資料1

令和3年度 カキのノロウイルス(NoV) に係る平常時の水準調査(最終報告)

消費·安全局食品安全政策課

令和5年2月14日

農林水産省

1

目次

畏林水産省 消費•安全局

- 1 海域におけるNoVの保有状況調査
- 2 浄化処理によるNoV低減効果の調査

農林水産省 消費・安全局 /Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries.

目次

農林水産省 消費・安全局

- 1 海域におけるNoVの保有状況調査
- 2 浄化処理によるNoV低減効果の調査

農林水産省 消費・安全局 / Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries

3

NoV保有状況調査の概要

農林水産省 消費・安全局

3

- 採取期間: ①R2年10月からR3年3月(R2年度)②R3年10月からR4年3月(R3年度)
- 実施地域:マガキ生産道府県 15道府県 海域調査 29海域
- 事業受託者:一般社団法人 日本海事検定協会

R2年度1~3月採取力キについては、新型コロナウイルス感染症の感染拡大の影響により、R3年度調査期間中に試薬の入手が困難になったため、R4年6月~10月に再試験を実施

農林水産省 消費・安全局 /Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries.

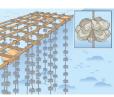
NoV保有状況調査の目的

- ▶ 平常時におけるカキのNoV保有状況を、より 少ない量でも検出可能な高感度な検査法を用 いて把握する
- ▶ その結果を踏まえ、各産地における衛生管理 方策の必要性の検討・効果検証に繋げる

は 林水産省 消費・安全局 / Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries 5

5

NoV保有状況調査の方法


農林水産省 消費•安全局

[検体]・採取場所:養殖棚(浄化処理がされていないカキ)

・採取頻度:月に1回(計6回)

・1回の採取検体数:10粒のカキ中腸腺を1検体として

2検体を採取

[検査法] ISO 15216に沿った検査法 (ISO法) を用いて2種類の遺伝子群 (GI・GII) を検査

農林水產省 消費·安全局 / Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries

ISO法について

農林水産省 消費・安全局

略称	通知法	改良法	ISO法			
出典	厚労省通知 食安監発第1105001号	食品衛生検査指針 微生物編2015	ISO 15216-1(定量) ISO 15216-2(定性)			
利用	国内の 食中毒検査/自主検査	同左 R1~2水準調査	EU水準調査 シンガポール着地検査			
検体	中腸腺1 g以上 (1~3粒)	中腸腺1 g以上 (5粒)	中腸腺2 g以上 (10粒以上)			
核酸抽出	カラ (マニュブ	磁気ビーズ法 (半自動機器)				
遺伝子検出	2-step RT-F	1-step RT-qPCR				
工程管理	△工程管理 ×PCR阿	○工程管理ウイルス ○PCR阻害確認				

改良法とISO法の検出感度を比較した結果、特にNoV GIIの検出感度がISO 法でより優れていることを確認した(岸根ら. 日本食品微生物学会雑誌, 39(2), 83-86, 2022)。

林水産省 消費・安全局 / Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries

7

ISO法について

農林水産省 消費・安全局

- ✓ **シンガポール**へのカキ輸出において、出荷前にNoVの自主検査(通知 法準拠)を受けたにもかかわらず、着地検疫(ISO法準拠)において NoVが検出され(シンガポール当局は定性検査)、シップバック・廃 棄を受ける事例が散発
- ✓ EUは2019年にEFSA(欧州食品安全機関)が公表した調査報告書を踏まえ、ISO 15216-1を用いたカキのNoVの基準値設定を検討中。当該報告書では、検査法の性能を考慮すると300 cpg未満に基準を設定するのは難しいとしている(EFSA Journal 2019;17(7):5762)

今後、ISO 15216に準拠した検査を各国が輸入時の検査と して導入する場合に備え、国内の検査体制を整備 (スライド43参照)

