Tomato planta macho viroid (TPMVd) に関する 病害虫リスクアナリシス報告書

平成25年1月29日 横浜植物防疫所調査研究部

改訂履歴

・平成27年11月13日 管理措置の変更

はじ	Z X) k	—1
第 1		開始 (ステージ1)	—2
1	閉		-2
2	犮	†象となる有害動植物	—2
3	犮	†象となる経路	2
4	犮	†象となる地域	2
5	閉	始の結論	-2
第 2	2	病害虫リスク評価 (ステージ2)	 3
1	有	「害動植物の類別 ――――――――――――――――――――――――――――――――――――	—3
(1)	有害動植物の日本での発生の有無及び公的防除の有無等	—3
(2	2)	定着及びまん延の可能性	—3
(3	3)	経済的影響を及ぼす可能性 ――――――――――――――――――――――――――――――――――――	—3
(4	.)	有害動植物の類別の結論	—4
2	農	と業生産等への影響の評価 ――――――――――――――――――――――――――――――――――――	 5
(1)	定着の可能性の評価	—5
(2	2)	まん延の可能性の評価	—9
(3	3)	経済的重要性の評価	-13
(4	-	不確実性 ————————————————————————————————————	- 17
(5	5)	農業生産等への影響の評価の結論	- 17
3		、り込みの可能性の評価	- 18
(1)		-18
(2	?)	輸送中又は貯蔵中の生き残りの可能性	- 18
(3	3)	好適寄主又は宿主への移動の可能性	- 21
(4	,	不確実性 ————————————————————————————————————	- 24
(5		入り込みの可能性の評価の結論	- 24
4		T険にさらされている地域の結論	- 24
5		スク評価の結論	— 25
第 3		病害虫リスク管理(ステージ3)	— 26
1.		omato planta macho viroid のリスク管理措置の選択肢の有効性及び実行可能性の	
		計	— 26
2.		経路ごとの Tomato planta macho viroid に対するリスク管理措置の有効性(上段)	
		で で 実行 可 能性 (下 段) 一 覧	— 28
3.		経路ごとの Tomato planta macho viroid に対するリスク管理措置の選択肢の特定 —	— 28
4.	T	omato planta macho viroid のリスク管理措置の結論 ————————————————————————————————————	- 29
⊟ul &n	٠	生物学的情報	2.0
別組		工物于明報	-30
別組		前上入场旧工恒初 <i>0万</i> 加	—32
別組			—33
別組		TO THE ENDINGS	−34
別組	7 5	- 内舌虫リヘク評価の結論一覧表	- 36

はじめに

このリスクアナリシスは、「病害虫リスクアナリシスの実施に関する手順書(平成24年度版)」に従い実施したものであり、開始(ステージ1)、病害虫リスク評価(ステージ2)及び病害虫リスク管理(ステージ3)の3つのステージから構成される。

本報告書の取りまとめにあたっては、以下の学識経験者から技術的な助言や情報提供を受けた。

- 上松 寛 (独立行政法人農業・食品産業技術総合研究機構中央農業総合研究センター 病害虫研究領域研究員)
- 大藤 泰雄 (独立行政法人農業・食品産業技術総合研究機構中央農業総合研究センタ ー病害虫研究領域上席研究員)
- 関本 茂行 (独立行政法人農業・食品産業技術総合研究機構中央農業総合研究センタ ー病害虫研究領域研究員)
- 津田 新哉 (独立行政法人農業・食品産業技術総合研究機構中央農業総合研究センタ ー病害虫研究領域上席研究員)
- 松下 陽介 (独立行政法人農業・食品産業技術総合研究機構花き研究所花き研究領域 研究員)
- 望月 淳(独立行政法人農業環境技術研究所生物多様性研究領域上席研究員)
- 山村 光司(独立行政法人農業環境技術研究所生物多様性研究領域上席研究員)

【敬称略、五十音順。所属及び肩書きは当時のもの。】

第1 開始 (ステージ1)

1 開始

病害虫のリスクに応じて効果的かつ効率的な植物検疫を実施していくためには、検疫対象の有害動植物(以下「検疫有害動植物」という。)を特定することが重要である。また、国際植物防疫条約(以下「IPPC」という。)の規定においても、検疫有害動植物の明示及び病害虫リスクアナリシス(以下「リスクアナリシス」という。)の結果に基づく病害虫リスク管理措置の実施を求めている。

このため、平成23年3月7日に植物防疫法施行規則(昭和25年農林省令第73号)の改正等を行い、検疫有害動植物の定め方をネガティブリスト方式からポジティブリスト方式へ移行するとともに、病害虫のリスクに応じた適切な病害虫リスク管理措置を実施するため、輸出国において検疫措置の実施を求める枠組みを新設する等の見直しを実施した。

引き続き、検疫有害動植物の特定及び適切な病害虫リスク管理措置の適用に係る検 討のための技術的正当性の判断に資するため、我が国に侵入し、まん延した場合に有 用な植物に損害を与えるおそれが未だ明らかでない有害動植物について、順次、病害 虫を開始点とするリスクアナリシスを実施している。

本リスクアナリシスは、これに基づき実施したものである。

2 対象となる有害動植物

リスクアナリシスの対象となる有害動植物名を $Tomato\ planta\ macho\ viroid\$ と特定した。 関連する学名等の情報は、生物学的情報(別紙 1)に取りまとめた。

3 対象となる経路

本種の感染部位及び伝搬方法から、想定される輸入植物を介して、日本に入り込む 可能性がある経路を以下のとおり特定した。関連する宿主植物等の情報は、生物学的 情報(別紙1)に取りまとめた。

