
農業生産における 気候変動適応ガイド

りんご編



<sup>令和2年12月</sup> 農林水産省

#### 《表紙の写真》

ふじ

シナノゴールド

青森県ホームページより (https://www.pref.aomori.lg.jp/sangyo/agri/ringo-hinsyu05.html)

長野県上田市ホームページより

(https://www.city.ueda.nagano.jp/soshiki/nosanmarket/4933.html)

王林

おぜの紅

青森県ホームページより (https://www.pref.aomori.lg.jp/sangyo/agri/ringo-hinsyu05.html)

群馬県ホームページより (https://www.pref.gunma.jp/06/f0100056.html)

# 農業生産における気候変動適応ガイド りんご編

## 目 次

| 本ガイドについて |                  |                                            |                           |   | 1  |
|----------|------------------|--------------------------------------------|---------------------------|---|----|
|          | I                | 農業生産活動における気候変動の影響                          |                           |   |    |
|          |                  | 止まらない気候変動                                  |                           |   | 2  |
|          |                  | 気候変動によるりんごへの影響(現在)<br>気候変動によるりんごへの影響(将来予測) |                           |   | 3  |
|          |                  | 気候変動                                       | こよるりんごへの影響(将来予測)          |   | 4  |
|          |                  |                                            |                           |   |    |
|          | п                | 気候変動                                       | <b>適応の取組を行う意義・期待される効果</b> |   |    |
|          |                  | 気候変動「                                      | リスクの軽減による農業経営の安定          |   | 5  |
|          |                  | 取組による                                      | る産地の優位性の発揮                |   | e  |
|          |                  |                                            |                           |   |    |
|          | Ш                | 気候変動                                       | こ対する適応の進め方                |   |    |
|          | 気候変動に対する適応策検討の流れ |                                            |                           | 7 |    |
|          |                  | STEP 1                                     | これまでに経験した気候変動影響を整理する      |   | 10 |
|          |                  | STEP 2                                     | 将来の気候変動影響に関する情報を収集・整理する   |   | 12 |
|          |                  | STEP 3                                     | 現在実施している適応策の実態と効果を整理する    |   | 14 |
|          |                  | STEP 4                                     | 優先課題を特定し、適応策リストを作成する      |   | 15 |
|          |                  | STEP 5                                     | 適応策を選択し、適応策実行計画を策定する      |   | 17 |
|          | 適応策の評価と見直し       |                                            |                           |   | 20 |
|          |                  |                                            |                           |   |    |
| 《参考文献》   |                  |                                            |                           |   | 21 |

## 本ガイドについて

### ■ 本ガイドの目的

気候変動による農業生産への影響が顕在化する中、今後、温暖化が進行した場合には、農業生産への悪 影響のリスクがさらに高まり、農産物の安定供給に支障をきたします。

高温でも品質の低下が起きにくい技術、品種・品目の開発・導入を進めてきている中、今後はこれまでの研究や現場での取組を通じ、影響の将来予測や適応技術の効果等の情報を活用し、更なる温暖化の進行に備え、産地として持続的に生産活動が行えるよう、将来起こりうる気候変動リスクを可能な限り回避・軽減するリスクマネジメントの取組が重要です。

このため、産地自らが気候変動に対するリスクマネジメントや適応策を実行する際の指導の手引きと して本ガイドを作成しました。本ガイドで示す手順を参考に、各産地での気候変動への適応を進めてい きます。

## ■ 本ガイドで対象とする気候変動への適応策

本ガイドは、農業生産において数多く実施されている気候変動適応策の中から、りんごの生産過程における特に高温に係る影響と、その対策としての栽培技術や品種転換などに関する適応策の実施を念頭に作成しています。適応策には、栽培管理技術の変更のような生産者において低コストですぐに導入可能なものから、品種開発や品目転換のようにコストと時間を要するものまで、さまざまです。個別の生産者では対応できない適応策は、自治体や農業協同組合、農業共済組合、地域の関係者等が連携して中長期的な計画に基づいて取組を進める必要があります。

## ■ 本ガイドの対象者

本ガイドは、主に都道府県の農業部局担当者や普及指導員を対象として作成していますが、農業協同組合等の技術担当者や地域の農業リーダーの方々にも参考になる内容となっています。





## I 農業生産活動における気候変動の影響

### ■ 止まらない気候変動

#### ■ 身近に迫る気候変動

気候変動の影響は、私たちの生活に身近なところで、"〇〇年に一度の"と表現されるような極端な 気象現象として実感することが増えてきました。最近発生した以下の極端な気象現象は、いずれも地球 温暖化との関連が指摘され、農業生産のみならず社会に大きな影響を与えています。

#### 高温

2018 年夏、日本列島は記録的な猛暑に見舞われ、熱中症による死亡者数は全国で 1,500 人を超えました<sup>1</sup>。また、全国のアメダス地点における猛暑日の年間の延べ地点数が、過去最多を記録しました。その後のシミュレーションによる検証の結果、地球温暖化が起きていなければ、このような猛暑は起こりえないことが明らかになりました<sup>2</sup>。

