Potato spindle tuber viroid (ジャガイモやせいもウイロイド)に関する 病害虫リスクアナリシス報告書

平成31年3月25日 改訂

農林水産省 横浜植物防疫所

改訂履歴及び改訂内容

平成 25 年 1月 29 日 作成

平成 27年11月13日 発生国を追加

平成 31 年 3 月 25 日 発生国及び宿主植物の追加、人口比、政策上の重要性の根拠となる法令の 更新

目次

はじ	めに	1
第1	開始(ステージ1)	2
1	開始	2
2	対象となる有害動植物	2
3	対象となる経路	2
4	対象となる地域	2
5	1/13/ A 1 A A III	
第2	病害虫リスク評価(ステージ2)	3
1		
	(1)有害動植物の日本での発生の有無及び公的防除の有無等	3
	(2)定着及びまん延の可能性	3
	(3)経済的影響を及ぼす可能性	3
	(4)有害動植物の類別の結論	4
2	農業生産等への影響の評価	5
	(1)定着の可能性の評価	5
	(2)まん延の可能性の評価	8
	(3)経済的重要性の評価	11
	(4)不確実性	
	(5)農業生産等への影響の評価の結論	15
3	入り込みの可能性の評価	
	(1)潜在的検疫有害動植物に関連する経路からの入り込みの可能性	16
	(2)輸送中又は貯蔵中の生き残りの可能性	
	(3)好適寄主又は宿主への移動の可能性	18
	(4)不確実性	20
	(5)入り込みの可能性の評価の結論	
4	危険にさらされている地域の結論	21
5	リスク評価の結論	22
	病害虫リスク管理(ステージ3)	
1	. Potato spindle tuber viroid に対するリスク管理措置の選択肢の有効性及び実行可能性の検討	23
2	. 経路ごとの Potato spindle tuber viroid に対するリスク管理措置の選択肢の有効性及び実行可能性-	
		25
	. 経路ごとの Potato spindle tuber viroid に対するリスク管理措置の選択肢の特定	
	. Potato spindle tuber viroid のリスク管理措置の結論	
	〔1 生物学的情報(有害植物)	
	₹2 寄主又は宿主植物の分布	
	f3 農業生産等への影響の評価結果表	
	[4 入り込みの可能性の評価結果表	
	f5 病害虫リスク評価の結論一覧表	
別組	f6 関連する経路の年間輸入量	41

はじめに

Potato spindle tuber viroid は、トマト、バレイショ、ペチュニアなど主にナス科植物に感染し、種子伝染することが知られている。汚染種子が第一次伝染源となり、植物体の接触伝搬により二次伝染をする。バレイショの塊茎に亀裂、細長化などを引き起こし、収量に影響するなど重要なウイロイド病の一種である。このため、我が国では、本病の侵入・まん延を防ぐため、本ウイロイドを植物防疫法施行規則別表2の2で規定し、本病発生国から輸入される栽植用植物及び種子については、本ウイロイドに対する核酸の塩基配列を検出するために適切と認められる方法による検査が必要とされている。今般、本ウイロイドに対するリスク評価を見直し、現行の管理措置の有効性を評価するため、リスクアナリシスを実施した。

このリスクアナリシスは、「病害虫リスクアナリシスの実施に関する手順書(平成24年度版)」に従い実施したものであり、開始(ステージ1)、病害虫リスク評価(ステージ2)及び病害虫リスク管理(ステージ3)の3つのステージから構成される。

本報告書の取りまとめにあたっては、以下の学識経験者から技術的な助言や情報提供を受けた。

- 上松 寛(独立行政法人農業・食品産業技術総合研究機構中央農業総合研究センター病害虫研究領域研究員) 大藤 泰雄(独立行政法人農業・食品産業技術総合研究機構中央農業総合研究センター病害虫研究領域上席 研究員)
- 津田 新哉(独立行政法人農業・食品産業技術総合研究機構中央農業総合研究センター病害虫研究領域上席研究員)
- 松下 陽介(独立行政法人農業・食品産業技術総合研究機構花き研究所花き研究領域研究員)望月 淳(独立 行政法人農業環境技術研究所生物多様性研究領域上席研究員)
- 山村 光司(独立行政法人農業環境技術研究所生物多様性研究領域上席研究員)

【敬称略、五十音順。所属及び肩書きは当時のもの。】

第1 開始 (ステージ1)

1 開始

病害虫のリスクに応じて効果的かつ効率的な植物検疫を実施していくためには、検疫対象の有害動植物(以下「検疫有害動植物」という。)を特定することが重要である。また、国際植物防疫条約(以下「IPPC」という。)の規定においても、検疫有害動植物の明示及び病害虫リスクアナリシス(以下「リスクアナリシス」という。)の結果に基づく病害虫リスク管理措置の実施を求めている。

このため、平成23年3月7日に植物防疫法施行規則(昭和25年農林省令第73号)の改正等を行い、検疫有害動植物の定め方をネガティブリスト方式からポジティブリスト方式へ移行するとともに、病害虫のリスクに応じた適切な病害虫リスク管理措置を実施するため、輸出国において検疫措置の実施を求める枠組みを新設する等の見直しを実施した。

引き続き、検疫有害動植物の特定及び適切な病害虫リスク管理措置の適用に係る検討のための技術的正当性の判断に資するため、我が国に侵入し、まん延した場合に有用な植物に損害を与えるおそれが未だ明らかでない有害動植物について、順次、病害虫を開始点とするリスクアナリシスを実施している。

本リスクアナリシスは、これに基づき実施したものである。

2 対象となる有害動植物

リスクアナリシスの対象となる有害動植物名を Potato spindle tuber viroid と特定した。 関連する学名等の情報は、生物学的情報(別紙1)に取りまとめた。

3 対象となる経路

本種の感染部位及び伝搬方法から、想定される輸入植物を介して、日本に入り込む可能性がある経路を以下のとおり特定した。関連する宿主植物等の情報は、生物学的情報 (別紙1)に取りまとめた。

想定される経路:

栽植用植物、栽植用球根類、栽植用種子、消費用生植物

4 対象となる地域

リスクアナリシスを実施する地域を日本全域とした。

5 開始の結論

Potato spindle tuber viroid を開始点とし、本種の発生地域から輸入される植物を経路とした日本全域を対象とする病害虫リスクアナリシスを開始する。なお、リスクアナリシスに必要な情報は、生物学的情報(別紙1)及び、寄主又は宿主となり得る植物の分布情報(別紙2)に取りまとめた。

第2病害虫リスク評価(ステージ2)

1 有害動植物の類別

ステージ1で特定された有害動植物について、国内における発生及び公的防除の有無、定着及びまん延の可能性並びに経済的影響を及ぼす可能性について調査し、検疫有害動植物の定義内の基準を満たしているか検討した。なお、検疫有害動植物の基準を満たしていない場合は評価を中止し「無視できる」とした。

(1) 有害動植物の日本での発生の有無及び公的防除の有無等

ア 評価手順

開始の結論で有害動植物とされたものについて、日本での発生の有無及び公的防除の有無等を調査する。

イ 評価基準

以下(ア)~(ウ)の要件のいずれも満たさない場合、評価中止とする。

- (ア) 国内において未発生である。
- (イ) 国内に発生していても広く分布せず、公的防除が行われている、又は近い将来公的防除が検討される予定である。
- (ウ) 国内既発生であっても、国内未発生の系統が存在、または国内未発生の有害動植物を媒介する。

ウ 評価結果

本種は国内の一部の地域で栽培されるダリアにおいて発生しているが、公的な防除が実施されている。

(2) 定着及びまん延の可能性

ア 評価手順

上記(1)の基準のいずれかを満たした有害動植物について、日本での寄主又は宿主となり得る植物の分布から定着及びまん延の可能性を評価する。

イ 評価基準

別紙2から、寄主又は宿主となり得る植物が日本に分布している場合には「定着及びまん延の可能性」があると判断する。

ウ 評価結果

本種の宿主となり得る植物は 47 都道府県に分布していることから、定着及びまん延の可能性があると判断した。

(3) 経済的影響を及ぼす可能性

ア 評価手順

上記(1)の基準のいずれかを満たした有害動植物の寄主又は宿主となり得る植物の栽培状況から経済的影響を及ぼす可能性を評価する。

イ 評価基準

別紙2から、寄主又は宿主となり得る植物が日本で農産物として栽培されている場合には「経済的影響を及ぼす可能性」があると判断する。

ウ 評価結果

本種の宿主となり得る植物は日本国内で農産物として栽培されていることから、本種は経済的影響を及ぼす可能性があると判断した。

(4) 有害動植物の類別の結論

本種は国内の一部で発生しているが公的な防除を実施しており、定着及びまん延の可能性があること及び経済的影響を及ぼす可能性があることから、本種を潜在的検疫有害動植物と特定した。

