(参考資料4)

DNA分析によるいぐさ品種「ひのみどり」の識別

- (注) ここに示す識別手法については、独立行政法人農業・生物系特定産業技術研究機構 が特許出願中である。
 - . DNAの抽出(各手法で共通)
- 1. 劇薬品(クロロフォルム等)を使用しない場合(第1法)

(1)機器・試薬

- ・FastPrep FP-100 (フナコシ製)同等品
- ・ウォーターバスまたはヒートブロック(55, 42)
- ・振とう装置
- ・ジルコニア・ビーズ(5 mm)
- ・2 ml サンプルチューブ (スクリューキャップ付き)
- ・1.5 ml サンプルチューブ
- ・CTAB 抽出バッファー (100 mM Tris-HCl pH 8.0, 50 mM EDTA, 1.4 M NaCl, 1% CTAB)
- ・ メルカプトエタノール
- ・プロテナーゼK (Invitrogen 製, 20 mg/ml)
- ・PVPP(ポリビニルポリピロリドン,不溶性)
- ・ProCipitate (LigoChem 社製,エア・ブラウン社取り扱い)
- ・イソプロピルアルコール
- ・70-80%エタノール
- ・TE 緩衝液 (10 mM Tris-HCl pH 7.5, 1 mM EDTA)
- ・RNaseA (日本ジーン社製, 20 mg/ml)
- ・(オプション 1) 蛍光光度計(日立 F-4010, Bio-Rad VersaFluor Fluorometer 等)
- ·(オプション 1) 蛍光色素 H33258 (1 mg/ml)
- ・(オプション 1) TNE 緩衝液 (10 mM Tris-HCl, 1 mM EDTA, 100 mM NaCl)
- ·(オプション 1,2) -DNA (30 mg/ml)
- ・(オプション 2) TAE 緩衝液 (40 mM Tris-acetate, 1 mM EDTA)
- ・(オプション 2) アガロースゲル $(0.8 \sim 1.0 \%)$
- ·(オプション 2) 臭化エチジウム水溶液(10 mg/ml)
- ・(オプション 2)トランスイルミネーター
- ・(オプション 2) ポラロイド MP-4 カメラあるいはデジタルカメラ
- ・(オプション 2) ローディングダイ
- (注)オプション 1 は蛍光光度計を利用する場合。 オプション 2 はアガロースゲルを利用する場合。

(2)方法

サンプルの粉砕

- ア.ジルコニア・ビーズ 1 個と 20 $\,$ mg の PVPP をチューブに入れる。あらかじめ大量に準備しておくと便利である。
- イ.畳表のうら毛1本(6 cm)を長さ5 mm 程度に切断してサンプルチューブに入れる。 (ポリ・マイクロ漏斗を使うと便利)

- うら毛(畳表の端の先端部分)

サンプル取りでは,余裕をもって長さ8 cm (短ければできるだけ長く)で切り取る。

- ウ.チューブを FastPrep FP-100 にセットし,速度 5.5 で 35 秒間粉砕する。
- エ.チューブを遠心機にセットして室温,13,000 rpm,15 秒間スピンダウンする。

DNAの抽出

- ア.使用直前にサンプル 1 点あたり 700 μ l の CTAB 抽出バッファーに 7 μ l メルカブトエタノール,3.5 μ l プロテナーゼ K (20~mg/ml) をあらかじめ加えておく。
- イ・サンプル 1 点あたりア・で調製した 700 μl の CTAB 抽出バッファー/ ・メルカプブトエタノール/プロテナーゼ K を加えよく混合する。
- ウ.55 にセットしたウォーターバスまたはヒートブロックにチューブを入れて,1時間加温する。その間,20-30分に1回程度攪拌する。
- エ.4 , 14,000 rpm , 15 分間遠心分離する。
- オ.上清 400 µl を新しいチューブに移す。(植物体の残渣が多少入っても問題ない)
- カ.サンブル1点あたり 100 μl の ProCipitate を加える。
- キ.振とう装置で5-10分間攪拌する。
- ク.4 , 14,000 rpm , 15 分間遠心分離する。
- ケ.上清 400 μl を新しいチューブに移す。
- コ.240 μl のイソブロピルアルコールを加え攪拌し完全に混和する。
- サ.室温で30分から一晩静置する。
- シ.室温,14,000 rpm,15 分間遠心分離する。
- ス.上清をデカンテーションで捨てる。
- セ.数秒間遠心して上清を集め,ピペットで完全に捨てる。
- ソ.800 μl の 70-80% エタノールを加えチューブの内壁を洗う。
- タ.室温,14,000 rpm,5分間遠心分離する。
- チ.上清をデカンテーションで捨てる。
- ツ.室温,14,000 rpm,数秒間遠心して上清を集め,ピペットで完全に捨てる。
- テ.チューブの蓋を開けて,室温で10分間乾燥させる。
- ト.RNase 溶液 (20 mg/ml)を TE 緩衝液で 10,000 倍に希釈する。
- ナ.上記ト.で調製した 50 μl の TE 緩衝液を加え,攪拌・スピンダウンする。
- 二.42 のウォーターバスまたはヒートブロックで1時間加温する。