農林水產省 消費·安全局 / Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries

NoVの用量反応について

- ✓ NoVの発症ウイルス量については、十分な証拠がない。
- ✓ ヒトボランティアにばく露させた結果、用量反応に基づく 発症確率は0.1(103遺伝子コピー数)~0.7(108遺伝子 コピー数)であった。一方で、RT-qPCRを用いた検出では、 ノロウイルスの感染最小値は得られていない(EFSA Journal 2012;10(1):2500) 。
- ✓ 前述のEUで検討されている基準値についても、ヒトへの 健康リスクを考慮したものではなく、検査法の性能を踏ま えたものである(EFSA Journal 2019;17(7):5762)。

9

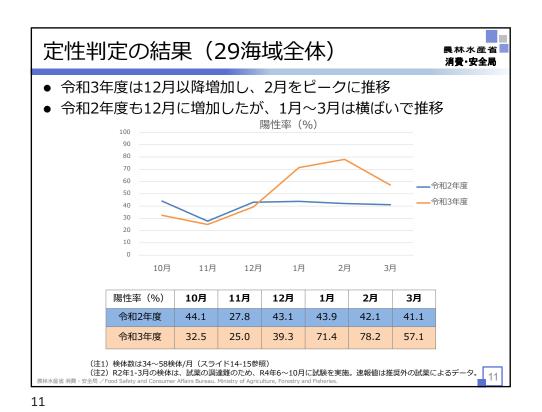
9

今回の調査(定性検査)

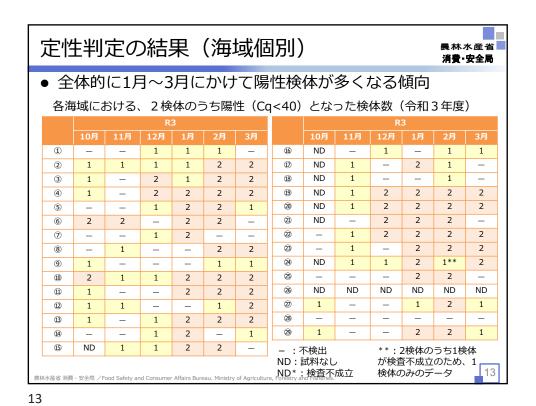
● 定性検査の判定基準

2反復のPCR反応の結果、得られた少なくとも一方の Cg値が40未満である場合、当該検体は陽性と判定した。

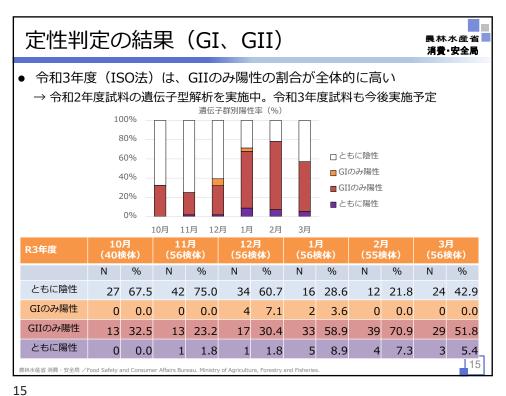
陽性

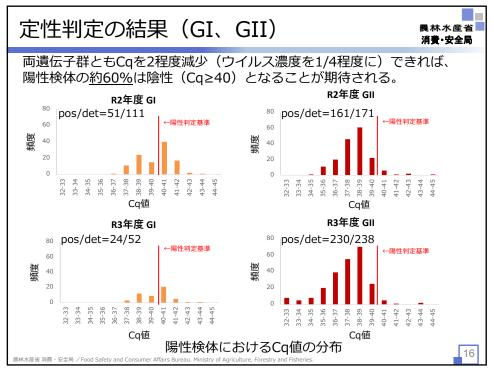


陰性


GI/GIIのいずれかが陽性のとき、NoV陽性と判定。

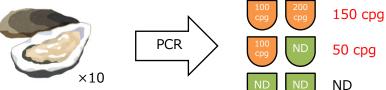
(参考)