想定される経路:

栽植用植物、消費用生植物

4 対象となる地域

リスクアナリシスを実施する地域を日本全域とした。

5 開始の結論

Tomato planta macho viroid を開始点とし、本種の発生地域から輸入される植物を経路とした日本全域を対象とする病害虫リスクアナリシスを開始する。なお、リスクアナリシスに必要な情報は、生物学的情報(別紙1)及び、寄主又は宿主となり得る植物の分布情報(別紙2)に取りまとめた。

第2 病害虫リスク評価 (ステージ2)

1 有害動植物の類別

ステージ1で特定された有害動植物について、国内における発生及び公的防除の有無、定着及びまん延の可能性並びに経済的影響を及ぼす可能性について調査し、検疫有害動植物の定義内の基準を満たしているか検討した。なお、検疫有害動植物の基準を満たしていない場合は評価を中止し「無視できる」とした。

(1) 有害動植物の日本での発生の有無及び公的防除の有無等

ア 評価手順

開始の結論で有害動植物とされたものについて、日本での発生の有無及び公的 防除の有無等を調査する。

イ 評価基準

以下(ア)~(ウ)の要件のいずれも満たさない場合、評価中止とする。

- (ア) 国内において未発生である。
- (イ) 国内に発生していても広く分布せず、公的防除が行われている、又は近い将来公的防除が検討される予定である。
- (ウ) 国内既発生であっても、国内未発生の系統が存在、または国内未発生の有害 動植物を媒介する。

ウ 評価結果

本種は日本国内において未発生である。

(2) 定着及びまん延の可能性

ア 評価手順

上記(1)の基準のいずれかを満たした有害動植物について、日本での寄主又は宿主となり得る植物の分布から定着及びまん延の可能性を評価する。

イ 評価基準

別紙2から、寄主又は宿主となり得る植物が日本に分布している場合には「定着及びまん延の可能性」があると判断する。

ウ 評価結果

本種の宿主となり得る植物は 47 都道府県に分布していることから、定着及び まん延の可能性がある。

(3) 経済的影響を及ぼす可能性

ア 評価手順

上記(1)の基準のいずれかを満たした有害動植物の寄主又は宿主となり得る植物の栽培状況から経済的影響を及ぼす可能性を評価する。

イ 評価基準

別紙2から、寄主又は宿主となり得る植物が日本で農産物として栽培されている 場合には「経済的影響を及ぼす可能性」があると判断する。

ウ 評価結果

本種の宿主となり得る植物は日本国内で農産物として栽培されていることから、本種は経済的影響を及ぼす可能性がある。

(4) 有害動植物の類別の結論

本種は日本国内で未発生であること、定着及びまん延の可能性があること、経済的影響を及ぼす可能性があることから、本種を潜在的検疫有害動植物と特定した。

2 農業生産等への影響の評価

1. で特定された潜在的検疫有害動植物について、農業生産等への影響を評価した。 農業生産等への影響は、潜在的検疫有害動植物がリスクアナリシスを実施する地域 に入り込んだ場合に想定されるリスク(病害虫固有のリスク)とし、「定着の可能性」、 「まん延の可能性」及び「経済的重要性」で評価した。

評価対象生物について、該当しない項目、あるいは情報不足で評価できない項目は 評価を行わない。

なお、評価の途中で評価中止となった場合、その時点で農業生産等への影響の評価 の結論は「無視できる」とする。

各項目の得点及びその判断理由は別紙3に記録した。

(1) 定着の可能性の評価

潜在的検疫有害動植物がリスクアナリシスを実施する地域に入り込んだ場合、地域内の寄主又は宿主植物に寄生又は感染し、環境に適応し、寄主又は宿主植物を利用して恒久的に発生するかについて評価した。

ア リスクアナリシスを実施する地域における寄主又は宿主植物の利用可能性及び 環境の好適性

(ア) 寄主又は宿主植物の利用可能性及び環境の好適性

潜在的検疫有害動植物の寄主又は宿主植物のうち、各都道府県に寄主又は宿主植物がどの程度存在しているかを調査し、寄主又は宿主の利用可能性及び環境の好適性を評価した。

a 評価手順

別紙2に記載された、寄主又は宿主となり得る植物が栽培又は自生している都道府県数から評価する。

b 評価基準

寄主又は宿主が存在する都道府県数	得点
4 7	5
38以上46以下	4
12以上37以下	3
4以上11以下	2
1以上3以下	1
0(寄主が存在しない)	評価中止

c 評価結果

本種の宿主となり得る植物は47都道府県に分布していることから、評価基準より5点と評価した。

(イ) 潜在的検疫有害動植物の寄主又は宿主範囲の広さ

潜在的検疫有害動植物の寄主又は宿主範囲の広さを基に、潜在的な寄主又は宿主植物の存在の可能性を評価した。

- a 評価手順 寄主又は宿主植物の科を記載する。
- b 評価基準 本項目では得点の付与を行わない。
- c 評価結果

本種が宿主とする植物の科は、ナス科が知られている。

(ウ) 有害動植物の侵入歴

生物地理区を越えた分布を人為的な移動によるものと仮定すると、複数の生物地理区への分布は交易その他によって原産地以外に定着し病害虫となった結果であると推定される。本項目では潜在的検疫有害動植物の分布する生物地理区の区域数から、侵入歴を評価した。