ヌ.4 で保存する。

* この方法で抽出した DNA の濃度は 100-400 $ng/\mu l$ の高濃度になる。アガロースゲルで DNA 濃度を測定する場合は,DNA を溶解する TE バッファーの量を 100 μl 程度まで増 やした方が最終濃度が下がって測定に都合が良い。

ゲノムDNAの定量

(蛍光光度計(日立 F-4010)を使用した場合)

- ア.0.1 μg/ml の H33258 を含む TNE 緩衝液をサンブル 1 点あたり 2 ml 用意する。
- イ. 石英セルに 2 ml 上記ア. で用意した H33258/TNE を入れる。
- ウ.ブランクを測定する。
- 工.標準液としてブランクに 2 μl の -DNA を加えて測定する。
- オ. 石英セルに 2 ml の上記ア. で用意した H33258/TNE を入れる。
- カ.2 μl の試料を加え測定する。測定値が表示される。

(アガロースゲルを使用した場合)

- ア. 0.5 μg/ml の臭化エチジウムを含む 0.8-1.0 %のアガロースゲルを準備する。
- イ . -DNA を TE 緩衝液で希釈して 10ng/µl の標準品を作る。
- ウ.アガロースゲルに 1 レーンあたり 10,20,30,40,50 ng の -DNA 標準品をアプライする。
- エ.アガロースゲルに 5 倍希釈したサンプルを 2 μl アプライする。
- オ.100 V で 5 分間泳動する。
- カ.トランスイルミネーター上写真を撮る。 写真上のサンプルのバンドの濃さを標準品のものと比較して濃度を判定する。

2. 劇薬品(クロロフォルム等)を使用できる場合(第2法)

(1)機器・試薬

- ・フナコシ, FastPrep FP-100 あるいは同等品
- ・ \dot{p} ウォーターバスまたはヒートブロック(55 , 42)
- ・振とう装置
- ・ジルコニア・ビーズ(5 mm)
- ・2 ml サンプルチューブ (スクリューキャップ付き)
- ・1.5 ml サンプルチューブ
- ・CTAB 抽出バッファー (100 mM Tris-HCl pH 8.0, 50 mM EDTA, 1.4 M NaCl, 1% CTAB)
- ・ メルカプトエタノール
- ・プロテナーゼK (Invitrogen 製, 20 mg/ml)
- ・PVPP(ポリビニルポリピロリドン,不溶性)
- ・CIAA (クロロホルム/イソアミルアルコール=24:1)
- ・イソプロピルアルコール
- ・70-80%エタノール
- ・TE 緩衝液(10 mM Tris-HCl pH 7.5, 1 mM EDTA)
- ・RNaseA (日本ジーン社製, 20 mg/ml)
- ・(オプション 1) 蛍光光度計(日立 F-4010, Bio-Rad VersaFluor Fluorometer 等)
- ·(オプション 1) 蛍光色素 H33258 (1 mg/ml)
- ・(オプション 1) TNE 緩衝液 (10 mM Tris-HCl, 1 mM EDTA, 100 mM NaCl)
- ·(オプション 1,2) -DNA (30 mg/ml)
- ・(オプション 2) TAE 緩衝液 (40 mM Tris-acetate, 1 mM EDTA)
- ・(オプション 2) アガロースゲル(0.8 ~ 1.0 %)
- ·(オプション 2) 臭化エチジウム水溶液 (10 mg/ml)
- ・(オプション 2)トランスイルミネーター
- ・(オプション 2) ポラロイド MP-4 カメラあるいはデジタルカメラ
- ・(オプション 2) ローディングダイ
- (注)オプション1は蛍光光度計を利用する場合。 オプション2はアガロースゲルを利用する場合。

(2)方法

サンプルの粉砕

- ア.ジルコニア・ビーズ 1 個と 20 mg の PVPP をチューブに入れる。あらかじめ大量に準備しておくと便利である。
- イ.畳表のうら毛1本(6 cm)を長さ 5 mm 程度に切断してサンプルチューブに入れる。 (ポリ・マイクロ漏斗を使うと便利)