- ▶ ISO15216-2: PCR 2 反復、Cq<40で陽性</p>
- ▶ シンガポール向けカキ輸出時のノロウイルス検査法 (農林水産省作成) : PCR 3 反復、Cq<40で陽性



定性判定の結果(海域個別) 農林水産省 消費·安全局 ● 令和2年度調査では、陽性検体が出現する月は、ばらついている 各海域における、2検体のうち陽性(Cq<40)となった検体数(令和2年度) 10月 11月 10月 12月 1月 12月 1月 2月 3月 11月 2月 3月 1 16) ND ND* ND 17) ND 2 1 3 2 2 1 (18) ND 1 2 2 ND 1 2 1 2 (19) ND 2 2 2 2 (5) 2 2 21) ND 1 7 2 1 1 (22) 1 1 1 1 (23) 2 (8) 1 2 2 2 1 24) 9 ND 1 10 2 25) 1** 2 1 1 1 ND 2 2 11) (26) ND 1 1 (27) 1 (12) 2 28 ND* (13) 2 1 1 (14) 2 2 (29) 1 2 ND **:2検体のうち1検体が - :不検出 ND: 試料なし ND*: 検査不成立 検査不成立のため、1検体 のみのデータ

定性判定の結果(GI、GII) 農林水産省 消費·安全局 • 令和2年度(ISO法)は、GIのみ陽性よりGIIのみ陽性の方が高い割合 遺伝子群別陽性率(%) 100% 80% □ともに陰性 60% ■ GIのみ陽性 40% ■ GIIのみ陽性 20% ■ともに陽性 0% 10月 11月 12月 1月 2月 3月 12月 (58検体) 10月 1月 (57検体) 3月 (56検体) R2年度 (34検体) N % N % N % % N % % ともに陰性 19 55.9 33 57.9 33 58.9 39 72.2 33 56.9 32 56.1 GIのみ陽性 5.3 1 0.0 3.4 2 3.5 3.6 2.9 0 3 GIIのみ陽性 14 41.2 11 20.4 17 29.3 16 28.1 16 28.1 17 30.4 ともに陽性 0 0.0 4 7.4 6 10.3 6 10.5 6 10.5 7.1 14


今回の調査 (定量検査)

農林水産省 消費・安全局

● 定量値の求め方

2反復のPCR反応の結果の平均値を当該検体の定量値とした。定量値は中腸腺1g当たりのNoVコピー数(cpg)を単位とした。

※定性検査で陰性(Cq ≥ 40)でも定量値が得られることはある。

GI+GIIをNoVの定量値とした。

(参考)

> ISO15216-1も同様。

農林水産省 消費・安全局 / Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries

17

17

定量検査の性能評価

畏林水産省 消費・安全局

 FAOリファレンスセンターであるCefasが定める 検出限界(LOD₉₅)及び定量限界(LOQ)決定の ガイダンスに基づき、LOD₉₅及びLOQを算出した。

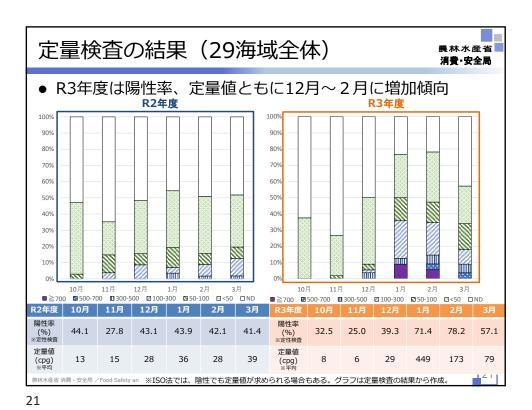
GI		GII			
LOD ₉₅	LOQ	LOD ₉₅ LOQ			
44	50	38	196		