2 農業生産等への影響の評価

1. で特定された潜在的検疫有害動植物について、農業生産等への影響を評価した。

農業生産等への影響は、潜在的検疫有害動植物がリスクアナリシスを実施する地域に入り込んだ場合に想定される リスク(病害虫固有のリスク)とし、「定着の可能性」、「まん延の可能性」及び「経済的重要性」で評価した。

評価対象生物について、該当しない項目、あるいは情報不足で評価できない項目は評価を行わない。

なお、評価の途中で評価中止となった場合、その時点で農業生産等への影響の評価の結論は「無視できる」とする。 各項目の得点及びその判断理由は別紙3に記録した。

(1) 定着の可能性の評価

潜在的検疫有害動植物がリスクアナリシスを実施する地域に入り込んだ場合、地域内の寄主又は宿主植物に寄生又は感染し、環境に適応し、寄主又は宿主植物を利用して恒久的に発生するかについて評価した。

ア リスクアナリシスを実施する地域における寄主又は宿主植物の利用可能性及び環境の好適性

(ア) 寄主又は宿主植物の利用可能性及び環境の好適性

潜在的検疫有害動植物の寄主又は宿主植物のうち、各都道府県に寄主又は宿主植物がどの程度存在しているかを調査し、寄主又は宿主の利用可能性及び環境の好適性を評価した。

a 評価手順

別紙2に記載された、寄主又は宿主となり得る植物が栽培又は自生している都道府県数から評価する。

b 評価基準

寄主又は宿主が存在する都道府県数	得点
47	5
38以上46以下	4
12以上37以下	3
4以上11以下	2
1以上3以下	1
O(寄主が存在しない)	評価中止

c 評価結果

本種の宿主となり得る植物は47都道府県に分布していることから、評価基準より5点と評価した。

(イ) 潜在的検疫有害動植物の寄主又は宿主範囲の広さ

潜在的検疫有害動植物の寄主又は宿主範囲の広さを基に、潜在的な寄主又は宿主植物の存在の可能性を評価した。

a 評価手順

寄主又は宿主植物の科を記載する。

b 評価基準

本項目では得点の付与を行わない。

c 評価結果

本種が宿主とする植物の科は、アカザ科、キク科、クスノキ科及びナス科が知られている。

(ウ) 有害動植物の侵入歴

生物地理区を越えた分布を人為的な移動によるものと仮定すると、複数の生物地理区への分布は交易その他によって原産地以外に定着し病害虫となった結果であると推定される。本項目では潜在的検疫有害動植物の分布する生物地理区の区域数から、侵入歴を評価した。

a 評価手順

潜在的検疫有害動植物の分布国又は地域から、生物地理区の区域数を付録1より集計する。

b 評価基準

分布区域数	得点
5区以上に分布する。	5
4区に分布する。	4
3区に分布する。	3
2区に分布する。	2
1区に分布する。	1

c 評価結果

東洋区、エチオピア区、新熱帯区、新北区、旧北区、オーストラリア区及び南極区の計7区に 分布することから、評価基準より5点と評価した。

イ リスクアナリシスを実施する地域における潜在的検疫有害動植物の生存の可能性

(ア) 潜在的検疫有害動植物の繁殖戦略

a 評価手順

潜在的検疫有害動植物について、単為生殖が可能かどうか調査する。一部の系統が単為生殖の性質を示す場合には、も高い得点を得られるものを選択する。有害植物については一律5点とする。

b 評価基準

有害動物	得点
産雌単為生殖が可能	5
両性単為生殖が可能	5
産雄単為生殖が可能	4
上記以外	2
有害植物	得点
全ての有害植物	5

c 評価結果

本ウイルスは有害植物であることから、評価基準より5点と評価した。

(イ)有害植物のみリスクアナリシスを実施する地域における中間宿主の利用可能性

a 評価手順

潜在的検疫有害植物の増殖に中間宿主(代替宿主)が必須であるかないか、必須な場合には宿主となる植物が存在するかを調査する。日本全国を一つの対象地域とする。

b 評価基準

潜在的検疫有害植物の増殖に:	得点
(a)中間宿主は必須でない。	評価しない
(b)中間宿主は必須である。	
リスクアナリシスを実施する地域に中間宿主となる植物が存在す る。	3
リスクアナリシスを実施する地域に中間宿主となる植物が存在し ない。	評価中止

c 評価結果

本種の増殖に関して、中間宿主は必須ではないため、本項目は評価しない。

(ウ)潜在的検疫有害動植物の生存の可能性

a 評価手順

潜在的検疫有害動植物の不良環境における生存手段、リスクアナリシスを実施する地域における寄主又は宿主の利用可能性について調査し、生存の可能性について検討する。

b 評価基準

以下の要件を1つでも満たす場合、潜在的検疫有害動植物は生活環を維持できるものとする。生活環 を維持できない場合、「評価中止」とする。

潜在的検疫有害動植物は:	
休眠性を持つ。(冬眠あるいは越冬態)	左記の要件
耐久生存態をつくる。	を満たす根 拠となった
土壌伝染性である。	文献を記述 する。
植物残渣中で生存可能。	
寄生又は感染部位が周年で存在する。	
栄養繁殖体や種子に寄生又は感染する。	
施設栽培がおこなわれている。	

c 評価結果

本種は栄養繁殖体及び種子で伝搬させることが知られていることから、不要環境における生存手段を持ち、生存の可能性があると評価した。

ウ 定着の可能性の評価結果

評価した項目の得点平均値を定着の可能性の評価点とする。

評価した項目の平均から、定着の可能性の評価点は5点満点中の5点となった。

(2) まん延の可能性の評価

定着した地点から潜在的検疫有害動植物がどの様に分散するのか、自然条件における潜在的検疫有害動植物の分散能力、寄生又は感染した植物の流通やその他人為的手段による潜在的検疫有害動植物の分散の可能性について評価した。

ア 自然分散(自然条件における潜在的検疫有害動植物の分散)

潜在的検疫有害動植物の移動可能距離と年間世代数について調査し、自然条件下における潜在的検疫有害動植物の分散能力を評価した。

また、ベクターにより媒介される場合は、ベクターの移動距離及び化数で評価し、ベクターが日本に存在しない場合は「評価中止」とした。

(ア) 有害動物の自然分散

本種は有害植物であり、本項目は評価しない。

(イ) 有害植物の自然分散

ここでは、a ベクター以外による伝搬と、b ベクターによる伝搬とに分けて評価を行い、それぞれにおける項目の得点の合計値が高い方を採用する。

- a ベクター以外による伝搬
 - (a)移動距離
 - i 評価手順

潜在的検疫有害植物の移動可能距離を有害植物の分散様式から評価する。

ii 評価基準

分散様式	得点
胞子や花粉による伝搬	5
風雨による伝搬、遊走子による伝搬	3
種子伝搬	2
土壌伝搬	1
機械的伝搬	1

iii 評価結果

本種は、ベクター以外による伝搬については、花粉伝搬、種子伝搬及び機械伝搬が知られている。 花粉により伝搬されることから、評価基準より5点と評価した。

(b) 伝染環数

i 評価手順

潜在的検疫有害動植物の一年間(又は一定期間)の伝染環数について調査し、以下の基準により評価する。

ii 評価基準

伝染環数	得点
1年間に2回以上	5
〃 に1 回	3
" を超える期間に1回	1

iii 評価結果

本種は、種子又は栄養繁殖体を1次伝染源とし、植物体内で増殖した病原体は周囲の健全株との接触により伝染すると考えられるため伝染環は複数と判断できることから、評価基準より5点と評価した。