うら毛(畳表の端の先端部分)

サンプル取りでは,余裕をもって長さ8 cm (短ければできるだけ長く)で切り取る。

- ウ.チューブを FastPrep FP-100 にセットし,速度 5.5 で 35 秒間粉砕する。
- エ.チューブを遠心機にセットして,室温,13,000 rpm,15 秒間スピンダウンする。

DNAの抽出

- ア.使用直前にサンプル 1 点あたり 700 μ l の CTAB 抽出バッファーに 7 μ l メルカブトエタノール,3.5 μ l プロテナーゼ K 溶液(20 mg/ml)をあらかじめ加えておく。
- イ・サンプル 1 点あたりア・で調製した 700 μl の CTAB 抽出バッファー/ メルカプブトエタノール/プロテナーゼ K を加えよく混合する。
- ウ.55 にセットしたウォーターバスまたはヒートブロックにチューブを入れて,1時間加温する。その間,20-30分に1回程度攪拌する。
- エ.4 , 14,000 rpm , 15 秒間スピンダウンする。
- オ. 室温まで冷まして, 700 μl の CIAA を加え, 30 分間振とうする。
- カ.4 , 14,000 rpm , 15 分間遠心分離する。
- キ.上清 400 µl を新しいチューブに移す。
- ク.240 ul のイソプロピルアルコールを加え攪拌し完全に混和する。
- ケ.室温で30分から一晩静置する。
- コ.室温,14,000 rpm,15 分間遠心分離する。
- サ.上清をデカンテーションで捨てる。
- シ.数秒間遠心して上清を集め,ピペットで完全に捨てる。
- ス.800 µlの70-80%エタノールを加えチューブの内壁を洗う。
- セ.室温,14,000 rpm,5分間遠心分離する。
- ソ.上清をデカンテーションで捨てる。
- タ.室温,14,000 rpm,数秒間遠心して上清を集め,ピペットで完全に捨てる。
- チ.チューブの蓋を開けて,室温で10分間乾燥させる。
- ツ. RNase 溶液 (20 mg/ml)を TE 緩衝液で 10,000 倍に希釈する。
- テ.上記ツ.で調製した 50 μl の TE 緩衝液を加え,攪拌・スピンダウンする。
- ト.42 のウォーターバスまたはヒートブロックで1時間加温する。
- ナ.冷蔵庫で保存する。
 - * この方法で抽出した DNA の濃度は 100-400 $ng/\mu l$ の高濃度になる。アガロースゲルで DNA 濃度を測定する場合は,DNA を溶解する TE バッファーの量を 100 μl 程度まで増 やした方が最終濃度が下がって測定に都合が良い。

ゲノムDNAの定量

(蛍光光度計(日立 F-4010)を使用した場合)

- ア. 0.1 μg/ml の H33258 を含む TNE 緩衝液をサンブル 1 点あたり 2 ml 用意する。
- イ. 石英セルに 2 ml 上記ア. で用意した H33258/TNE を入れる。
- ウ.ブランクを測定する。
- エ.標準液としてブランクに 2 μl の -DNA を加えて測定する。
- オ. 石英セルに 2 ml の上記ア. で用意した H33258/TNE を入れる。
- カ.2 μl の試料を加え測定する。測定値が表示される。

(アガロースゲルを使用した場合)

- ア. 0.5 μg/ml の臭化エチジウムを含む 0.8-1.0 %のアガロースゲルを準備する。
- イ . -DNA を TE 緩衝液で希釈して 10 ng/µl の標準品を作る。
- ウ.アガロースゲルに 1 レーンあたり 10,20,30,40,50 ng の -DNA 標準品をアプライする。
- エ.アガロースゲルに5倍希釈したサンプルを2 µl アプライする。
- オ.100 V で 5 分間泳動する。
- カ.トランスイルミネーター上写真を撮る。 写真上のサンプルのバンドの濃さを標準品のものと比較して濃度を判定する。

各手法によるDNA分析及び品種の識別

1 . S S R (独立行政法人農業・生物系特定産業技術研究機構九州沖縄農 業研究センター)