a 評価手順

潜在的検疫有害動植物の分布国又は地域から、生物地理区の区域数を付録1より集計する。

b 評価基準

分布区域数	得点
5 区以上に分布する。	5
4区に分布する。	4
3区に分布する。	3
2区に分布する。	2
1区に分布する。	1

c 評価結果

新熱帯区及び新北区の計2区に分布することから、評価基準より2点と 評価した。 イ リスクアナリシスを実施する地域における潜在的検疫有害動植物の生存の可能 性

(ア) 潜在的検疫有害動植物の繁殖戦略

a 評価手順

潜在的検疫有害動植物について、単為生殖が可能かどうか調査する。一部の系統が単為生殖の性質を示す場合には、最も高い得点を得られるものを選択する。有害植物については一律5点とする。

b 評価基準

有害動物	得点
産雌単為生殖が可能	5
両性単為生殖が可能	5
産雄単為生殖が可能	4
上記以外	2
有害植物	得点
全ての有害植物	5

c 評価結果

本種は有害植物であることから、評価基準より5点と評価した。

(イ) 有害植物のみ:リスクアナリシスを実施する地域における中間宿主の利用可能性

a 評価手順

潜在的検疫有害植物の増殖に中間宿主(代替宿主)が必須であるかないか、 必須な場合には宿主となる植物が存在するかを調査する。日本全国を一つの 対象地域とする。

b 評価基準

潜在的検疫有害植物の増殖に:	得点
(a) 中間宿主は必須でない。	評価しない
(b) 中間宿主は必須である。	
リスクアナリシスを実施する地域に中間宿主となる 植物が存在する。	3
リスクアナリシスを実施する地域に中間宿主となる 植物が存在しない。	評価中止

c 評価結果

本種の増殖に関して、中間宿主は必須ではないため、本項目は評価しな

(ウ) 潜在的検疫有害動植物の生存の可能性

a 評価手順

潜在的検疫有害動植物の不良環境における生存手段、リスクアナリシスを 実施する地域における寄主又は宿主の利用可能性について調査し、生存の可 能性について検討する。

b 評価基準

以下の要件を1つでも満たす場合、潜在的検疫有害動植物は生活環を維持できるものとする。生活環を維持できない場合、「評価中止」とする。

潜在的検疫有害動植物は:	
休眠性を持つ。(冬眠あるいは越冬態)	左記の要件
耐久生存態をつくる。	を満たす根
土壌伝染性である。	拠となった
植物残渣中で生存可能。	文献を記述する。
寄生又は感染部位が周年で存在する。	
栄養繁殖体や種子に寄生又は感染する。	
施設栽培がおこなわれている。	

c 評価結果

環

宿主植物であるトマトは施設栽培が行われていることから、本種は生活 を維持することができ、生存の可能性があると評価した。

ウ 定着の可能性の評価結果

評価した項目の得点平均値を定着の可能性の評価点とする。

評価した項目の平均から、定着の可能性の評価点は5点満点中の4点となった。

(2) まん延の可能性の評価

定着した地点から潜在的検疫有害動植物がどの様に分散するのか、自然条件における潜在的検疫有害動植物の分散能力、寄生又は感染した植物の流通やその他人為的手段による潜在的検疫有害動植物の分散の可能性について評価した。

ア 自然分散(自然条件における潜在的検疫有害動植物の分散)

潜在的検疫有害動植物の移動可能距離と年間世代数について調査し、自然条件 下における潜在的検疫有害動植物の分散能力を評価した。

また、ベクターにより媒介される場合は、ベクターの移動距離及び化数で評価 し、ベクターが日本に存在しない場合は「評価中止」とした。

(ア) 有害動物の自然分散

本種は有害植物であり、本項目は評価しない。

(イ) 有害植物の自然分散

ここでは、a ベクター以外による伝搬と、b ベクターによる伝搬とに 分けて評価を行い、それぞれにおける項目の得点の合計値が高い方を採用す る。

a ベクター以外による伝搬

(a) 移動距離

i 評価手順

潜在的検疫有害植物の移動可能距離を有害植物の分散様式から評価する。

ii 評価基準

分散様式	得点
胞子や花粉による伝搬	5
風雨による伝搬、遊走子による伝搬	3
種子伝搬	2
土壤伝搬	1
機械的伝搬	1

iii 評価結果

本種は機械的伝搬をすることから、評価基準より1点と評価した。

(b) 伝染環数

i 評価手順

潜在的検疫有害動植物の一年間(又は一定期間)の伝染環数について調査し、以下の基準により評価する。

ii 評価基準

伝染環数	得点
1年間に2回以上	5
" に1回	3
" を超える期間に1回	1

iii 評価結果

本種は、複数の伝染環を持つことから、評価基準より5点と評価した。

b ベクターによる伝搬

(a) ベクターの移動距離

i 評価手順

潜在的検疫有害植物の移動可能距離をベクターの移動様式から評価する。なお、ベクターが日本に存在しない場合、評価対象としない。

ii 評価基準

移動様式	得点
長距離飛翔(風による移動を含む。1 k m以上)	5
短距離飛翔 (数m単位)	3
歩行(カイガラムシ類を含む)	2
ベクターが線虫・土壌病菌	1

iii 評価結果

ベクターであるモモアカアブラムシは、長距離飛翔することから、評価基準より5点と評価した。

(b) 伝搬様式

i 評価手順

ベクターの伝搬様式(媒介継続期間)を調査し以下の基準により評価する。なお、ベクターが日本に存在しない場合、評価対象としない。

ii 評価基準

ベクターの伝搬様式	得点
ベクター体内で増殖する病原体(循環型- 増殖型)	5
ベクター体内で循環するが、増殖しない病 原体(循環型ー非増殖型)	4
ベクター体内で循環せず、数日間媒介され る病原体(非循環型-半永続型)	3
ベクターの口器等に付着し数時間のみ媒介 される病原体(非循環型-非永続型)	2

iii 評価結果

ベクターであるモモアカアブラムシは、本種を半永続的に伝搬することから、評価基準より3点と評価した。

イ 人為分散

品目(農作物)又は輸送機器等(非農作物)に伴う潜在的検疫有害動植物の移動の可能性から、人為分散の可能性を評価した。評価については、農作物を介した分散と、非農作物を介した分散について実施した。