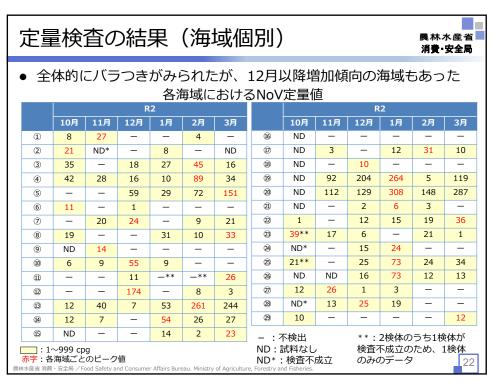
※単位:cpg

(参考) EUのNoV調査に参加した検査機関における成績

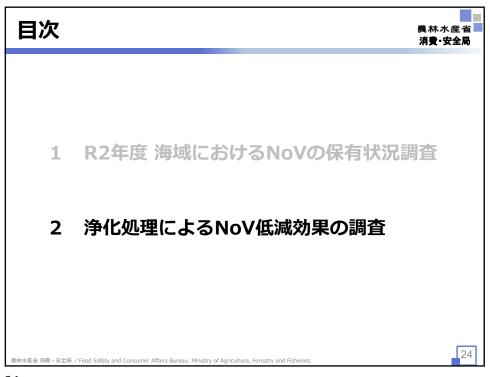
GI		GII				
LOD ₉₅	LOQ	LOD ₉₅ LOQ				
13-264	40-298	20-196	75-389			

※単位:cpg


出典: EFSA Journal 2019;17(7):5762

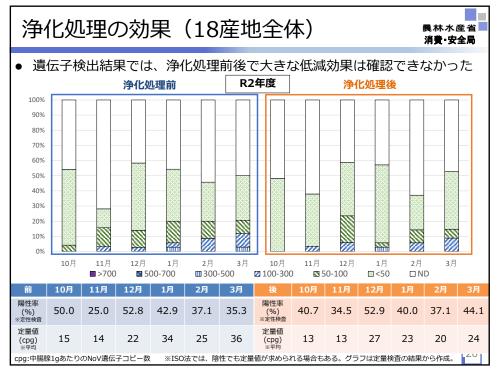

linistry of Agricultura Forestry and Fisheries

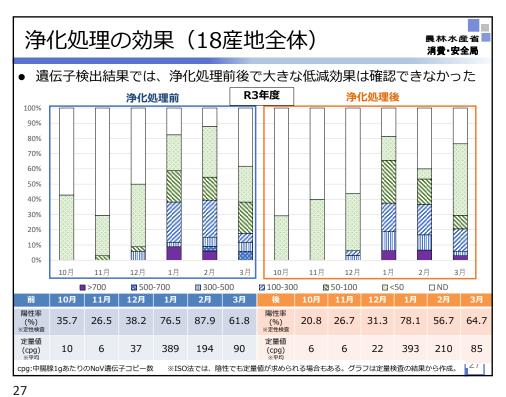
定量検査の結果(29海域全体) 消費·安全局 ● LOQ以上で検出されたものはGIが5検体、GIIが8検体 ● LOQ以上となったのは12月から3月に採取された検体 令和2年度シーズン(10月~3月)の定量値 GI GII N % LOQ以上 LOQ以上 3 0.9 LOQ以上 LOQ未満で検出 0.3 LOQ以上 不検出 1 0.3 LOQ未満で検出 LOQ以上 4 1.3 LOQ未満で検出 LOQ未満で検出 39 12.3 LOQ未満で検出 不検出 28 8.9 不検出 LOQ以上 1 0.3 不検出 LOQ未満で検出 75 23.7 不検出 不検出 164 51.9 316 100 19


定量検査の	の結果(29	9海域全体))		展林水産省 消費•安全局	_		
● LOQ以上で検出されたものはGIが1検体、GIIが34検体 ● LOQ以上となったのは12月から3月に採取された検体								
	GI	GII	N	%				
	LOQ以上	LOQ以上	0	0.0				
	LOQ以上	LOQ未満で検出	1	0.3				
	LOQ以上	不検出	0	0.0				
	LOQ未満で検出	LOQ以上	10	3.1				
	LOQ未満で検出	LOQ未満で検出	17	5.3				
	LOQ未満で検出	不検出	12	3.8				
	不検出	LOQ以上	24	7.5				
	不検出	LOQ未満で検出	112	35.1				
	不検出	不検出	143	44.8				
	計		319	100		_		
農林水産省 消費・安全局 / Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries.								