(1)機器・試薬

- · Applid Biosystems GeneAmp® system 9700
- ・安定化電源 (200V 定電圧で電気泳動できるもの)
- ・サブマリン電気泳動槽
- ・マイクロピペット (ギルソン製 P-10, P-200 相当品)
- ・1.5 ml サンプルチューブ
- ・PCR チューブ
- ・Primer (配列は付表参照)
- ・Ex-Taq HS DNA polymerase (タカラバイオ株式会社)
- 2.5 mM dNTPs
- ・アガロース (AMRESCO 製, SFR アガロース, エムエステクノシステムズ社取扱)
- ・1 x TBE 緩衝液 (10 x TBE 緩衝液を希釈)
- ・6 × ローディングダイ
- ・サイズマーカー(100 bp ラダーなど)
- ・高感度の核酸染色用蛍光色素(タカラバイオ製 Gelstar, アマシャムファルマシア製 Vistra Green など)
- ・トランスイルミネータ
- ・写真撮影装置 他

(2)方法

抽出した DNA 溶液 50-80 ng を PCR 用の作業液として用いる。 DNA 濃度として 30 ng/μl 程度が適当である。

- の操作は,ホットスタート・タイプの酵素を使用しない場合は氷上で行う。

1.5 ml サンプルチューブに PCR 反応液を調製する。 (20 μl x 16 本分強, 330 μl)

10 x EX-Taq buffer	33 μ1
2.5 mM d NTP	26.4 μ1
Ex-Taq HS (5U/µl)	1.65 µl
Primer 2-07GL (10 pmol/ul)	9.9 µl
Primer 2-07GR (10 pmol/ul)	9.9 µl
Primer 2-07FL (10 pmol/ul)	5.94 µl
Primer 2-07FR (10 pmol/ul)	5.94 µl
Primer 1-05AL (10 pmol/ul)	5.94 µl
Primer 1-05AR (10 pmol/ul)	5.94 µl
Primer BGA29L (10 pmol/ul)	9.9 µl

Primer BGA29R (10 pmol/ul) 9.9 μl dH₂O 173.59 μl

* 単一のプライマーセットを使用する場合は,プライマーの最終濃度を 0.2 μM とする。 チューブミキサーでよく撹拌し,スピンダウンする。

PCR 反応液を 18 ul ずつ PCR チューブに分注する。

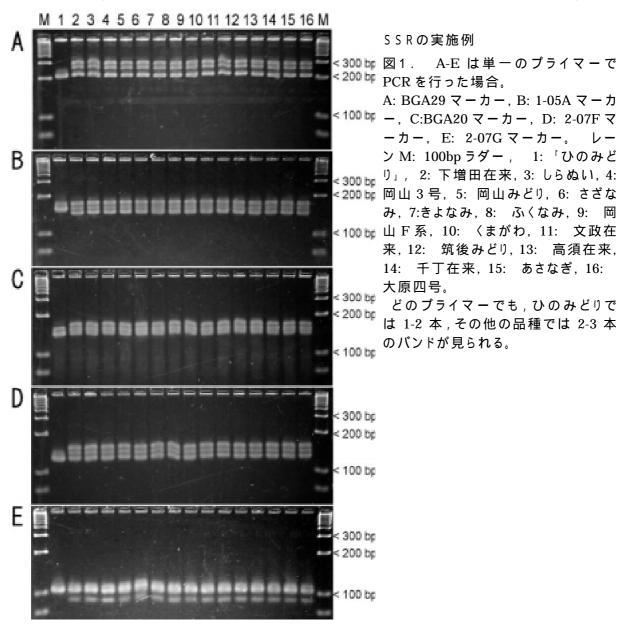
DNA 溶液 2 µl を各 PCR チューブに加える。

PCR サイクル

96 2分 96 5秒 58 15秒 30回繰り返す 72 30秒

72 2 分間

4


 $3~\mu l$ の 6~x ローディングバッファーを添加し、良く混ぜる。 この $8~\mu l$ を 4~% アガロースゲルにアプライして 150~V で 100 分程度電気泳動を行い、1/10,000~Gelstar 溶液に 30~ 分間浸漬し、紫外線下で DNA 断片の泳動像を撮影する。 電気泳動用の緩衝液には 1~x~TBE を,アガロースゲルには透明度の高い低分子量用のものを使用する。

* ここで使用した 4 % アガロースゲルは,低分子量 DNA の分離用に調整された AMRESCO 社の SFR アガロースである。 同等の分解能を持つアガロースの中では最も安価である。 また,アガロースの融解には,<u>必ずオートクレープを使用すること</u>。 105,5分間程度の加熱で溶かすことができる。 400 ml 程度まとめて溶かしておくと便利である。 電子レンジで均一な高濃度アガロースを調製するのは非常に難しいばかりでなく危険である。