b ベクターによる伝搬

(a) ベクターの移動距離

i 評価手順

潜在的検疫有害植物の移動可能距離をベクターの移動様式から評価する。なお、ベクターが日本に存在しない場合、評価対象としない。

ii 評価基準

移動様式	得点
長距離飛翔(風による移動を含む。1km以上)	5
短距離飛翔(数m単位)	3
歩行(カイガラムシ類を含む)	2
ベクターが線虫・土壌病菌	1

iii 評価結果

本種のベクターであるモモアカアブラムシは、長距離飛翔することから、 評価基準より5点と評価した。

(b) 伝搬様式

i 評価手順

ベクターの伝搬様式(媒介継続期間)を調査し以下の基準により評価する。なお、ベクターが日本に存在しない場合、評価対象としない。

ii 評価基準

ベクターの伝搬様式	得点
ベクター体内で増殖する病原体(循環型—	5
増殖型)	
ベクター体内で循環するが、増殖しない病原体(循環	4
型—非増殖型)	
ベクター体内で循環せず、数日間媒介される病原体	3
(非循環型—半永続型)	
ベクターの口器等に付着し数時間のみ媒介される病原	2
体(非循環型—非永続型)	

iii 評価結果

本種のベクターによる伝搬様式は不明であるため、評価しない。

イ 人為分散

品目(農作物)又は輸送機器等(非農作物)に伴う潜在的検疫有害動植物の移動の可能性から、人為分散 の可能性を評価する。評価については、農作物を介した分散と、非農作物を介した分散について実施する。

(ア) 農作物を介した分散

a 評価手順

潜在的検疫有害動植物が寄生又は感染した部位が流通し、次の発生源となるかどうかについて、これら植物が生産されている都道府県数から評価する。

- b 評価基準
 - (a) 潜在的検疫有害動植物の寄生又は感染部位が商品として流通する場合都道府県数は別紙2を参照。

寄主又は宿主となる作物が 生産されている都道府県数	得点
47 都道府県	5
38-46 都道府県	4
12-37 都道府県	3
4-11 都道府県	2
O- 3 都道府県	1

(b) 潜在的検疫有害動植物の寄生又は感染部位が商品として流通しない場合…1

c 評価結果

本種の宿主植物は、47都道府県で生産されており、評価基準より5点と評価した。

(イ) 非農作物を介した分散

a 評価手順

マイマイガの梱包材による分散など、農作物を介さない、重要な人為的分散手段があるかどうかについて調査し以下の基準により評価する。また、判断理由についても記述する。

b 評価基準

人為的分散手段	得点
輸送機器、梱包材等に付着して移動することが知られている。	5
土壌中に生息し、人及び輸送機器に付着して移動することが知られている。	5
栽培に伴う作業で移動することが知られている。	5
上記の移動手段は知られていない。	評価しない

c 評価結果

栽培作業での伝搬が知られていることから、評価基準より5点と評価した。

ウ まん延の可能性の評価結果

アの各項目及びイの得点平均値をまん延の可能性の評価点とする。

評価した項目の平均から、まん延の可能性の評価点は5点満点中の5点となった。 なお、「P(A) 有害植物の自然分散」では、評価を行ったa及びbの項目のうち、合計値の高いaの結果を採用した。

(3)経済的重要性の評価

潜在的検疫有害動植物がその分布限界にまでまん延した場合に想定される農作物又は環境への経済的な影響を評価した。

なお、潜在的検疫有害動植物による直接的な農作物又は環境への影響を「直接的影響」、また、それを補完する位置づけで農作物の重要性や輸出への影響等を「間接的影響」としてそれぞれ評価した。

本項目は、国内で栽培されていない植物は評価の対象としない。

ア 直接的影響

(ア) 影響を受ける農作物又は森林資源

a 評価手順

品目別の農産物産出額から潜在的検疫有害動植物の被害を受けることが想定される品目の合計額を付録2より積算する。また、農作物の重要性では十分な評価ができない森林病害虫に対しては、環境的な影響を評価する。

b 評価基準

(a) 農作物の重要性	得点
農産物産出額の合計が 1 兆 8,000 億円以上	5
" 2,006 億円以上	4
" 763 億円以上	3
" 213 億円以上	2

" 213 億円未満	1
統計に無いその他農作物	1
(b) 環境的影響	得点
森林資源に影響を与える	5

c 評価結果

本種の宿主植物には、トマト、バレイショ等が含まれ、農産物産出額の合計は 3609.4 億円であることから、評価基準より4点と評価した。

(イ) 生産への影響

a 評価手順

作物が受ける被害の様式から、生産への影響を評価する。

b 評価基準

被害の様式	得点
寄主又は宿主作物は付録2に記載されており、発生国で、その作物の継続的生産が一時的であれ不可能になる被害、あるいは、永年性作物の枯死による生産手段の喪失などの被害が報告されている。(永年性作物又は森林資源の高頻度の枯死、又は防除手段として切り倒しが含まれるもの。)	5
寄主又は宿主作物は付録2に記載されており、発生国ではその作物に対して、当該作期の商品生産に大きな支障を来す経済的被害が報告されている。 (流通過程を含め商品部位が直接的に被害を受けるもの又は1年生作物の高頻度の枯死。)	4
寄主又は宿主作物は付録2に記載されており、発生国ではその作物に対して、高い頻度での枯死にいたる例はないが品質低下を含む明確な経済的被害が報告されている。(商品部位以外へ被害があるもの。)	3
寄主又は宿主作物は付録2に記載されているが、発生国でのその作物に対 する明確な経済的被害の報告はない。	2
寄主又は宿主とする作物は付録2に記載されていない。	1

c 評価結果

本種が感染したバレイショでは、塊茎の収量減少が生じるとされる。

バレイショは付録2に記載されており、また、国内で生産されているバレイショの商品部位が直接被害を受けることから評価基準より4点と評価した。

(ウ) 防除の困難さ

海外での公的防除の事例のうち、根絶又は封じ込めができずまん延した事例は、防除の困難さや、防除にかかるコストを表すものと考えられる。本項目では、海外での公的防除の実施事例及びその内容から、潜在的検疫有害動植物の防除の困難さを評価した。

a 評価手順

海外での公的防除の実施事例がある場合は、国名を記載する。実施内容についての情報がある場合は、 その概要を記載する。

b 評価基準

本項目では得点の付与を行わない。

c 評価結果

本種の海外での公的防除の実施事例について、種バレイショ生産における不在を確立した実績がアメリカ合衆 国、カナダ等で報告されている。

(エ) 直接的影響の評価結果

a 評価手順

潜在的検疫有害動植物による直接的影響を、影響を受ける農産物又は森林資源と生産への影響の評価点の積から下表より評価する。

b 評価基準

評価点の積	得点
21以上	5
16以上21未満	4
11以上16未満	3
6以上11未満	2
6未満	1

c 評価結果

上記2項目の評価点の積は16点となり、直接的影響の評価点は4点となった。

イ 間接的影響

(ア) 農作物の政策上の重要性

a 評価手順

直接的影響で評価した農産物のうち、政策上重要とされている品目について評価する。なお、統計にない植物についてはここでは評価を行わない。

b 評価基準

(a)寄主又は宿主植物には下記 i ~ivに掲げる農作物を含む。	1
i「農業保険法」及び「同施行令」で定める果樹・農作物	左記 i ~ iv 法令に掲げ る農産物に

ii「野菜生産出荷安定法施行令」で定める指定野菜	ついては、 付録3を参
iii「果樹農業振興特別措置法施行令」で定める果樹	照。
(b)上記 i ~ivに掲げる農作物を含まない。	評価しない

c 評価結果

本種の宿主植物であるトマト及びバレイショはそれぞれ、「野菜生産出荷安定法施行令」及び「農業保険法及び同施行令」で定められていることから、評価基準より1点と評価した。

(イ) 輸出への影響

潜在的有害動植物が国内で発生した場合、我が国の輸出農産物が相手国で規制(禁止等)の対象となることが考えられる。本項目では、諸外国での検疫規制状況から輸出への影響を評価した。

a 評価手順

各国の要求事項から、当該種の発生を理由に、寄主又は宿主植物が輸入の制限(禁止又はそれと同等の措置)を受けるかどうか判断する。また、判断に用いた対象国及び検疫措置を記録する。

b 評価基準

(a)当該種の発生により、寄主又は宿主植物は輸入の制限を受ける	1
(b)当該種の発生により、寄主又は宿主植物は輸入の制限を受けな い	評価しない

c 評価結果

ニュージーランドにおいて、全ての国々からのアボカド等 Persea 属植物の穂木及び組織培養体に対して、本種が存在しない「有害動植物無発生地域」或いは「有害動植物無発生生産地」を原産地とすることが求められている。