(ア)農作物を介した分散

a 評価手順

潜在的検疫有害動植物が寄生又は感染した部位が流通し、次の発生源となるかどうかについて、これら植物が生産されている都道府県数から評価する。

b 評価基準

(a) 潜在的検疫有害動植物の寄生又は感染部位が商品として流通する場合 都道府県数は別紙2を参照。

寄主又は宿主 生産されてい		得点
4 7	都道府県	5
38-46	都道府県	4
1 2 - 3 7	都道府県	3
4-11	都道府県	2
0 - 3	都道府県	1

(b) 潜在的検疫有害動植物の寄生又は感染部位が商品として流通しない場合

c 評価結果

本種の宿主植物は、47都道府県で生産されており、評価基準より5点と評価した。

(イ) 非農作物を介した分散

a 評価手順

マイマイガの梱包材による分散など、農作物を介さない、重要な人為的分散 手段があるかどうかについて調査し以下の基準により評価する。また、判断理 由についても記述する。

b 評価基準

人為的分散手段	得点
輸送機器、梱包材等に付着して移動することが知られている。	5
土壌中に生息し、人及び輸送機器に付着して移動することが知られている。	5
栽培に伴う作業で移動することが知られている。	5
上記の移動手段は知られていない。	評価しない

c 評価結果

栽培作業での伝搬が知られていることから、評価基準より5点と評価した。

ウ まん延の可能性の評価結果

ア及びイの得点平均値をまん延の可能性の評価点とする。

評価した項目の平均から、まん延の可能性の評価点は5点満点中の4.5点となった。

なお、「ア(イ)有害植物の自然分散」では、評価を行ったa及びbの項目のうち、合計値の高いbの結果を採用した。

(3)経済的重要性の評価

潜在的検疫有害動植物がその分布限界にまでまん延した場合に想定される農作物 又は環境への経済的な影響を評価した。

なお、潜在的検疫有害動植物による直接的な農作物又は環境への影響を「直接的影響」、また、それを補完する位置づけで農作物の重要性や輸出への影響等を「間接的影響」としてそれぞれ評価した。

本項目は、国内で栽培されていない植物は評価の対象としない。

ア 直接的影響

(ア) 影響を受ける農作物又は森林資源

a 評価手順

品目別の農産物産出額から潜在的検疫有害動植物の被害を受けることが想 定される品目の合計額を付録2より積算する。また、農作物の重要性では十 分な評価ができない森林病害虫に対しては、環境的な影響を評価する。

b 評価基準

(a)農作物の重要性	得点	
農産物産出額の合計	が 1 兆 8,000 億円以上	5
ıı .	2,006 億円以上	4
"	763 億円以上	3
n.	213 億円以上	2
n.	213 億円未満	1
統計に無いその他農作物		1
(b) 環境的影響		得点
森林資源に影響を与	える	5

c 評価結果

本種の宿主植物には、トマトが含まれ、農産物産出額の合計は 1,946.8 億円であることから、評価基準より 3 点と評価した。

(イ) 生産への影響

a 評価手順

作物が受ける被害の様式から、生産への影響を評価する。

b 評価基準

被害の様式	得点
寄主又は宿主作物は付録2に記載されており、発生国で、その作物の継続的生産が一時的であれ不可能になる被害、あるいは、永年性作物の枯死による生産手段の喪失などの被害が報告されている。(永年性作物又は森林資源の高頻度の枯死、又は防除手段として切り倒しが含まれるもの。)	5
寄主又は宿主作物は付録2に記載されており、発生国ではその作物に対して、当該作期の商品生産に大きな支障を来す経済的被害が報告されている。(流通過程を含め商品部位が直接的に被害を受けるもの又は1年生作物の高頻度の枯死。)	4
寄主又は宿主作物は付録2に記載されており、発生国ではその作物に対して、高い頻度での枯死にいたる例はないが品質低下を含む明確な経済的被害が報告されている。(商品部位以外へ被害があるもの。)	3
寄主又は宿主作物は付録2に記載されているが、発生国でのその作物に対する明確な経済的被害の報告はない。	2
寄主又は宿主とする作物は付録2に記載されていない。	1

c 評価結果

トマトは付録2に記載されており、商品部位が直接被害を受けることから評価基準より4点と評価した。

(ウ) 防除の困難さ

海外での公的防除の事例のうち、根絶又は封じ込めができずまん延した事例は、防除の困難さや、防除にかかるコストを表すものと考えられる。本項目では、海外での公的防除の実施事例及びその内容から、潜在的検疫有害動植物の防除の困難さを評価した。