* * 核酸染色用蛍光色素には,必ず Gelstar や Vistra Green など高感度のものを使用すること。 臭化エチジウムでは感度が低いため,泳動像の確認が非常に難しくなる。

(3)品種の識別

品種識別 SSR プライマーを使った場合の主要品種バンドパターンを表 1、図 1、図 2で示した。 (該当するバンドを有するものを「+」、有しないものを「-」で表示)

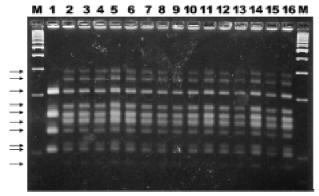


図 2. 4種のマーカー(2-07G, 2-07F, 1-05A, BGA29)でマルチプレックス PCR を行った場合。 レーン M:100 bp ラダー, レーン $1:\lceil ひのみどり \rfloor$, レーン 2-16:図1と同順のその他の品種。 マルチプレックス PCR によって、「ひのみどり」では 4本程度の明瞭なバンドが現れるが、他の品種では 10 本程度のバンドが現れるため、簡単に識別できる。

表1.SSR マーカーによる識別結果

 プライマー		BGA29)		1-05A		1	BGA20)		2-07F		2-0)7G
<u>品種/シグナル(bp</u>	210	280	300	150	160	180	130	150	175	125	150	165	90	110
ひのみどり	+	-	-	-	+	+	+	+	-	+	+	-	-	+
下増田在来	+	+	+	+	+	+	+	+	+	+	+	+	+	+
せとなみ	+	+	+	+	+	+	+	+	+	+	+	+	+	+
しらぬい	+	+	+	+	+	+	+	+	+	+	+	+	+	+
岡山3号	+	+	+	+	+	+	+	+	+	+	+	+	+	+
岡山みどり	+	+	+	+	+	+	+	+	+	+	+	+	+	+
さざなみ	+	+	+	+	+	+	+	+	+	+	+	+	+	+
きよなみ	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ふ〈なみ	+	+	+	+	+	+	+	+	+	+	+	+	+	+
岡山F系	+	+	+	+	+	+	+	+	+	+	+	+	+	+
くまがわ	+	+	+	+	+	+	+	+	+	+	+	+	+	+
文政在来	+	+	+	+	+	+	+	+	+	+	+	+	+	+
筑後みどり	+	+	+	+	+	+	+	+	+	+	+	+	+	+
高須在来	+	+	+	+	+	+	+	+	+	+	+	+	+	+
千丁在来	+	+	+	+	+	+	+	+	+	+	+	+	+	+
あさなぎ	+	+	+	+	+	+	+	+	+	+	+	+	+	+
大原四号	+	+	+	+	+	+	+	+	+	+	+	+	+	+

DNA 断片の有無を「有」= + / 「無」= - で示した。

(付表) プライマー一覧

用途	名称	配列	塩基数
SSR	1-05AL	CTTCTCAAATTCTCCTGGTCCGAGT	25
	1-05AR	TCAGACGACTGAGATCGCTTAACAG	25
	2-07FL	AGATTCAGAGCAGAAACAAGCCAAC	25
	2-07FR	CTTCTTCACTCCTAACGGTGCAACT	25
	2-07GL	GATCGCGATTGAATTACCTTGGA	23
	2-07GR	ACGATAATTTTCCTCGTGTCCTTGA	25
	BGA20AL	GTTTCTCACTGGCCGCTTCATC	22
	BGA20AR	CCAGCATTTTGAGATGAGACTTTGA	25
	BGA29L	CCAAGGCGCGTTGATTTGTACT	22
	BGA29R	TCCCGGCCTTTGAGATTCAACT	22