本種の発生により、宿主植物は輸入の制限を受けることから評価基準より1点と評価した。

ウ 経済的重要性の評価結果

ア(エ)直接的影響の評価結果と間接的影響で評価した項目の得点の和を経済的重要性の評価点とする。なお、評価点の上限は5点とする。(和が5点を超える場合は5点)

直接的影響の評価結果の得点と間接的影響の得点の和は6点となることから、経済的重要性の評価点は上限の5点となった。

(4) 不確実性

潜在的検疫有害動植物の定着、まん延の可能性及び経済的重要性の評価には、多くの不確かさを含むため、 評価に不確かさを持つ要因及びその不確かさの程度を明確に示す。

特になし。

(5) 農業生産等への影響の評価の結論

ア 評価手順

潜在的検疫有害動植物が国内に入り込んだ後の経済的影響を、定着及びまん延の可能性並びに経済的重要性の各項目の評価点の積から下表より評価する。

なお、「無視できる」と結論された場合、リスク評価は終了とする。

イ 評価基準

評価点の積	評価
63. 6以上	高い
4. 6以上63. 6未満	中程度
4. 6未満	無視できる

ウ 評価の結論

3項目の評価点の積は125点となり、本種の農業生産等への影響の評価を「高い」と結論した。

3 入り込みの可能性の評価

潜在的検疫有害動植物が原産国で品目に寄生又は感染してから、リスクアナリシスを実施する地域の寄主又は宿主植物に寄生又は感染するまでにたどると考えられる過程を特定し、各過程で対象品目に関係する潜在的検疫有害動植物の寄生又は感染率に影響を及ぼす要因と、その効果及び影響を評価した。

また、評価対象種について、該当しない項目、あるいは情報不足で評価できない項目は評価を行わなかった。評価中止となった場合は、その時点で該当する経路の入り込みの評価は「無視できる」とした。

本評価については、「第1.3対象となる経路」で特定された経路について実施した。各項目の得点及び判断理由は経路毎に別紙4に記録した。

(1) 潜在的検疫有害動植物に関連する経路からの入り込みの可能性

ア 評価手順

潜在的検疫有害動植物が関連する経路の年間輸入量を別紙6に記録する。

イ 評価基準

本項目では得点の付与を行わない。

(2) 輸送中又は貯蔵中の生き残りの可能性

潜在的検疫有害動植物が原産地での品目管理手順を経て生き延びる可能性を「加工処理に耐えて生き残る可能性」及び「潜在的検疫有害動植物の個体の見えにくさ」により評価した。

ア 加工処理に耐えて生き残る可能性

品目に対する加工処理が潜在的検疫有害動植物の生存率に与える影響を評価する。

(ア) 評価手順

評価の対象とする植物の用途から、下記の基準を用いて評価する。

(イ) 評価基準

輸入時の植物の用途	得点
栽植用の苗木、穂木及び球根	
全ての有害動植物	5
栽植用の種子	
全ての有害動物	4
全ての有害植物	5
乾燥、加圧、粉砕等の処理を伴う用途	
貯蔵性有害動植物	5
耐久生存態を形成する糸状菌及び細菌類	G
乾燥に強いことが知られるウイルス類	5
上記以外の有害動植物	評価しない
上記以外の用途	
全ての有害動植物	5

(ウ) 評価結果

a 栽植用植物

本経路の輸入時の植物の用途として、栽植用の苗木、穂木及び球根に該当することから、評価 基準より5点と評価した。

b 栽植用球根類

本経路の輸入時の植物の用途として、栽植用の苗木、穂木及び球根に該当することから、評価 基準より5点と評価した。

c 栽植用種子

本経路の輸入時の植物の用途として、栽植用の種子に該当し、また、本種は全ての有害植物に該当することから、評価基準より5点と評価した。

d 消費用生植物

本経路の輸入時の植物の用途として、基準に記載される用途以外の用途に該当し、また、本種は全ての有害植物に該当することから、評価基準より5点と評価した。

イ 潜在的検疫有害動植物の個体の見えにくさ

潜在的検疫有害動植物が輸出国で行われる通常の商品管理を経て生き残る可能性を「寄生又は感染部位」及び「小個体サイズ」から評価した。

(ア) 評価手順

潜在的検疫有害動植物が関連する植物の寄生又は感染部位及び 小個体サイズについて、下表より評価する。ここでの評価は各態の中でも得点の高い態を利用する。

また、線虫及び有害植物は全ての経路について5点とする。

(イ) 評価基準有害動物(線虫を除く)

寄生部位	各態の 小個体サイズ	得点
内部	-	5
栽植用(苗類)であって、地下部に 寄生するもの	_	5
	3mm未満	4
ときに内部、若しくはすき間	3mm以上	3
	3mm未満	2
完全〜ほぼ外部	3mm以上	1

線虫及び有害植物

寄生又は感染部位	各態の 小個体サイズ	得点
全ての経路	_	5

(ウ) 評価結果

a 栽植用植物

本種は有害植物であることから、評価基準より5点と評価した。

b 栽植用球根類

本種は有害植物であることから、評価基準より5点と評価した。

c 栽植用種子

本種は有害植物であることから、評価基準より5点と評価した。

d 消費用生植物

本種は有害植物であることから、評価基準より5点と評価した。

(3) 好適寄主又は宿主への移動の可能性

輸入された品物に関連した潜在的検疫有害動植物がリスクアナリシスを実施する地域内の好適寄主又は宿主 へ移動する可能性を評価した。ここでは人為的移動と自然分散についてそれぞれ評価した。

ア 輸入品目からの人為的な移動による分散の可能性

潜在的検疫有害動植物が寄主又は宿主の存在する地域にたどり着く可能性を評価した。

(ア) 評価手順

a 栽培用植物(栽植用植物、栽植用球根類及び栽植用種子)

栽培のために寄主又は宿主が存在する地域に運ばれることから、一律の評価とする。

b 消費用植物(穀類·豆類以外)

輸入された消費用植物は人口に比例して配分されると仮定でき、植物の移動量を人口の分布(人口比)から推定する。

別紙2に記載された、寄主又は宿主となり得る植物の生育する都道府県を用いて、人口比を下表から 積算し合計値で評価する。

また、消費用植物であっても栽培に転用可能である場合には、該当する植物の部位を記述する。

c 消費用植物(穀類·豆類)

流通経路から野外に分散する可能性は極めて低いことから、一律の評価とする。

表 地域と人口比

都道府県	人口比	都道府県	人口比	都道府県	人口比	都道府県	人口比
北海道	0.042	東京都	0.106	滋賀県	0.011	香川県	0.008
青森県	0.010	神奈川県	0.072	京都府	0.021	愛媛県	0.011
岩手県	0.010	新潟県	0.018	大阪府	0.070	高知県	0.006
宮城県	0.018	富山県	0.008	兵庫県	0.044	福岡県	0.040
秋田県	0.008	石川県	0.009	奈良県	0.011	佐賀県	0.007
山形県	0.009	福井県	0.006	和歌山県	0.008	長崎県	0.011
福島県	0.015	山梨県	0.007	鳥取県	0.005	熊本県	0.014
茨城県	0.023	長野県	0.017	島根県	0.005	大分県	0.009
栃木県	0.016	岐阜県	0.016	岡山県	0.015	宮崎県	0.009
群馬県	0.016	静岡県	0.029	広島県	0.022	鹿児島県	0.013
埼玉県	0.057	愛知県	0.059	山口県	0.011	沖縄県	0.011
千葉県	0.049	三重県	0.014	徳島県	0.006		

(イ) 評価基準

用途	人口比の合計	得点
栽培用植物 (栽植用植物、栽植用球根類及び栽 植用種子)	_	5

消費用植物 (穀類·豆類以外)	1	4
	0. 7以上 1未満	3
	0. 3以上0. 7未満	2
	0. 3未満	1
	寄主又は宿主植物が生育する地域が ない	評価中止
消費用植物 (穀類·豆類)	_	1