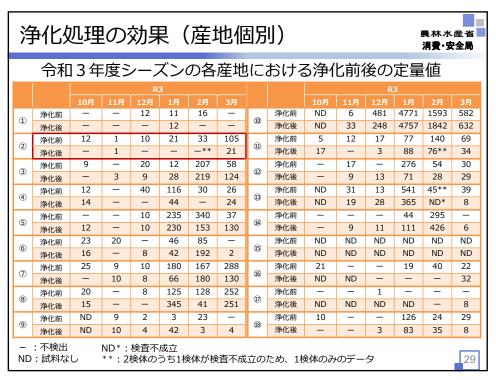
20

定量検査の結果 (海域個別) 農林水産省 消費·安全局 ● 12月以降増加傾向で、1,2月には1,000cpg以上の検体もあった 各海域におけるNoV定量値 (1) (16) ND (17) ND ND ND ND (20) (5) 21) ND (6) 45** ND (24) (10) ND ND ND ND ND ND (11) (12) 27) (28) (13) (14) (15) ND - : 不検出 **: 2検体のうち1検体が ___: 1~999 cpg ___: 1,000 cpg 以上 赤字:各海域ごとのピーク値 ND: 試料なし 検査不成立のため、1検体 ND*:検査不成立 のみのデータ

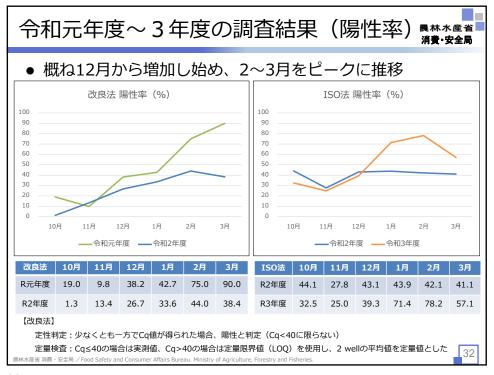

浄化処理によるNoV低減効果の調査

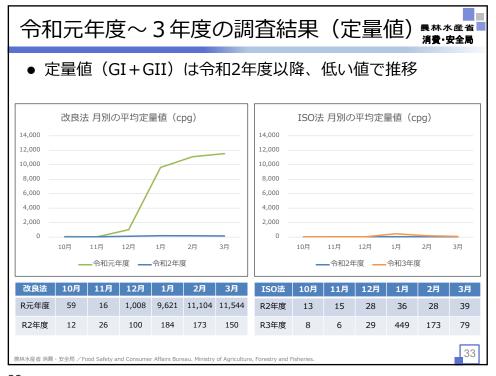


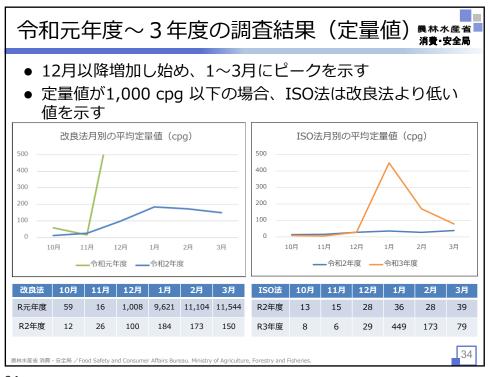
- R2~3年度の海域調査の対象となった29産地のうち、 浄化処理を実施している18産地を対象に 浄化処理後のカキをあわせてサンプリング
- 浄化前サンプル:海域(養殖棚)からカキを採取浄化後サンプル:加工場から浄化処理後のカキを採取
- 浄化処理は各産地で実施している条件(滅菌方法、時間 など)で実施
- 検体数・検査法については海域調査と同様

