使用の第一の目的は「乳脂肪率の向上」
- ・「乳量の増加」、「繁殖成績の向上」が拮抗して次に続くが乳脂肪率に比べて低位

脂肪酸製剤の添加期間

	Y地	2域	O址	也域	H址	也域	T地	也域	全	体
通年	6	60.0%	24	44.4%	3	27.3%	30	69.8%	63	53.8%
時期的(一定期間)	2	20.0%	24	44.4%	6	54.5%	8	18.6%	40	34.2%
必要に応じて(不定期)	2	20.0%	5	9.3%	2	18.2%	5	11.6%	14	12.0%
無回答			1						1	

- ・全体的にみれば、通年で添加するパターンが多い
- ・地域的に異なったパターンが存在

Y地域、T地域 → 通年型

O地域 → 通年利用と時期的利用の併存

H地域 → 時期的利用が主 TMRセンターの影響

技術的 位置づけ 多頭化・高泌乳化のなかで構造的に添加が位置づけられている 夏場の乳脂肪率低下への予防的措置

脂肪酸製剤の添加期間(総括)

	北海道	東北	東海	中国	九州
通年	94.4%	66.7%	65.00%	53.3%	63.6%
時期的(一定期間)	5.6%	16.7%	10.00%	35.5%	13.6%
必要に応じて(不定期)	0.0%	16.7%	25.00%	11.2%	22.7%

全国的にみても「通年」が基本型とみられる

脂肪酸製剤の添加量

(g/頭·日)

	Y地域	O地域	H地域	T地域	全体
平均	113.9	143	118.7	122.5	131.1
最大	350	600	200	300	600
最小	40	12	30	10	10

(g/頭・日)

北海道	168.2
東北	156.8
東海	151.5
中国	132.5
九州	150.2

脂肪酸製剤の添加期間と添加量

(g/頭·日)

	Y地域	O地域	H地域	T地域	全平均
通年	150.0	191.4	102.3	130.3	154.0
時期的 (一定期間)	92.5	139.2	141.7	107.2	130.3
必要に応じて(不定期)	45.0	80.0	115.0	100.0	89.1

- ・全体的に、「通年」の添加量が最も多く、「時期的(一定期間)」の添加量よりも20g以上多い。 飼料設計上で恒常的に位置づけられている。
- ・乳脂率が低下したときに必要に応じて添加する場合の添加量は、通年や時期的な利用の場合に 比べて添加量が少ない。

脂肪酸製剤の添加期間と年間添加量

(g/頭・日)

	添加日数 (日)	1頭当たり日給与量 (g/日)	年間添加量 (g)	
通年添加	365	154.0	56,210	>10kg
時期的添加				
夏季3ヶ月	92	130.3	11,988	>10kg
夏季2ヶ月	62	89.1	8.079	<10kg

エコ酪事業:対象牛1頭当たり年間10kg以上

平均添加量でみれば、 通年添加の場合は10kg/年を超える 時期的添加でも3ヶ月以上の点か期間であれば10kg/年を超える

脂肪酸製剤の添加期間と年間添加量

(g/頭·日)

	添加日数 (日)	1頭当たり給与量 (g)	年間給与量 (g)	年間費用(*) (円)	交付金(対象 牛1頭当た り)
通年添加	365	154.0	56,210	<mark>15,289</mark>	>2,000
時期的添加					
夏季3ヶ月	92	130.3	11,988	3,261	>2,000
夏季2ヶ月	62	89.1	8.079		

(*) 最も多く利用されている銘柄の購入価格 6800円/25kgで算出

添加費用は交付金より大きい

	添加日数	添加量	費用	
	(日)	(g/頭・ 日)	(円/頭・日)	
通年添加	365	154.0	41.9	
時期的添加				
夏季3ヶ月	92	130.3	35.4	
夏季2ヶ月	62	89.1	24.2	

なぜ添加するか?

乳脂肪率が3.5%を下回って乳価が減算されるリスクを回避

		乳脂肪率が3.4%になった場合の損失額					
		ペナルティ単価5円/kgの場合 ペナルティ単価2円/kgの場合			kgの場合		
乳量水準	(kg/頭・日)	20	25	30	20	25	30
減算金額	(円/頭・日)	-100	-125	-150	-40	-50	-60

まとめ

- 温暖な地域へ行くほど利用経営が多くなる
- 利用経営の特徴:多頭化、高乳量化が進み乳脂肪率が比較的低い
- 利用する第一の目的は乳脂肪率の向上
- 利用開始年次:2010年以降とくに2020年以降が多い
- ・添加量は、全体平均は1日1頭当たり131g
- 添加の時期は「通年型」が最も多く、「時期(期間)限定型」がこれに続く
- 添加の時期的パターンによって添加量が異なる
- 通年型が最も多く154g/頭・日、時期的130g/頭・日、必要時(不定期)89g/頭・日
- ・添加の行動原理としては、乳脂率3.5%を下回った際の乳価減算のリスク回避