評価結果

a 栽植用植物

本経路は栽培用植物に該当することから、評価基準より5点と評価した。

b 栽植用球根類

本経路は栽培用植物に該当することから、評価基準より5点と評価した。

c 栽植用種子

本経路は栽培用植物に該当することから、評価基準より5点と評価した。

d 消費用生植物

本経路は消費用植物に該当し、本種の宿主植物は、47都道府県に分布していることから、人口比の合計は1 となり、評価基準より4点と評価した。

イ 輸入品目からの自然分散の可能性

(ア) 評価手順

輸入品目に寄生又は感染した潜在的検疫有害動植物が自らの移動能力により寄主又は宿主植物にたどり着く可能性を評価する。

(イ) 評価基準

栽植用植物については移動能力の大きさに関わらず、栽培用として利用されることで入り込みが完了する ことから一律5点とする。

栽植用植物

全ての有害動植物	得点
栽植用に輸入された植物	5

消費用植物

有害動物	得点
飛翔(長距離移動(1km 以上)の記録があるもの)	3
飛翔(上記以外)	2
歩行	1

センチュウ類	1
有害植物(ウイルス、ウイロイドを除く)	得点
風媒伝搬	2
水媒伝搬	1
接触伝搬	1
上記以外	評価中止
上記以外の有害動植物	評価中止

消費用植物でベクター(日本に存在するものに限る。)により媒介される場合は1点とし、ベクターが日本に存在しない場合は評価中止とする。

ウイルス、ウイロイドであって、移動の可能性がある場合は個別に判断することとする。

(ウ) 評価結果

a 栽植用植物

本経路は栽植用に輸入された植物に該当することから、評価基準より5点と評価した。

b 栽植用球根類

本経路は栽植用に輸入された植物に該当することから、評価基準より5点と評価した。

c 栽植用種子

本経路は栽植用に輸入された植物に該当することから、評価基準より5点と評価した。

d 消費用生植物

本経路は消費用植物に該当し、本種はウイロイドであって本経路からの移動の可能性が無視できることから、評価基準より評価中止とした。

(4) 不確実性

潜在的検疫有害動植物の入り込みの可能性の評価には、多くの不確かさを含むため、評価に不確かさを持つ要因及びその不確かさの程度を明確に示す。

a 栽植用植物

特になし。

b 栽植用球根類

特になし。

c 栽植用種子

特になし。

d 消費用生植物

消費用生植物のうち生果実を経路とした場合、果実に含まれる種子が本来の用途ではない栽培目的で使用される可能性があるため、評価の結論には不確実性が伴う。

(5)入り込みの可能性の評価の結論

ア 評価手順

評価を行った項目の得点平均値を求め、下表から入り込みの可能性を評価する。

イ 評価基準

平均点	評価
4. 3以上	高い
3. 2以上4.3未満	中程度
3. 2未満	無視できる

ウ 評価の結論

a 栽植用植物

評価した項目の得点の平均値は 5.0 点であり、本種の栽植用植物を経路とした場合の入り込みの可能性を「高い」と結論した。

b 栽植用球根類

評価した項目の得点の平均値は 5.0 点であり、本種の栽植用球根類を経路とした場合の入り込みの可能性を 「高い」と結論した。

c 栽植用種子

評価した項目の得点の平均値は 5.0 点であり、本種の栽植用種子を経路とした場合の入り込みの可能性を「高い」と結論した。

d 消費用生植物

評価の過程で評価中止となったため、本種の消費用生植物を経路とした場合の入り込みの可能性を「無視できる」と結論した。

4 危険にさらされている地域の結論

侵入及びまん延する可能性のある地域(危険にさらされている地域)と、第1で設定したリスクアナリシスの対象となる地域との関係を記述する。寄主又は宿主植物の分布状況、気候要因などにより、当初設定したリスクアナリシスを実施する地域より危険にさらされる地域が狭くなることもあり得る。

本種の宿主植物は47都道府県で広く分布しているため、危険にさらされている地域を日本全域と結論した。

5 リスク評価の結論

農業生産等への影響及び入り込みの可能性の評価結果から輸入経路における病害虫リスクを特定した。ここで「無視できる」以外の評価となった場合、検疫有害動植物として以後、管理措置を検討する。

別紙3及び4の結論並びに輸入経路における病害虫リスクについては、別紙5にとりまとめた。

入 り	高い	無	中程度 (入り込みの可能性が高い)	高い		
込 み の	中程度	視 で き	低い	中程度 (農業生産等への影響が高い)		
可 能	無視	る	無視できる			
性		無視	中程度高い			
			農業生産等への影響 (定着及びまん延の可能性並びに経済的重要性の総合評価)			

輸入経路における病害虫リスク

a 栽植用植物

入り込みの可能性は「高い」であり、農業生産等へ影響は「高い」であったことから、栽植用植物を経路と した場合の本種の病害虫リスクは「高い」と結論した。

b 栽植用球根類

入り込みの可能性は「高い」であり、農業生産等へ影響は「高い」であったことから、栽植用球根類を経路と した場合の本種の病害虫リスクは「高い」と結論した。

c 栽植用種子

入り込みの可能性は「高い」であり、農業生産等へ影響は「高い」であったことから、栽植用種子を経路と した場合の本種の病害虫リスクは「高い」と結論した。

d 消費用生植物

入り込みの可能性は「無視できる」であり、農業生産等へ影響は「高い」であったことから、消費用生植物を 経路とした場合の本種の病害虫リスクは「無視できる」と結論した。

第3病害虫リスク管理(ステージ3)

リスク評価の結果、Potato spindle tuber viroid はリスク管理措置が必要な検疫有害植物であると判断されたことから、ステージ3において、発生国からの宿主植物の輸入に伴う本ウイロイドの入り込みリスクを低減するための適切な管理措置について検討する。

1. Potato spindle tuber viroid に対するリスク管理措置の選択肢の有効性及び実行可能性の検討

選択肢	方法	に対するリスク官理措直の選択肢の 有効性及び実行可能性の検討		実行可能性	
			実施時期	有効性	実行上の難易
発生地域又	国際基準 No.4 又 は No.10 の規 定に従って設定	● 国際基準に基づき輸出国の国家植物防疫機関が設定、管理、維持する病害虫無発生地域又は病害虫無発生生産地であれば、リスクを十分に低減することができる。	輸出前	0	0
		〔実行可能性〕輸出国において適切に管理されることが条件であるが、実行可能と考えられる。			
②システム ズ・アプロー チ		複数の措置の組み合わせであるシステムズ・アプローチについての有効性及び実行可能性については、具体的に提案される措置の内容を検討する必要がある。	輸出面輸出前	_	_
③栽培地検	栽培期間中に生育場所において植物の病徴を観察する。	 〔有効性〕 栽培期間中に病徴を明瞭に現す場合は有効である。 トウガラシ、トマト及びバレイショでは病徴を現すが、病徴の発現は品種、本ウイロイドの系統、温度などの環境条件、接種方法、感染時の植物ステージに影響され、病徴が現れない場合もあるため、有効でない場合がある。 それ以外の宿主では、無病徴感染するため有効でない。 〔実行可能性〕 	輸出国栽培中	∇	0

		● 栽培中の検査は輸出国において 適切な検査が行われることが条件 であるが、実行可能と考えられる。			
④精密検定	本ウイロイドに特 異的なプライマー による PCR 法等 遺伝子学的診断	〔有効性〕● RT-PCR 法等により、植物体及び種子から特異的に本ウイロイドの検出が可能である。	輸出国 輸出前	0	0
		〔実行可能性〕◆ 検定施設を有すること、検査に時間を要することが解消できれば実行可能である。	輸入時	0	0
⑤荷有害動植物の日本 植物の日本 がなを を を を を き に 追記	の結果、当該有害 動植物の付着が	は病徴を現すが、病徴の発現は	輸出国輸出時	▽ (栽植用 種子は ×)	0
		〔実行可能性〕輸出国において適切な輸出検査が行われることが条件であるが、 実行可能と考えられる。			
⑥輸出入検 査(目視検 査)	病徴等を観察す る。	 〔有効性〕 ● トウガラシ、トマト及びバレイショでは病徴を現すが、病徴の発現は品種、本ウイロイドの系統、温度などの環境条件、接種方法、感染時の植物ステージに影響され、病徴が現れない場合もあるため、有効でない場合がある。 	輸出時	▽ (栽植用 種子は ×)	0
		い場合がある。 ● それ以外の宿主では、無病徴感 染するため有効でない。 ● 種子も無病徴のため有効でない。	輸入国 輸入時	▽ (栽植用 種子は ×)	0
		〔実行可能性〕● 通常実施されている輸出入検査であり、十分実行可能である。			