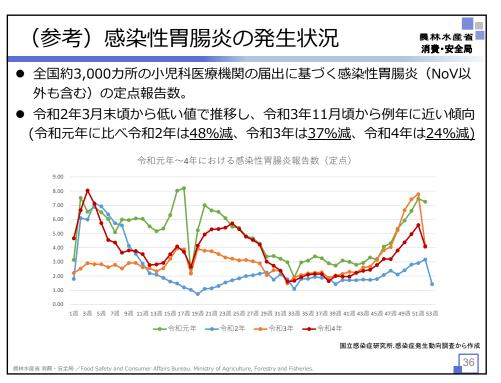

農林水産省 消費・安全局 / Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries


25




洎	浄化処理の効果(産地個別)														
令和2年度シーズンの各産地における浄化前後の定量値															
				R:								R			
		10月	11月	12月	1月	2月	3月		V //	10月	11月	12月	1月	2月	3月
1	浄化前	8	27	_	_	4	_	(10)	浄化前	ND	112	129	308	148	287
	浄化後	25	11	32	2	_	_	_	浄化後	ND	72	114	229	145	25
2	浄化前	21	ND*	_	8		ND	11)	浄化前	1	_	12	15	19	36
	浄化後	_	ND*	_	_	_	ND		浄化後	16	21	14	1	28	22
(3)	浄化前	35	_	18	27	45	16	(12)	浄化前	39**	17	6	_	21	1
	浄化後	_	_	20	_	18	33	Ľ	浄化後	2	_	32	28	27	11
(4)	浄化前	42	28	16	10	89	34	(13)	浄化前	ND*	_	15	24	_	_
	浄化後	38	20**	19	22	32	20	Ľ	浄化後	_**	25	43	10	_	-
(5)	浄化前		_	59	29	72	151	(14)	浄化前	21**	_	25	73	24	34
•	浄化後	26	_	17	33	56	116		浄化後	_	30	87	10	38	99
6	浄化前	11	_	1	_	_	_	(15)	浄化前	ND	ND	16	73	12	13
•	浄化後	_	_	_	16	_	_		浄化後	ND	ND	ND	12	_	20
(7)	浄化前	6	9	55	9	_	_	(16)	浄化前	12	26	1	3	_	_
w	浄化後	42	_	43	7	_	_	100	浄化後	_	_	8	1	16	2
(8)	浄化前	_	_	11	_**	_**	26	(17)	浄化前	ND*	13	25	19	_	_
0	浄化後	_	_	1	_**	_**	11	W	浄化後	ND	ND	_	10	_	_
(9)	浄化前	ND	_	10	_	_	_	- m	浄化前	10	-	-	_	-	12
9)	浄化後	ND	18	29	_	_	_	18	浄化後	25	_	_	16	_	44
- : 不検出 ND*: 検査不成立 ND: 試料なし **: 2検体のうち1検体が検査不成立のため、1検体のみのデータ 28															




検査法	について		農林水産省 消費·安全局			
略称	通知法	改良法	ISO法			
出典	厚労省通知 食安監発第1105001号	食品衛生検査指針 微生物編2015	ISO 15216-1(定量) ISO 15216-2(定性)			
利用	国内の 食中毒検査/自主検査	同左 R1~2水準調査	EU水準調査 シンガポール着地検査			
検体	中腸腺1 g以上 (1~3粒)	中腸腺1 g以上 (5粒)	中腸腺2 g以上 (10粒以上)			
核酸抽出		ム法 ブル操作)	磁気ビーズ法 (半自動機器)			
遺伝子検出	2-step RT-I	PCR (qPCR)	1-step RT-qPCR			
工程管理		里 ウイルス 1害確認	〇工程管理ウイルス OPCR阻害確認			
R元年度(13自治体20海域) R2年度(15自治体29海域) R2年度(15自治体29海域) R3年度(14自治体28海域)						