a 評価手順

海外での公的防除の実施事例がある場合は、国名を記載する。実施内容についての情報がある場合は、その概要を記載する。

b 評価基準

本項目では得点の付与を行わない。

c 評価結果

本種の海外での公的防除の実施事例についての情報は得られなかった。

(エ) 直接的影響の評価結果

a 評価手順

潜在的検疫有害動植物による直接的影響を、影響を受ける農産物又は森林 資源と生産への影響の評価点の積から下表より評価する。

b 評価基準

評価点の積	得点
21以上	5
16以上21未満	4
11以上16未満	3
6以上11未満	2
6 未満	1

c 評価結果

上記2項目の評価点の積は12となり、直接的影響の評価点は3点となった。

イ 間接的影響

(ア) 農作物の政策上の重要性

a 評価手順

直接的影響で評価した農産物のうち、政策上重要とされている品目について評価する。なお、統計にない植物についてはここでは評価を行わない。

b 評価基準

(a) 寄主又は宿主植物には下記 i ~ iv に掲げる農作物を含む。	1
i 「農業災害補償法」及び「同法による果樹・畑作物共済 の共済目的たる果樹・農作物を指定する政令」で定める 果樹・農作物	左記 i ~ iv 法令 iv 法令 iv を iv
ii 「野菜生産出荷安定法施行令」で定める指定野菜	については、 付録3を参
iii「果樹農業振興特別措置法施行令」で定める果樹	· 照。
iv「主要農作物種子法」で定める主要農作物	
(b)上記i~wに掲げる農作物を含まない。	評価しない

c 評価結果

本種の宿主植物であるトマトは、iiの法令で定められていることから、評価基準より1点と評価した。

(イ) 輸出への影響

潜在的有害動植物が国内で発生した場合、我が国の輸出農産物が相手国で規制(禁止等)の対象となることが考えられる。本項目では、諸外国での検疫規制状況から輸出への影響を評価した。

a 評価手順

各国の要求事項から、当該種の発生を理由に、寄主又は宿主植物が輸入の制限(禁止又はそれと同等の措置)を受けるかどうか判断する。また、判断に用いた対象国及び検疫措置を記録する。

b 評価基準

(a) 当該種の発生により、寄主又は宿主植物は輸入の制限 を受ける	1
(b) 当該種の発生により、寄主又は宿主植物は輸入の制限 を受けない	評価しない

c 評価結果

本種の発生を理由に輸入の制限をしている国はないことから、評価基準より評価しないとした。

ウ経済的重要性の評価結果

ア(エ)直接的影響の評価結果と間接的影響で評価した項目の得点の和 を経済的重要性の評価点とする。なお、評価点の上限は5点とする。(和が5 点を超える場合は5点)

直接的影響の評価結果の得点と間接的影響の得点の和から、経済的重要性の評価点は4点となった。

(4) 不確実性

潜在的検疫有害動植物の定着、まん延の可能性及び経済的重要性の評価には、多くの不確かさを含むため、評価に不確かさを持つ要因及びその不確かさの程度を明確に示す。

特になし

(5) 農業生産等への影響の評価の結論

ア 評価手順

潜在的検疫有害動植物が国内に入り込んだ後の経済的影響を、定着及びまん延の可能性並びに経済的重要性の各項目の評価点の積から下表より評価する。

なお、「無視できる」と結論された場合、リスク評価は終了とする。

イ 評価基準

評価点の積	評価
63.6以上	高い
4. 6以上63. 6未満	中程度
4. 6未満	無視できる

ウ 評価の結論

3項目の評価点の積は72点となり、本種の農業生産等への影響の評を「高い」と結論した。

3 入り込みの可能性の評価

潜在的検疫有害動植物が原産国で品目に寄生又は感染してから、リスクアナリシスを実施する地域の寄主又は宿主植物に寄生又は感染するまでにたどると考えられる過程を特定し、各過程で対象品目に関係する潜在的検疫有害動植物の寄生又は感染率に影響を及ぼす要因と、その効果及び影響を評価した。

また、評価対象種について、該当しない項目、あるいは情報不足で評価できない項目は評価を行わなかった。

評価中止となった場合は、その時点で該当する経路の入り込みの評価は「無視できる」とした。

本評価については、「第1.3 対象となる経路」で特定された経路について実施した。各項目の得点及び判断理由は経路毎に別紙4に記録した。

(1) 潜在的検疫有害動植物に関連する経路からの入り込みの可能性

ア 評価手順

潜在的検疫有害動植物が関連する経路の年間輸入量を別紙6に記録する。

イ 評価基準

本項目では得点の付与を行わない。

(2) 輸送中又は貯蔵中の生き残りの可能性

潜在的検疫有害動植物が原産地での品目管理手順を経て生き延びる可能性を「加工処理に耐えて生き残る可能性」及び「潜在的検疫有害動植物の個体の見えにくさ」により評価した。

ア 加工処理に耐えて生き残る可能性

品目に対する加工処理が潜在的検疫有害動植物の生存率に与える影響を評価する。

(ア) 評価手順

評価の対象とする植物の用途から、下記の基準を用いて評価する。

(イ) 評価基準

輸入時の植物の用途	得点
栽植用の苗木、穂木及び球根	
全ての有害動植物	5
栽植用の種子	
全ての有害動物	4
全ての有害植物	5
乾燥、加圧、粉砕等の処理を伴う用途	
貯蔵性有害動植物	5
耐久生存態を形成する糸状菌及び細菌類	5