	⑦隔離検査	輸入後、国内の 施設等において 一定の期間栽培 し、病徴の確認 や精密検定を実 施する。	 〔有効性〕 ● 栄養繁殖するバレイショ塊茎及び ダリア属球根は隔離検査に適す る。 ● 病徴が現れない場合でも、検定に 時間を要する精密検定によって本 ウイロイドの検出が可能である。 〔実行可能性〕 ● バレイショ塊茎及びダリア属球根 は、現在隔離検疫を実施してお り、我が国の隔離ほ場において現 状でも実行可能である。 	輸入後	〇 (バレイショ 塊茎、ダリ ア属球根)		
--	-------	---	--	-----	-------------------------------	--	--

有効性 〇:効果が高い

▽:限定条件下で効果がある

X:効果なし ー:検討しない

実行可能性 O: 実行可能

▽:限定条件下で実行可能

X:実行困難 --:検討しない

2. 経路ごとの Potato spindle tuber viroid に対するリスク管理措置の選択肢の有効性(上段)及び実行可能性(下段)一覧

経路ごとのリスク管理措置について検討した結果を下記のようにとりまとめた。

	1	2	3	(2		5		3	7
選択肢	病害虫無発生生産地の設定病害虫無発生地域又は	システムズ・アプローチ	栽培地検査	精密検定		検査証明書への追記	輔出入村査(目礽村査)		隔離検査
経路	輸出国	輸出国	輸出国	輸出国	輸入国	輸出国	輸出国	輸入国	輸入国
栽植用植物	0	_	∇	0	0	∇	∇	∇	_
水気相直が打削直が	0	_	0	0	0	0	0	0	_
栽植用球根類 ^{※1}	0	_	∇	0	0	∇	∇	∇	0
700 IE / IF / IE / IE	0		0	0	0	0	0	0	0
お存出残り	0	<u> </u>	∇*2	O*3	O ^{**4}	×	×	×	_
栽植用種子	0	_	O**2	O*3	O ^{**4}	0	0	0	

※1:バレイショ塊茎及びダリア属球根

※2:採種用親植物に対する措置

※3:採種用親植物又は種子に対する措置

※4:種子に対する措置

有効性 ○:効果が高い

▽:限定条件下で効果がある

×:効果なし

-:検討しない

実行可能性

〇: 実行可能

▽: 限定条件下で実行可能

×:実行困難

ー:検討しない

3. 経路ごとの Potato spindle tuber viroid に対するリスク管理措置の選択肢の特定

- (1) 栽植用植物及び栽植用球根類
 - ア. リスク管理措置選択肢
 - (ア) 国際基準に従った病害虫無発生地域又は病害虫無発生生産地の設定(選択肢①)。
 - (イ) 精密検定(選択肢④)(輸入国又は輸出国)。
 - (ウ) バレイショ塊茎及びダリア属球根について、輸入後国内の隔離栽培施設にて隔離検査を実施 (選択肢⑦)。

イ. 検討結果

国際基準に基づき、輸出国の国家植物検疫機関が設定・管理・維持する病害虫無発生地域又は病害虫無発生生産地の設定(選択肢①)は、輸出国によって適切に管理されれば十分なリスク低減効果があり実行可能であるが、貿易制限性が大きい。

栽培期間中に生育場所において地上部の症状を観察する栽培地検査(選択肢③)は、トウガラシ、トマト及びバレイショは栽培期間中に通常病徴を現すが、病徴の発現は、品種、本ウイロイドの系統、温度などの環境条件、接種方法、感染時の植物ステージに影響され、病徴が現れない場合もあること及びそれ以外の宿主では無病徴感染することから、リスクを低減する措置としては不十分であると考える。

精密検定(選択肢④)については、RT-PCR 法等、本ウイロイドを検出するための精度の高い検定法が報告されている。したがって、輸出前又は輸入時いずれかの精密検定は有効であると考える。

隔離検査(選択肢⑦)については、栄養繁殖するバレイショ塊茎、ダリア属球根において、隔離検疫として輸入 後、国内の施設等において一定の期間栽培し、病徴の確認や精密検定を実施することは有効な措置であると考え る。たとえ、病徴が現れない場合でも、検定に時間を要する精密検定によって本ウイロイドの検出が可能である。

なお、複数の措置の組み合わせであるシステムズアプローチ(選択肢②)についての有効性及び実行可能性については、具体的に提案される措置の内容を検討する必要がある。

- ウ. 栽植用植物及び栽植用球根類を経路とするリスク管理措置の選択肢の特定
 - (ア) 栽植用植物に対する管理措置として、本ウイロイドの入り込みの可能性を低減させることが可能であり、かつ 必要以上に貿易制限的でないと判断し、以下のいずれかの選択肢を特定した。
 - 〇 生育期中又は輸出検査時のいずれかに、荷口全体(同一の荷口単位)の植物について輸入植物検疫規程別表第1の規定に基づく抽出量相当(一部以下に例示)について、RT-PCR 法等の適切な遺伝子的手法による検定を行って本ウイロイドに侵されていないことを確認し、その旨を検査証明書に追記すること。 又は、
 - 輸入検査時に、輸入植物検疫規程別表第1の規定に基づく抽出量について、RT-PCR 法等の適切な遺伝子的手法による検定を行って本ウイロイドに侵されていないことを確認する。

輸入植物検疫規程別表第1の6項2号

輸入植物の本数	抽出量

	1,000 本未満	30%以上
	•	
1,000 本以上	1,841 本未満	300 本以上
1,841 本以上	4,601 本未満	400 本以上
4,601 本以上	9,201 本未満	500 本以上
9,201 本以上	24,001 本未満	600 本以上
24,001 本以上		800 本以上

- (イ) 栽植用球根類に対する管理措置として、本ウイロイドの入り込みの可能性を低減させることが可能であり、 かつ必要以上に貿易制限的でないと判断し、以下のいずれかの選択肢を特定した。
 - 〇 荷口全体(同一の荷口単位)の植物について輸入植物検疫規程別表第1の規定に基づく抽出量相当(一部以下に例示。ただし、バレイショ塊茎は全量)について、生育期中又は輸出検査時に、RT-PCR 法等の適切な遺伝子的手法による検定を行って本ウイロイドに侵されていないことを確認し、その旨を検査証明書に追記すること。

又は

○ 輸入後、バレイショ塊茎、ダリア属球根のような栄養繁殖するものは、全量について隔離検疫として国内の 施設等において一定の期間栽培し、病徴の確認や精密検定を実施する。

輸入植物検疫規程別表第1の5項

輸入植物の個数	抽出量
1,000 個未満	30%以上
1,000 個以上 4,001 個未満	300 個以上
4,001 個以上 10,001 個未満	450 個以上
10,001 個以上 20,001 個未満	600 個以上
20,001 個以上 40,001 個未満	750 個以上
40,001 個以上	900 個以上

(2) 栽植用種子

ア. リスク管理措置選択肢

- (ア) 国際基準に従った病害虫無発生地域又は病害虫無発生生産地の設定(選択肢①)。
- (イ) 精密検定(選択肢④)(輸出国での採種用親植物又は種子に対する、若しくは輸入国での種子に対する)。

イ. 検討結果

国際基準に基づき、輸出国の国家植物検疫機関が設定・管理・維持する病害虫無発生地域又は病害虫無発生生産地の設定(選択肢①)は、輸出国によって適切に管理されれば十分なリスク低減効果があり実行可能であるが、貿易制限性が大きい。

栽培期間中に生育場所において地上部の症状を観察する採種用親植物に対する栽培地検査(選択肢③)は、トウガラシ、トマト及びバレイショは栽培期間中に通常病徴を現すが、病徴の発現は、品種、本ウイロイドの系統、温度などの環境条件、感染時の植物ステージに影響され、病徴が現れない場合もあること及びそれ以外の宿主では無病徴感染することから、リスクを低減する措置としては不十分であると考える。

精密検定(選択肢④)については、RT-PCR 法等、本ウイロイドを検出するための精度の高い検定法が報告されており、栽培時の採種用親植物の精密検定、又は、輸出前若しくは輸入時いずれかの種子に対する精密検定は有効であると考える(選択肢④)。