#### 台 風

2018 年から 2020 年にかけ、日本列島には強い合風がいくつも上陸し、各地に甚大な被害が発生しました。地球温暖化の進行により日本が位置する中緯度帯では、今世紀末頃には台風の移動速度が現在よりもおよそ 10%程度遅くなることが予測されています。このことは、台風に伴う影響を受ける時間が長くなることを意味しています<sup>4</sup>。

#### 大 雨

2020年7月は「令和2年7月豪雨」の発生を始め、東北地方、東日本太平洋側、西日本日本海側、西日本太平洋側では、1946年の統計開始以降、第1位の多雨と第1位の日照不足となるなど、顕著な天候不順となりました。一連の大雨では、地球温暖化による長期的な大気中の水蒸気の増加が、降水量を増やした可能性があると発表されました3。

#### 暖冬

2019 年末から 2020 年にかけての冬季は、日本では 統計開始以降最も気温の高い記録的な暖冬となり ました。また降雪量も全国的に少なく、北日本日本 海側と東日本日本海側では1962 年冬の統計開始以 降の最少記録を更新しました。地球温暖化による 地球全体の気温の上昇傾向の継続が、背景の一つ にあったと考えられています<sup>5</sup>。

出典:厚生労働省<sup>1</sup>,気象庁気象研究所ほか<sup>2,4</sup>,気象庁<sup>3,5</sup>各発表資料より

#### ■ これまでの気候変動

気象庁の 2020 年 1 月の発表によると、これまで日本の平均気温は様々な変動を繰り返しながら上昇しており、1898 年以降では 100 年あたり 1.24℃の割合で上昇しています。特に、1990 年代以降、高温となる年が頻繁に現れており、2019 年の日本の平均気温の基準値(1981~2010 年の 30 年平均値)からの偏差は+0.92℃で、1898年の統計開始以降、最も高い値となりました(図 1)。日本の気温上昇が世界の平均(陸上で 100 年あたり 0.94℃)に比べて大きいのは、日本が、地球温暖化による気温の上昇率が比較的大きい北半球の中緯度に位置しているためと考えられます。

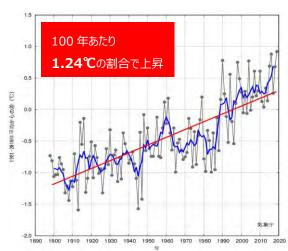



図 1 日本の年平均気温偏差

出典:気象庁ホームページ6より作成

気温の上昇にともない、熱帯夜(夜間の最低気温が25℃以上の夜)や猛暑日(1日の最高気温が35℃以上の日)は増え、冬日(1日の最低気温が0℃未満の日)は少なくなっています。1時間に降る雨の量が50ミリ以上の日数は、長期的に増加傾向にあり、地球温暖化が影響している可能性があります(図 2)。

#### ■ 将来の気候予測

また、気象庁が 2015 年8と 2017 年9に公表したレポートでは、現在のペースで温室効果ガスの排出が進んだ場合 (RCP8.5)、現在と比較した日本の平均気温は 2050 年頃にはおよそ 2℃程度、2100 年頃には 4~5℃程度、それぞれ上昇すると報告されているほか (図 3)、短時間強雨の発生回数の増加などが予測されています。



図 2 全国の 1 時間降水量 50mm 以上の 年間発生回数

出典:気象庁ホームページ7より作成

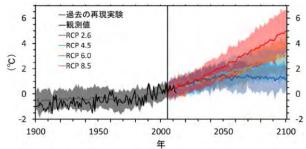



図 3 複数の気候モデルによる日本の平均気温 の予測結果

出典:気象庁「異常気象レポート 2014」8より作成

### ■ 気候変動によるりんごへの影響(現在)

農業生産に影響を与える気象要因は、気温、降水、台風等、年によって様々に変化しますが、図 1 (p. 2) に示した通り、気候変動により日本の平均気温は少しずつ上昇しており、今後もこの傾向が続くと予測されています。農林水産省では 2007 年より概ね毎年、全国の都道府県を対象とした農作物の高温影響による調査を行い、その結果を「地球温暖化影響調査レポート」 10等で発表してきました。本レポートでは、りんごへの高温による影響として図 4 に示す日焼け果、着色不良・着色遅延のほか、虫害の多発、凍霜害、発芽・開花期の前進等が報告されています。





図 4 りんごの高温による主な影響 (右図の温度は、着色期における人工気象室の温度を表す。)

写真提供:(左)群馬県より、(右)杉浦 俊彦 氏(農業・食品産業技術総合研究機構)より

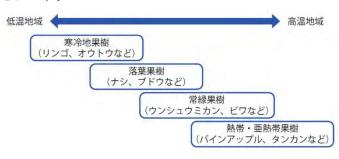
特にこれら外観品質の低下は販売価格に影響し、生産者の収入や産地ブランドの低下につながるため、十分な対策が求められます。