乾燥に強いことが知られるウイルス類	5
上記以外の有害動植物	評価しない
上記以外の用途	
全ての有害動植物	5

(ウ) 評価結果

- a 栽植用植物 栽植用植物であることから、評価基準より5点と評価した。
- b 消費用生植物 消費用生植物であることから、評価基準より5点と評価した。

イ 潜在的検疫有害動植物の個体の見えにくさ

潜在的検疫有害動植物が輸出国で行われる通常の商品管理を経て生き残る可能性を「寄生又は感染部位」及び「最小個体サイズ」から評価した。

(ア) 評価手順

潜在的検疫有害動植物が関連する植物の寄生又は感染部位及び最小個体サイズについて、下表より評価する。ここでの評価は各態の中で最も得点の高い態を利用する。

また、線虫及び有害植物は全ての経路について5点とする。

(イ) 評価基準

有害動物 (線虫を除く)

寄生部位	各態の最小個体サイズ	得点
内部	_	5
栽植用(苗類)であって、 地下部に寄生するもの	_	5
ときに内部、若しくはすき間	3mm未満	4
[8]	3mm以上	3
完全~ほぼ外部	3mm未満	2
	3mm以上	1

線虫及び有害植物

寄生又は感染部位	各態の最小個体サイズ	得点
全ての経路	_	5

(ウ) 評価結果

a 栽植用植物

本種は有害植物であることから、評価基準より5点と評価した。

b 消費用生植物

本種は有害植物であることから、評価基準より5点と評価した。

(3) 好適寄主又は宿主への移動の可能性

輸入された品物に関連した潜在的検疫有害動植物がリスクアナリシスを実施する 地域内の好適寄主又は宿主へ移動する可能性を評価した。ここでは人為的移動と自 然分散についてそれぞれ評価した。

ア 輸入品目からの人為的な移動による分散の可能性

潜在的検疫有害動植物が寄主又は宿主の存在する地域にたどり着く可能性を評価した。

(ア) 評価手順

a 栽培用植物 (栽植用植物、栽植用球根類及び栽植用種子) 栽培のために寄主又は宿主が存在する地域に運ばれることから、一律の評価とする。

b 消費用植物(穀類・豆類以外)

輸入された消費用植物は人口に比例して配分されると仮定でき、植物の移動量を人口の分布(人口比)から推定する。

別紙2に記載された、寄主又は宿主となり得る植物の生育する都道府県を 用いて、人口比を下表から積算し合計値で評価する。

また、消費用植物であっても栽培に転用可能である場合には、該当する植物の部位を記述する。

c 消費用植物(穀類·豆類)

流通経路から野外に分散する可能性は極めて低いことから、一律の評価と する。

表 地域と人口比

都道府県	人口比	都道府県	人口比	都道府県	人口比	都道府県	人口比
北海道	0.043	東京都	0.102	滋賀県	0.011	香川県	0.008
青森県	0.011	神奈川県	0.070	京都府	0.021	愛媛県	0.011
岩手県	0.010	新潟県	0.019	大阪府	0.069	高知県	0.006
宮城県	0.018	富山県	0.009	兵庫県	0.044	福岡県	0.040
秋田県	0.009	石川県	0.009	奈良県	0.011	佐賀県	0.007
山形県	0.009	福井県	0.006	和歌山県	0.008	長崎県	0.011
福島県	0.016	山梨県	0.007	鳥取県	0.005	熊本県	0.014
茨城県	0.023	長野県	0.017	島根県	0.006	大分県	0.009
栃木県	0.016	岐阜県	0.016	岡山県	0.015	宮崎県	0.009
群馬県	0.016	静岡県	0.030	広島県	0.022	鹿児島県	0.013
埼玉県	0.056	愛知県	0.058	山口県	0.011	沖縄県	0.011
千葉県	0.048	三重県	0.015	徳島県	0.006		

(イ) 評価基準

用途	人口比の合計	得点
a 栽培用植物 (栽植用植物、栽植用球根類 及び栽植用種子)		5
b 消費用植物 (穀類・豆類以外)	1	4
(0.7以上 1未満	3
	0.3以上0.7未満	2
	0.3未満	1
	寄主又は宿主植物が生育する地 域がない	評価中止
c 消費用植物 (穀類・豆類)	_	1

(ウ) 評価結果

- a 栽植用植物
 - 栽植用植物であることから、評価基準より5点と評価した。
- b 消費用生植物

本種の宿主植物は、47都道府県に分布していることから、人口比の合計は1となり、評価基準より4点と評価した。

イ 輸入品目からの自然分散の可能性

(ア) 評価手順

輸入品目に寄生又は感染した潜在的検疫有害動植物が自らの移動能力により 寄主又は宿主植物にたどり着く可能性を評価する。

(イ) 評価基準

栽植用植物については移動能力の大きさに関わらず、栽培用として利用されることで入り込みが完了することから一律5点とする。

栽植用植物

全ての有害動植物	得点
栽植用に輸入された植物	5

消費用植物

有害動物	得点
飛翔(長距離移動(1km以上)の記録があるもの)	3
飛翔(上記以外)	2
歩行	1
センチュウ類	1
有害植物 (ウイルス、ウイロイドを除く)	得点
風媒伝搬	2
水媒伝搬	1
接触伝搬	1
上記以外	評価中止
上記以外の有害動植物	評価中止