2. ISSR・STSマーカー(独立行政法人農業・生物系特定産業技術研究機構近畿中国四国農業研究センター)

(1)機器・試薬

P C R

サーマルサイクラー: Applid Biosystems GeneAmp system 9700 又はこの機器を用いて行った結果と同等であるもの。

ゲル電気泳動

ゲル電気泳動装置:ミューピッド電気泳動装置(株式会社アドバンス製)又は、同等品。 ゲルメーカー:電気泳動装置指定品。

トランスイルミネータ

写真撮影装置 他

PCR用の試薬

DNAポリメラーゼ: DNA AmpliTaq[™] Gold (Applied Biosystems 社)又は、同等品。

デオキシヌクレオシド三リン酸溶液: dNTP (2 mmol/L each) Ampli Taq[™] Gold 添付品。

塩化マグネシウム溶液: MgCl₂ (25 mmol/L) Ampli Taq[™] Gold 添付品。

PCR用緩衝液: 10 x PCR buffer

プライマー対:用途に応じて(3)の品種識別に記した3種のプライマーを合成する。

ゲル電気泳動

アガロースゲル

TBE 又は、TAE 緩衝液

エチジウムブロミド

ゲルローディング緩衝液

DNA分子量マーカー: PCR産物の増幅長に適したマーカーを使用する。

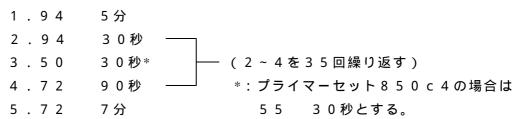
100bp ラダーマーカー (Bio-Rad Lab 社) 等が適当である。

(2)方法

PCR反応

ア.抽出したDNA溶液 10ngをPCR用の作業液として用いる。

遺伝子型識別には、サーマルサイクラー: Applid Biosystems GeneAmp system 9700を使用した。


イ.1.5ml サンプルチューブにPCR反応溶液を調整する。(20 ml × 11 本強)

1.5 mM MgCl₂ 14 ml
0.1mM of 各 dNTP 23 ml
5 pmol of 各プライマー 18 ml
0.5 U Ampli Taq™ Gold DNA ポリメラーゼ(Applied Biosystems 社) 1 ml
× 10 PCR Gold buffer(Applied Biosystems 社) 23 ml
dH₂O 140 ml

ウ・チューブミキサーでよく撹拌し、スピンダウンする。

- エ.20mlずつPCRチューブに分注する。
- オ.約10 ng のイグサ DNA 溶液 1ml を各PCRチューブに加える。

PCR反応条件

(3)品種の識別

品種「ひのみどり」識別用プライマー

(実験データの解釈)

イグサ 1 1 品種の電気泳動の結果を下図に示した。「ひのみどり」では、約 550bp の位置に 1 本 (レーン 4)、それ以外の品種 (レーン 1 ~ 3 、 5 ~ 1 1) では、300bp と 550bp の位置に 2 本のバンドが検出される。

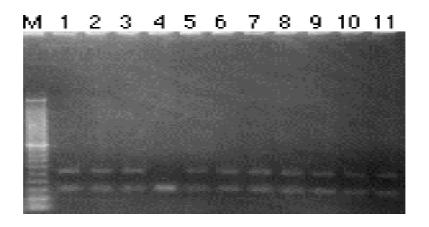


図 1.プライマー 864は を用いた結果

1.あさなぎ	2.ふくなみ	3.せとなみ	4.ひのみどり、		
5.下增田在来	6.きよなみ	7.いそなみ	8.筑後みどり、		
9.岡山 3 号	10.くまがわ	11.しらぬい			
M.分子量マーカー (100bp PCR Ruler, Bio-Rad Lab)					

品種「ひのみどり」識別用プライマーの塩基配列

	塩基配列	塩基数
864t4-5'	CATTTCATGGAGGGTTTTTC	2 0
864t4-3'	TCGAGGAGATTGAGGATGAT	2 0

品種「せとなみ」識別用プライマー

(実験データの解釈)

イグサ11品種の電気泳動の結果を下図に示した。「せとなみ」では、約 400bp の位置に1本(レーン3)、それ以外の品種(レーン1、2、4~11)では、バンドが検出されない。

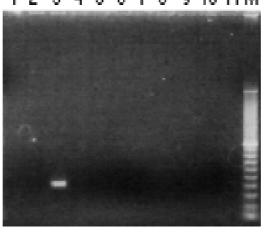


図 2 . プライマー 850c4 を用いた結果

1.あさなぎ 2.ふくなみ 3.せとなみ 4.ひのみどり、

5.下増田在来 6.きよなみ 7.いそなみ 8.筑後みどり、

9.岡山 3 号 10.くまがわ 11.しらぬい

M.分子量マーカー (100bp PCR Ruler, Bio-Rad Lab)

品種「せとなみ」識別用プライマーの塩基配列

名称	塩基配列	塩基数
850c4-5'	GGTCGGGCTGGTATCGTGT	19
850c4-3'	CGGCAGGCGAGGGATAGGAT	20

品種「せとなみ」「筑後みどり」識別用プライマー (実験データの解釈)

イグサ 1 1 品種の電気泳動の結果を下図に示した。「せとなみ」と「筑後みどり」では、 約 450bp の位置に 1 本 (レーン 3 、 8)、それ以外の品種 (レーン 1 、 2 、 4 ~ 7 , 9 ~ 1 1) では、バンドが検出されない。ただし、「筑後みどり」のバンドは「せとなみ」に 比べてバンドが薄い。