なお、複数の措置の組み合わせであるシステムズアプローチ(選択肢②)についての有効性及び実行可能性については、具体的に提案される措置の内容を検討する必要がある。

ウ. 栽植用種子を経路とするリスク管理措置の選択肢の特定

栽植用種子に対する管理措置として、本ウイロイドの入り込みの可能性を低減させることが可能であり、かつ必要以上に貿易制限的でないと判断し、以下の選択肢を特定した。

〇 輸出国(栽培国)で採種用の親植物又は採種された種子について輸出時又は輸入時に RT-PCR 法等の適切な遺伝子的手法による検定を行うこと。また、検定を行う場合は、国際種子検査協会が定める国際種子検査規程の抽出方法に準拠した方法で同一の荷口単位から無作為に抽出した規定の種子数について検定を行うこと。

なお、規定の種子数とは、通常ロットの場合(同一の荷口あたりの種子数が 46,000 粒以上)は、ロットあたり一律 4,600 粒、小ロットの場合(同一の荷口あたりの種子数が 46,000 粒未満)は、その種子数の 10%とする。

〈〈種子の検定を実施する場合の粒数の考え方について〉〉

ア. 検査用主試料の抽出方法

国際種子検査協会(International Seed Testing Association(ISTA))が定める国際種子検査規程 (International Rules for Seed Testing)の抽出方法(ISTA Rules 2018 Chapter 2: Sampling)(文献③)に準拠した方法で同一の荷口単位から無作為に検査用の主試料を抽出し、その中から、以下の検定用試料として規定の数量を抽出する。

イ. 検定用試料の抽出方法

検定用試料については、ISTA の抽出方法に準拠した方法で、ISPM31「Methodologies for sampling of consignments」(文献③)を根拠とした、以下のポアソン分布に基づく抽出量の計算式(文献⑥)に基づいた抽出理論による検定数量について抽出する(ハロットについては、下記(イ)参照)。

$$n = -\frac{\log_e(1-\beta)}{p}$$

n: 抽出量

β: 検出確率(信頼度)

p: 限界不良植物率(不良率の上限)

本式では、病害虫の付いた植物を不良植物とし、不良植物率がp以上の荷口が国内へ入ってくるリスクを、n個検査することにより、 $1-\beta$ 以下に制御する。

(ア)通常ロットの種子検定対象の抽出量(n)の基本的な考え方

個々の病原体の具体的な種子検定粒数の根拠とできる技術的情報がない場合は、国際種子連盟 (International Seed Federation(ISF))(文献®)等の検定プロトコール等の国内外の検定方法の情報等を総合的に考慮し、種子検定のための抽出量(n)は、ウイルス・ウイロイドについては、限界不良植物率(=0ットにおいて検出しようとする最低感染種子率)(p)の暫定値として 0.001(=0.1%=荷口 1,000 粒/ロット中、感染種子 1 粒)、検出確率(β) は 99%を採用し、上記ポアソン分布の式を用いて、約 4,600 粒/ロット要することとする(うち 1 粒検出により不合格)。なお、検出確率 99%は、豪州も採用している(文献®)。

	検出確率(β)	限界不良植物率 (<i>p</i>) (暫定値)	抽出量(n)→検定用の主試料 ✓ロット当たり
ウイルス・ウイロ イド	99%	0.001	約 4,600 粒

<本ウイロイドについての検定用抽出量の検討詳細>

本ウイロイドの検定粒数や感染種子率(p)に係る情報を記載した文献はないことから、現時点では、上記で算出した検定粒数の約 4.600 粒/ロットは妥当と考える。

よって、本ウイロイドの場合の検定のための数量は、下記(イ)で示す同一の荷口あたりの種子数が少ない場合 (小ロット)以外は、その同一の荷口あたりの種子数に関わりなく一律に約 4,600 粒/ロットとする。

なお、通常ロットの検定数である約4.600粒の重量の目安は以下の通り。

植物名	種子約 4,600 粒の重さ
トウガラシ、バレイショ	28g
トマト	13g
ペチュニア属	0.6g
ハリナスビ(ナス属)	27.6g

(イ) 小ロットの種子検定対象の抽出量の基本的な考え方

小ロット(同一の荷口あたりの種子数が少量の場合。例えば、規定の検定数量を確保する場合が困難な場合) の種子検定対象の抽出量については、次の考え方に基づくこととする。

なお、小ロットの範囲とは、上記(ア)で計算した抽出量(検定用試料)の値が、検出対象の同一の荷口あたりの種子の数量(検査荷口の大きさ(母集団))の10%となるまでの値の範囲とする。

限界不良植物率(p) (暫定值)	小ロットの範囲
ウイルス・ウイロイド(0.001)	約 46,000 粒未満

よって、本ウイロイドの宿主植物の種子については、小ロットの場合、ロットあたりの数量が約 46,000 粒未満の場合、10%抽出することとする。

なお、小ロットの範囲の最大値である約46,000粒の重量の目安は以下の通り。

植物名	小ロットの範囲の最大値である種子約 46,000 粒の重さ
トウガラシ、バレイショ	280g
トマト	130g
ペチュニア属	6g
ハリナスビ(ナス属)	276g

4. Potato spindle tuber viroid のリスク管理措置の結論

経路ごとにリスク管理措置の選択肢を検討した結果、本ウイロイドの入り込みのリスクを低減させる効果があり、かつ必要以上に貿易制限的でないと判断した各経路の管理措置を以下にとりまとめた。

用途·部位	対象植物	植物検疫措置
栽植用植物 (種子及び果実を除 く)	トウガラシ、トマト、バレ イショ、ペチュニア属等	〇 輸出前(生育期中、又は輸出時)又は輸入時の精密検定。
栽植用球根類	バレイショ塊茎、ダリア 属球根	○ 輸出前(生育期中、又は輸出時)又は輸入後の精密検定又は○ 輸入後は隔離検疫の実施
栽植用種子	トウガラシ、トマト、バレイショ、ハリナスビ、ペチュニア属	〇 輸出国による採種用親植物の精密検定若しくは輸出前又は輸入時の種子の精密検定。 種子について検定する場合、国際種子検査協会が定める国際種子検査規程の抽出方法に準拠した方法で同一の荷口単位から無作為に抽出した 4,600 粒について、最大 400 粒ずつ検定を実施する。(同一の荷口単位から無作為に抽出された、信頼度 99%のサンプルサイズとすることが適当であると考える。)

生物学的情報(有害植物)

- 1 学名及び分類(文献③)
 - (1) 学名 Potato spindle tuber viroid
 - (2) 英名、和名等アクロニム: PSTVd

和名:ジャガイモやせいもウイロイド(文献⑦)

- (3) 分類種類: ウイロイド科: Pospiviroidae 属: Pospiviroid
- 2 宿主植物

アカザ科: Chenopodiaceae

<u>Atriplex semilunaris(アトリプレクス・セミルナリス)(</u>文献②)、<u>Rhagodia eremaea(ラゴディア・エレマエア)</u>(文献②)

キク科: Asteraceae

<u>Conyza bonariensis(コニザ・ボナリエンシス)(</u>文献⑩)、Dahlia spp.(ダリア属)(文献⑤)

クスノキ科: Lauraceae

Persea americana(アボカド) (文献①②④⑤⑥)

ナス科: Solanaceae

Brugmansia (ブルグマンシア属の一種) (文献①⑥)、Brugmansia cordata (ブルグマンシア コルダタ) (文献 ⑤⑥)、Brugmansia suaveolens (キダチチョウセンアサガオ) (文献①⑥⑥)、Brugmansia variegata (ブルグマンシア バリエガタ) (文献⑤⑥)、Brugmansia × candida (ブルグマンシア×カンディダ) (文献⑤⑥)、Calibrachoa (カリブラコア属の 1 種) (文献⑤⑥)、Capsicum annuum (トウガラシ) (文献⑤)、Cestrum (ケストルム属の一種) (文献①⑥)、Cestrum nocturnum (ヤコウカ) (文献①)、Datura leichhardtii(ダツラ・レイクハルティー) (文献②)、Nicandra physalodes (オオセンナリ) (文献②)、Petunia (ペチュニア属の一種) (文献①8)、Petunia × hybrida (ペチュニア×ヒブリダ) (文献⑤⑥)、Physalis angulata (センナリホオズキ) (文献②)、Physalis peruviana (シマホオズキ) (文献①⑥⑥)、Solanum jasminoides (ツルハナナス) (文献⑤⑥)、Solanum laxum (ソラヌム ラクスム) (文献① 継続調査)、Lycopersicon esculentum (=Solanum lycopersicum) (トマト) (文献①②④⑤⑥)、Solanum muricatum (ペピーノ) (文献①②⑤⑥)、Solanum nigrum (イヌホオズキ) (文献⑧②)、Solanum pseudocapsicum (タマサンゴ) (文献①)、Solanum rantonnetii (=Lycianthes rantonnetii) (ソラヌム・ラントネッティー) (文献①⑤⑥)、Solanum sisymbriifolium (ハリナスビ) (文献②)、Solanum tuberosum (バレイショ) (文献①②④⑥)、Streptosolen jamesonii (ストレプトソレン・ジェイムソニー) (文献①⑤)