消費用植物でベクター (日本に存在するものに限る。) により媒介される場合は1点とし、ベクターが日本に存在しない場合は評価中止とする。

なお、ウイルス、ウイロイドであって、移動の可能性がある場合は個別に判断 する。

(ウ) 評価結果

a 栽植用植物

栽植用植物であることから、評価基準より5点と評価した。

b 消費用生植物

本種はウイロイドであることから、評価中止とした。

(4) 不確実性

潜在的検疫有害動植物の入り込みの可能性の評価には、多くの不確かさを含むため、評価に不確かさを持つ要因及びその不確かさの程度を明確に示す。

a 栽植用植物 特になし

b 消費用生植物

特になし

(5)入り込みの可能性の評価の結論

ア 評価手順

評価を行った項目の得点平均値を求め、下表から入り込みの可能性を評価する。

イ 評価基準

平均点	評価		
4. 3以上	高い		
3. 2以上4.3未満	中程度		
3. 2未満	無視できる		

ウ 評価の結論

a 栽植用植物

評価した項目の得点の平均値は5点であり、本種の栽植用植物を経路とした 場合の入り込みの可能性を「高い」と結論した。

b 消費用生植物

評価した項目のうち、「(3) イ 輸入品目からの自然分散の可能性」で「評価中止」となったことから、本種の消費用生植物を経路とした場合の入り込みの可能性を「無視できる」と結論した。

4 危険にさらされている地域の結論

侵入及びまん延する可能性のある地域(危険にさらされている地域)と、第1で設定したリスクアナリシスの対象となる地域との関係を記述する。寄主又は宿主植物の分布状況、気候要因などにより、当初設定したリスクアナリシスを実施する地域より危険にさらされる地域が狭くなることもあり得る。

本種の宿主植物は 47 都道府県で広く分布しているため、危険にさらされている 地域を日本全域と結論した。

5 リスク評価の結論

農業生産等への影響及び入り込みの可能性の評価結果から輸入経路における病害虫リスクを特定した。ここで「無視できる」以外の評価となった場合、検疫有害動植物として以後、管理措置を検討する。

別紙3及び4の結論並びに輸入経路における病害虫リスクについては、別紙5にとりまとめた。

入り込	高い	無視で	中程度 (入り込みの可能性が高い)	高い	
みの	中程度	(きる	低い	中程度 (農業生産等への影響が高い)	
可 能 性	無視	'	無視でき	きる	
		無視	中程度	高い	
		農業生産等への影響 (定着及びまん延の可能性並びに経済的重要性の総合評価)			

輸入経路における病害虫リスク

a 栽植用植物

入り込みの可能性は「高い」であり、農業生産等へ影響は「高い」であったことから、栽植用植物を経路とした場合の本種の病害虫リスクは「高い」と結論した。

b 消費用生植物

入り込みの可能性は「無視できる」であり、農業生産等へ影響は「高い」であったことから、消費用生植物を経路とした場合の本種の病害虫リスクは「無視できる」と結論した。

第3 病害虫リスク管理(ステージ3)

リスク評価の結果、Tomato planta macho viroid はリスク管理措置が必要な検疫有害植物であると判断されたことから、ステージ3において、発生国からの宿主植物の輸入に伴う本菌の侵入リスクを低減するための適切な管理措置について検討する。

1. Tomato planta macho viroid のリスク管理措置の選択肢の有効性及び実行可能性の検討

			有効性及び	寒行可能性	上の難易	
選択肢	方法	有効性及び実行可能性の検討				
			実施時期	有効性	実行上	
					の難易	
病害虫無発	国際基準 No.4 ま	〔有効性〕				
生地域また	たは No.10 の規	● 国際基準に基づき輸出国の国家	輸出国	0	0	
は無発生生	定に従って設定	植物防疫機関が設定、管理、維	輸出時			
産地の設定		持する病害虫無発生地域また				
		は無発生生産地であれば、リス				
		クを十分に低減することがで				
		きる。				
		〔実行可能性〕				
		● 輸出国において適切に管理され				
		ることが条件であるが、実行可				
		能と考えられる。				
栽培地検査	栽培期間中に生	〔有効性〕				
	育場所において	● 栽培期間中に病徴を明瞭に現す	輸出国	∇	0	
	植物の病徴を観	場合は有効である。	栽培中			
	察する。	● トマトでは、茎葉の矮化等の病徴				
		を現すが、栽培条件や品種等				
		により病徴が現れない場合も				
		あるため、有効でない場合が				
		ある。				
		•				
		〔実行可能性〕				
		栽培中の検査は輸出国において適				
		切な検査が行われることが条				
		件であるが、実行可能と考え				
		られる。				
精密検定	本ウイロイドに	〔有効性〕				
	特異的なプライ	RT-PCR 法等により、植物体から	輸出国	0	0	
	マーによる PCR	特異的に本ウイロイドの検出	輸出並			

	法等遺伝子学的 診断	が可能である。			
	B 2 E 1	〔実行可能性〕◆検定施設を有すること、検査に時間を要することが解消できれば実行可能である。◆したがって、輸出国であれば実行		0	∇
		可能であるが、我が国の輸入 検査では実行可能性が低いと 考えられる。			
該病害虫の 付着がない ことを検査 証明書に追			輸出時	∇	Ο
		〔実行可能性〕輸出国において適切な輸出検査が 行われることが条件であるが、 実行可能と考えられる。			
	植物体の病徴を 観察する。	〔有効性〕トマトでは、茎葉の矮化等の病徴を現すが、栽培条件や品種等により病徴が現れない場合もあるため、有効でない場合が	輸出時	∇	0
		ある。 「実行可能性〕 通常実施されている輸出入検査であり、十分実行可能である。	輸入時	∇	0
		•			