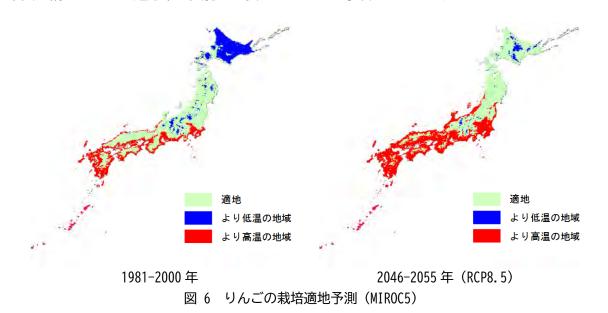
RCP : 代表的濃度経路。RCPに続く数値が大きいほど、将来の温室効果ガスの排出が多いことを意味し、気温上昇が大きくなる。

## ■ 気候変動によるりんごへの影響(将来予測)

農業は気候変動の影響を受けやすいため、従来から、気候に対する対策が取られてきました。しかし近年、過去に経験したことがないような高温や降雨により、大きな被害が出る等、これまでの対策では間に合わなくなりつつある状況も発生しています。今後の気候変動の進行により、図 4 (p.3) に示したような影響がさらに頻繁に、また深刻化することが危惧されます。

果樹は品目によって代表的な産地や特徴的な果樹ブランドがあるように、地域的な気候との関連が強く、水稲等と異なり気候への対応の幅が狭いことが特徴です(図5)。栽培適地を決める要因は土壌条件、社会的立地、日射条件、降水、風など多くの要因がありますが、最も重要な要因は気温です。





図 5 果樹のグループと栽培適地

出典:「気候変動適応技術の社会実装ガイドブック」11

図 6 は将来の気温予測に基づいた、りんごの栽

培適地についての将来予測を示しています。「果樹農業の振興を図るための基本方針」(農林水産省,2020) 12では、りんご栽培に適する地域を"年平均気温が6~14℃の地域"としています。1981~2000年の栽培適地に比べ、2046~2055年頃には、関東地方内陸部、本州の日本海側等にりんご栽培には適さない高温の地域が広がり、一方で北海道の道北や道東に栽培適地が広がることが予測されています(RCP8.5:現在のペースで温室効果ガスの排出が進んだ場合)。

一般に果樹は一度植栽すると、30 年程度は栽培が続きます。そのため、栽培過程において気候変動の 影響を非常に受けやすい作物であるといえます。この予測は将来の平均気温予測のみを用いたものであ り、栽培に影響を与える他の要因は含まないため不確実なものですが、気候変動による将来の高温に対 する確実な備え、つまり適応策の実施が必要であることを示唆しています。



出典:農林水産省「気候変動の影響への適応に向けた将来展望」(2019) 13

## Ⅲ 気候変動適応の取組を行う意義・期待される効果

### ■ 気候変動リスクの軽減による農業経営の安定

前章で見たとおり、今後も気候変動が進行していくと予測される中、農業生産への影響を極力抑えるために、適切な時期に適切な対策をとっていく必要があります。高温や大雨等による生育不良や病害虫の増加等による収量の減少、品質低下による等階級の低下、作期のずれによる市場価格の下落等、気候変動影響は生産者の所得低下につながるものであり、地域や国全体の経済的損失の増大につながる大きな問題であるといえます。

適応への取組は、これらの気候変動による経済的損失の影響を将来に渡る経営リスクと考え、リスクに対する取組を進めることであるという側面も持っています。リスクに備えるために農業保険への加入が有効な手段ですが、適応策の適切な導入によるリスク管理が、保険事故を減らし、農業経営の安定につながり、地域経済の安定にもつながります。

適応策には、栽培管理技術の変更のように個別の生産者において低コストですぐに導入可能なものから、品種開発や品目転換のようにコストと時間を必要とするものまで、さまざまです。ブランド作物を抱える背景から、品種や品目の変更が困難な産地もあります。このような、個別の生産者では対応できない適応策は、自治体や農業協同組合、農業共済組合、地域の関係者等が横断的に協力し、産地における中長期的な計画に基づいて取組を進める必要があります。

すぐに対応可能な対策は速やかに導入することが重要ですが、今後の気温上昇等によっては、効果を発揮しなくなる時期が来ることも念頭に置く必要があります。また、農産物に影響が発生してからでは対策が間に合わない場合もあります。そのため、中長期的な将来に渡る適応策についても、地域の実態を踏まえ早い段階から計画的に備えを進めることで、将来に予測されるリスクの軽減につながります。

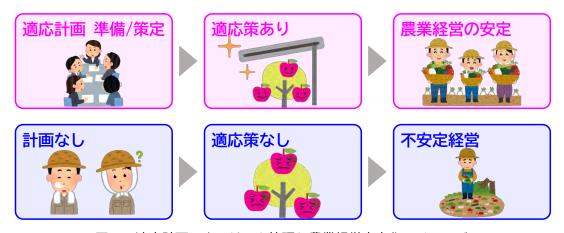



図 7 適応計画によるリスク管理と農業経営安定化のイメージ

図の出典 (一部):パンフレット「目で見る適応策」(2018) 14