(参考) NoV食中毒の発生状況 農林水産省 消費·安全局 令和2年4月以降低い値で推移し、令和3年11月以降は例年に近い傾向 カキのシーズンで比較すると、 R1.10-R2.3 ···120件、4,249人 R2.10-R3.3 ··· 39件、1,649人 件数68%減、 患者数61%減 R3.10-R4.3 ··· 59件、1,886人 件数51%減、 患者数56%減(速報値含む) 令和元年~4年ノロウイルス食中毒件数 令和元年~4年ノロウイルス食中毒患者数 3,500 3.000 2.000 1,500 500 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 ◆ 令和元年 ◆ 令和2年 ◆ 令和3年 ◆ 令和4年 → 令和元年 → 令和2年 → 令和3年 → 令和4年 厚生労働省.食中毒統計から作成(速報値を含む)2023年1月時点

令和3年度調査のまとめ

- 12月以降陽性率が増加し、40~80%で推移した。
- NoV陽性検体はGIIが主であった。
- 定性検査で陽性のものは、NoV濃度を1/4程度に できれば陰性となるものが約60%を占めた。
- ほぼ全ての海域でいずれかの時期に定性検査で陽性となった。
- ISO法による定量性能はEUでの試験成績と同等程度であった。
- LOQを超える検体はごく一部であった。
- 12月以降、定量値は増加傾向であった。
- 浄化処理による明確なNoV低減効果は確認できなかった。

農林水産省 消費・安全局 /Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries

37

今後の方向性

37

- ◆ 今回の調査において、遺伝子検出結果では、浄化 処理前後で大きな低減効果は確認できなかった
- NoVの発症ウイルス量については十分な証拠がなく、PCR検査の基準についても、ヒトへの健康リスクを考慮したものではない

今後の方向性として、

- » NoVの低減技術の効果検証が必要
- > 感染性を有したNoVの低減効果の評価が必要

農林水産省 消費・安全局 /Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries.

今後の方向性

- 現在、NoVの低減方法について検証中
 - ① ウルトラファインバブル (UFB) を用いた浄化処理
 - ▶ 人為的にNoVで汚染したカキを水槽で飼育し、UFB処理によって NoVが低減するか検証
 - ② 養殖場での転地処理
 - ▶ 収穫前に一定期間、より清浄な海域に転地することで、NoVが低減 するか検証
 - ③ レギュラトリーサイエンス研究推進委託事業
 - ➤ R2~R4年度に人為的NoV汚染力キ作製法の確立と低減法の検討を実施、R5年度以降もNoV浄化技術の効果検証を実施予定
- → 有力な結果が得られたものは、より詳細な検証を実施予定 (複数種類のUFB発生装置を用いた検証等)
- → 最終的に有効な低減対策をまとめたガイドブックを作成予定
- 低減対策の検証に係る調査、各産地の取組に係る情報提供等 に引き続きご協力いただけると幸いです

農林水産省 消費・安全局 /Food Safety and Consumer Affairs Bureau. Ministry of Agriculture, Forestry and Fisheries.

39

今後の方向性

- ISO 15216に準拠した検査法の手順書を公表済
- ◆ ISO 15216に準拠した検査法のポイントや解説を 盛り込んだ動画をYouTubeに公開

https://www.youtube.com/watch?v=I8pJz8tVZx8

- 手順書に記載の機器(Maelstrom 8)が販売終了予定
 - → 同メーカーの後継機器で代替可能か情報収集中
 - → 必要に応じて検証を行い、手順書を更新予定

*水產类 消費,安全量 / Food Safety and Consumer Affairs Bureau Ministry of Agriculture Forestry and Fisheries