有効性 〇:効果が高い

▽:限定条件下で効果がある

×:効果なし

実行可能性 〇:実行可能

▽:実行性が低い

×:実行困難

2. 経路ごとの Tomato planta macho viroid に対するリスク管理措置の有効性(上段)及び 実行可能性(下段)一覧

経路ごとのリスク管理措置について検討した結果を下記のようにとりまとめた。

	1	2	3	4	5	6
選択肢	病害虫	栽培地	精密検	精密検	検査証	輸出入
	無発生	検査	定(輸	定(輸	明書へ	検査
	地域ま		出国)	入国)	の追記	
	たは無					
	発生生					
	産地の					
	設定					
経路						
栽植用植物	0	∇	0	0	∇	∇
	0	0	0	∇	0	0

有効性 〇:効果が高い

▽:限定条件下で効果がある

×:効果なし

実行可能性 〇:実行可能

▽:実行性が低い

×:実行困難

3. 経路ごとの Tomato planta macho viroid に対するリスク管理措置の選択肢の特定

(1)栽植用植物

ア. リスク管理措置

- (ア) 国際基準に従った病害虫無発生地域または無発生生産地の設定(選択肢①)。
- (イ)輸出国による栽培地検査及び精密検定(選択肢②及び③)
- (ウ)輸出国による RT-PCR 法等による精密検定(選択肢③)。

イ. 検討結果

「栽植用植物」を経路とするリスク評価の結論が「高い」であることから、措置は 輸出国へ求めることが妥当と考える。

国際基準に基づき、輸出国国家植物防疫機関が設定・管理・維持する病害虫無発生地

域または無発生生産地の設定(選択肢①)は、輸出国によって適切に管理されればリスク低減効果がある。

トマトは栽培期間中に通常病徴を現すが、栽培条件や品種等により病徴が現れない場合もあることから、栽培期間中の目視による病徴検査に加えて精密検定を実施することで、リスクを効果的に低減できると考える(選択肢②及び③)。

また、本ウイロイドを検出するための精度の高い精密検定法が報告されている。したがって、病徴の確認を行わなくとも特異的なプライマーを用いた RT-PCR 法等の精密検定によって、リスクを十分に低減できると考える(選択肢③)。

4. Tomato planta macho viroid のリスク管理措置の結論

経路ごとにリスク管理措置の選択肢を検討した結果、本ウイロイドの入り込みのリスクを低減させる効果があり、かつ必要以上に貿易制限的でないと判断した各経路の管理措置を以下にとりまとめた。

用途・部位	対象植物	植物検疫措置
栽植用植物	トマト、	● 輸出国による精密検定。

生物学的情報 (有害植物)

- 1 学名及び分類(文献⑤)
 - (1) 学名

Tomato planta macho viroid

(2) 英名、和名等

アクロニム: TPMVd

(3) 分類

種類:ウイロイド

科: Pospiviroidae 属: Pospiviroid

2 宿主植物

ナス科: Solanaceae

Solanum lycopersicum (トマト) (文献①③④)

- 3 地理的分布
- (1) 国又は地域

中南米:

メキシコ (文献①③④)

(2) 生物地理区

新熱帯区及び新北区の2区に分布する。

4 感染部位

全ての組織(文献①③④)。

- 5 移動分散方法
- (1) 自然分散

接触(機械的)伝搬、接木伝搬及びベクターにより伝搬される(文献①②④⑤)。なお、種子伝搬は知られていない(文献①③④)。

(2) 人為分散

本種は接触(機械的)により容易に伝搬され、感染植物に触れた器具から広がる(文献④)。

- 6 生態
- (1)中間宿主及びその必要性

情報なし

(2) 伝染環数

種子を1次伝染源とし、罹病株は周囲の健全株との接触により伝染すると考えられるため、伝染環は複数あると判断した(文献①③④)。

(3) 植物残渣中での生存

情報なし

(4) 耐久生存態

情報なし

7 媒介性又は被媒介性に関する情報

モモアカアブラムシ(Myzus persicae)が半永続的に媒介する(文献③)。また、本種の有翅虫は風にのって長距離飛翔する事が知られている(文献⑥)。

8 被害の程度

感染したトマトの株は生育不良となり、果実は全て小玉になり商品価値を損なう。(文献①③④)

9 防除に関する情報

情報なし

10 現行の植物検疫措置

本種に対する植物検疫措置は、輸出国政府機関が発給する植物検疫証明書の添付要求及び日本での輸入検査。

11 諸外国での検疫措置状況

情報なし

12 引用文献

- ① Matthews-Berry, S. (2010) Emerging viroid threats to UK tomato production. PLANT DISEASE FACTSHEET. The Food and Environment Research Agency (Fera). UK.
- ② EPPO (2012) EPPO Reporting Service. Paris, France: EPPO. \(\text{http://www.eppo.int/PUBLICATIONS/reporting/reporting_service.htm} \)
- ③ Hadidi A, Flores R, Randles JW and Semancik JS (2003) Viroids. Edited by Hadidi A, Flores R, Randles JW and Semancik JS. CSIRO Publishing, Collingwoood, Australia, 370 pp.
- ④ J. Galindo A., D. R. Smith, and T. O. Diener, 1982. Etiology of Planta Macho, a Viroid Disease of Tomato. Phytopathology, 72:49-54
- ⑤ International Committee on Taxonomy of Viruses (ICTV) (2012) Virus Taxonomy: 2011 Release (current). 〈http://ictvonline.org/virusTaxonomy.asp?version=2011〉
- ⑥ CABI Crop Protection Compendium (2012) Data sheet on *Myzus persicae*. ⟨http://www.cabi.org⟩