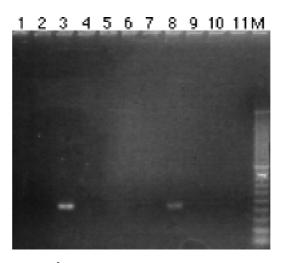


図3.プライマー864t7を用いた結果

1.あさなぎ2.ふくなみ3.せとなみ4.ひのみどり、5.下増田在来6.きよなみ7.いそなみ8.筑後みどり、

9.岡山 3 号 10.くまがわ 11.しらぬい

M.分子量マーカー (100bp PCR Ruler, Bio-Rad Lab)

品種「せとなみ」「筑後みどり」識別用プライマーの塩基配列

名称	塩基配列	塩基数
864t7-5'	CCTGCAAGCCAATCATACT	19
864t7-3'	ATGATGTTGAAGGAAAAGGA	20

3 . S N P (独立行政法人農業・生物系特定産業技術研究機構九州沖縄農業研究センター)

(1)機器・試薬

- LightCycler (Roche Diagnostics)
- · Applid Biosystems GeneAmp® system 9700
- ・安定化電源 (200 V 定電圧で電気泳動できるもの)
- ・サブマリン電気泳動槽
- ・マイクロピペット (ギルソン製 P-10, P-200 相当品)
- ・1.5 ml サンプルチューブ
- ・PCR チューブ
- ・Primer (配列は付表参照)
- ・QuantiTect SYBR® Green PCR 溶液 (Qiagen 株式会社)
- ・Ex-Taq DNA polymerase (タカラバイオ株式会社)
- 2.5 mM dNTPs
- ・アガロース (AMRESCO 製, HT アガロース, エムエステクノシステムズ社取扱)
- ・1xTBE 緩衝液 (10 x TBE 緩衝液を希釈)
- ・ローディングダイ
- ・トランスイルミネータ
- ·写真撮影装置 他

(2)方法

- ア .抽出した DNA 溶液 50-80 ng を PCR 用の作業液として用いる。 DNA 濃度として 30 ng/μl 程度が適当。
 - 2)-5)の操作は,ホットスタート・タイプの酵素を使用しない場合は氷上で行う。
- イ.1.5 ml サンプルチューブに PCR 反応液を調製する。 (20 μl x 16 本分強, 330 μl)

リアルタイム PCR 装置を利用した PCR-CTPP の場合:

2 x QuantiTe	ect SYBR® Green PCR 溶液	170 µl
Primer OF	(20 pmol/ul)	2.55 μl
Primer IR-CC	(20 pmol/ul)	2.55 μl
Primer OR	(20 pmol/ul)	6.8 µl
Primer IF-A	(20 pmol/ul)	6.8 µl
dH₂O		117.3 µl

リアルタイム PCR 装置を利用しない PCR-CTPP の場合:

10 x Ex-Taq	buffer	33 μ1
2.5 mM d	NTP	26.4 µl
Ex-Taq (5 U	/µ1)	1.65 µl
Primer OF	(20 pmol/ul)	2.55 μl
Primer IR-CC	(20 pmol/ul)	2.55 μl
Primer OR	(20 pmol/ul)	6.8 μ1
Primer IF-A	(20 pmol/ul)	6.8 μ1
dH_2O		250.25 μ1

ALP の場合:

10 x Ex-Taq buffer	33 µl
2.5mM d NTP	26.4 µl
Ex-Taq (5 U/µl)	1.65 µl
Primer Pst109L (20 pmol/ul)	4.25 µl
Primer Pst109L (20 pmol/ul)	4.25 µl
dH_2O	172.27 µl

- ウ・チューブミキサーでよく撹拌し,スピンダウンする。
- エ.18 μl ずつ PCR チューブに分注する。
- オ . DNA 溶液 2 μl を各 PCR チューブに加える。
- カ.PCR サイクル

リアルタイム PCR 装置を利用した PCR-CTPP の場合:

95 15分1回;

94 10 秒

45 20 秒 60 回繰り返す

70 20 秒

リアルタイム PCR 装置を利用しない PCR-CTPP の場合:

96 2分

96 10 秒

48 10 秒 35 回繰り返す

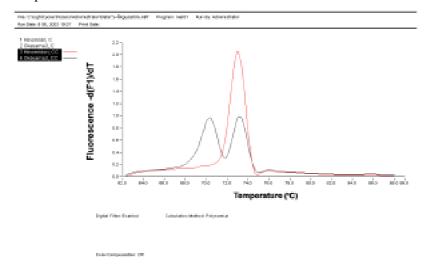
72 30 秒

72 2 分間

4

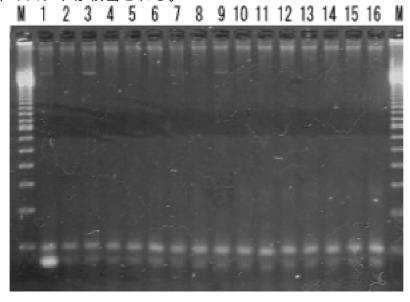
ALP の場合:

96 2分 96 10秒 48 10秒 35回繰り返す 72 30秒 72 2分間


- キ・リアルタイム PCR 装置を利用した PCR-CTPP の場合: 融解曲線分析は 70 50 秒保持, 0.4 /秒で 55 まで降下, 0.05 /秒で 55 から 85 まで上昇させ, 温度上昇中に 蛍光光度を測定する。
- ク・リアルタイム PCR 装置を利用しない PCR-CTPP の場合,あるいは ALP の場合: 3 μ l の $6 \times D = T$ の $7 \times D = T$

(3)品種の識別

リアルタイム PCR 装置を利用した PCR-CTPP の場合:


融解曲線分析の結果を下図に示した。横軸に測定時の温度,縦軸に符号を逆転させた蛍光強度の差を割り当てたグラフである。DNA鎖の乖離に伴う蛍光強度の減衰が大きくなる温度にピークが現れることから,増幅産物の融解温度の違いを検出できる。 「ひのみどり」(赤線)では、73 にピークを持つ単峰分布の融解曲線が得られたが,その他の品種(黒線)ではいずれも70 と73 にピークを持つ二峰分布の融解曲線が得られたことから,融解曲線分析による品種識別が可能であった。 また,PCR から融解曲線分析終了までの所要時間は1時間40分程度であった。

Hpa01 リアルタイム PCR-CTPP の実施例

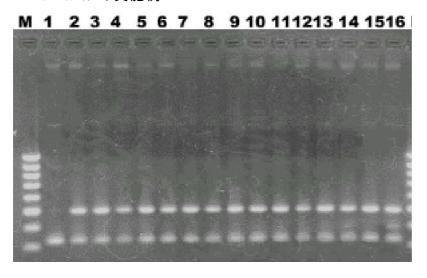
リアルタイム PCR 装置を利用しない PCR-CTPP の場合:

電気泳動の結果を下図に示した。「ひのみどり」では 180 bp と 200bp の位置に 2 本 (レーン 1), それ以外の品種 (レーン $2\sim16$) では , 90 bp, 180 bp と 200bp の位置に 3 本のバンドが検出される。

M:100bp ラダーマーカー , 1: 「ひのみどり」,

2: 下増田在来, 3: しらぬい, 4: 岡山3号, 5: 岡山みどり,

6: さざなみ, 7:きよなみ, 8:ふくなみ, 9:岡山 F 系, 10:くまがわ,


11:文政在来, 12:筑後みどり, 13:高須在来, 14:千丁在来,

15:あさなぎ、16:大原四号

ALP の場合:

電気泳動の結果を下図に示した。 「ひのみどり」では約 330 bp の位置に一本(レーン 1), それ以外の品種(レーン 2~16)では , 330 bp と 500 bp の位置に 2 本のバンドが検出される。

Primer Pst109 の実施例

M:100bp ラダーマーカー , 1: 「ひのみどり」,

2: 下増田在来, 3: しらぬい, 4: 岡山3号, 5: 岡山みどり,

6: さざなみ, 7:きよなみ, 8:ふくなみ, 9:岡山 F 系, 10:くまがわ,

11:文政在来, 12:筑後みどり, 13:高須在来, 14:千丁在来,

15:あさなぎ、16:大原四号

(付表)

プライマー一覧

用途	名称	配列	塩基数
PCR-CTPP	OF	GCTTGTTTGGGCTGGTAAAAGATTA	25
	OR	AATTCAGCCCCAAATGATTAAAATG	25
	IF-A	AGTTTTGTTGGATTTAATTGTTAAAGGAA	29
	IR-CC	TTGTATCCAACATCTGATATCTCCCC	26
ALP	Pst109L	CGTGCTGTGGTGAGCAAAGAATC	23
	Pst109R	GCTTGCACATTCGGGCGATTAC	22