種子伝搬は、トウガラシ(文献⑤)、トマト(文献①)、バレイショ(文献①)、<u>ハリナスビ(文献②)</u>、ペチュニア属 (文献⑧)から報告がある。

- 3 地理的分布
 - (1)国又は地域

アジア:

インド(文献①②④⑤⑥)、中華人民共和国(香港を除き、以下、「中国」という。)(文献①②④⑤⑥)、日本(文献①⑥)、バングラデシュ(文献®②)

中東:

アフガニスタン(文献①④⑤)、イラン(文献①⑥)、トルコ(文献①④⑤⑥)、イスラエル(文献⑤)

欧州:

イタリア(文献①⑤⑥)、ウクライナ(文献①④⑤)、英国(文献①②⑤⑥)、オーストリア(文献①⑥)、オランダ(文献①②⑤⑥)、ギリシャ(文献①)、クレタ(ギリシャ)(文献②)、クロアチア(文献⑩⑤)、スペイン(文献 ®②③)、スロベニア(文献①⑥)、チェコ(文献①⑥)、ドイツ(文献①⑤⑥)、フランス(文献①⑤⑥)、ベラルーシ(文献①⑤⑥)、ベルギー(文献①⑤⑥)、ポーランド(文献⑪⑥)、マルタ(文献⑪⑥)、モンテネグロ(文献®⑨②)、ロシア(文献①②④⑤⑥)

アフリカ:

エジプト(文献①④⑤⑥)、ガーナ(文献①)、ナイジェリア(文献①④⑤⑥)

北米

アメリカ合衆国(文献(1)24(56))

中南米:

コスタリカ(文献①②⑤⑥)、ドミニカ共和国(文献⑩⑭)、ベネズエラ(文献①⑤)、ペルー(文献①④⑤)、メキシュ(文献®②)

大洋州:

オーストラリア(文献⑩⑫)、ニュージーランド(文献①②⑤⑥)

(2)生物地理区

東洋区、エチオピア区、新熱帯区、新北区、旧北区、オーストラリア区、南極区の計7区に分布する。

4 感染部位

全ての組織(文献①②④⑤)

5 移動分散方法

(1) 自然分散

接触(機械的)伝搬、種子伝搬、栄養繁殖体による伝搬、花粉伝搬及びベクターによる伝搬が知られている(文献①②④⑤⑧⑰㉑)。

(2) 人為分散

接触(機械的)伝搬、接木伝搬、種子伝搬、栄養繁殖体による伝搬及び花粉伝搬が知られている(文献①②④⑤⑧⑰㉑)。ハサミ、ナイフ等の器具、人の手などを介して栽培作業により分散する(文献①②④⑤)。なお、種子伝搬は、トウガラシ(文献⑤)、トマト(文献①)、バレイショ(文献①)、ハリナスビ(文献②)、ペチュニア属(文献⑧)から報告がある。

6 生態

- (1) 中間宿主及びその必要性無(文献⑤)
- (2) 伝染環数

種子又は栄養繁殖体を1次伝染源とし、植物体内で増殖した病原体は周囲の健全株との接触により伝染すると考えられるため、伝染環は複数と判断した(文献①⑤⑪)。

- (3) 植物残渣中での生存無(文献②)
- (4) 耐久生存態

不確実性として、ウイロイド核酸は、乾燥した植物体の中で長期間生存可能と考えられている(文献②)。

7 媒介性又は被媒介性に関する情報

アブラムシ (Macrosiphum euphorbiae、Myzus persicae) が媒介する Potato leafroll virus や Velvet tobacco mottle virus に付着して伝搬され得る。ただし、それが起こる頻度は低いと考えられている(文献①②④)。結果的に、飛翔するアブラムシにより媒介されるといえるが、その伝搬様式は不明である。また、モモアカアブラムシ(M. persicae) の有翅虫は風にのって長距離飛翔することが知られている(文献③)。

8 被害の程度

バレイショの茎葉に矮化、エピナスティ(葉の上偏生長)、縮葉、直立化、濃緑化を引き起こし、塊茎に亀裂、細長化、芽数の増大を起こし収量が減少する。また、トマトに株の萎縮、上偏生長、縮葉、葉脈及び茎部のえそ等を伴う症状を引き起こす。その他の宿主植物にはほとんど被害がない(文献①②④⑤⑥⑱)。病徴の発現は品種、本ウイロイドの系統、温度などの環境条件、接種方法、感染時の植物ステージに影響される(文献⑱శ)。Mild strain では、一般にバレイショ又はトマトのいずれにおいても明確な病徴を示さない(文献⑫)。トウガラシは、非常に軽度の病

徴しか示さず、唯一の目視で確認できる病徴は、茎頂付近の葉縁の奇形である(文献®)。 バレイショの塊茎やトマトを除き、観賞用ナス科植物を含めほとんどの感染植物は通常無病徴である(文献®②)。

9 防除に関する情報

本ウイロイドの防除には感染していない植物の作出及び増殖(文献④⑱)、ほ場の衛生管理(文献④)、抵抗性品種の利用(文献④⑱)等の耕種的防除が有効。薬剤による有効な防除方法は報告されていない(文献⑱)。道具類の消毒には、1~3%次亜塩素酸ナトリウム溶液処理が有効(文献⑱)。

また、アメリカ合衆国、カナダにおいて、健全種いも生産システムによる封じ込め(バレイショの種いもにおける無発生の確認)が行われ、両国内の種いもから本ウイロイドは根絶された(文献②⑱②⑲)。 EPPO は、バレイショについて、本ウイロイドの侵入防止、サーベイランス(監視)、バレイショ苗や塊茎に感染が発見された場合の封じ込めと根絶に関するガイダンスを提供する国家規制管理システムを開発した(文献⑱)。

10 同定、診断及び検出

本ウイロイドを含む8種の pospiviroid(本ウイロイド及び Tomato chlorotic dwarf viroid(TCDVd)、Chrysanthemum stunt viroid(CSVd)、Citrus exocortis viroid(CEVd)、Tomato apical stunt viroid(TASVd)、Colmunea latent viroid(CLVd)、Pepper chat fruit viroid(PCFVd))、Tomato planta macho viroid(TPMVd)を2種類のRT-PCR 法で包括的に検出し同定を行うシステムが開発されている。このシステムでは、トマト種子及び葉のサンプルを1つのユニバーサリープライマー(ウイロイド6種に対応)を含む3つのプライマーを使用するSYBR Green 法でスクリーニングしたのち、6種のウイロイドそれぞれに特異的なプライマーによって種レベルの同定を行う(文献②)。

EPPO の診断プロトコルでは、バレイショの組織培養苗及び葉から本ウイロイドを検出するための RT-PCR 法等が報告されている(文献③)。

11 我が国における現行の植物検疫措置

(1) 種子

トウガラシ、トマト、バレイショ及びペチュニア属の採種用の親植物又は当該親植物から採種された種子について RT-PCR 法等の適切な遺伝子的手法による検定を行って本ウイロイドに侵されていないことを確認し、その旨を検査証明書に追記すること。なお、検定は、国際種子検査協会が定める国際種子検査規程の抽出方法に準拠した方法で同一の荷口単位から無作為に抽出した 4,600 粒について、最大 400 粒ずつ行うこと。

(2) 生植物

宿主植物の生育期中又は輸出検査時に、同一の荷口単位から無作為に抽出した検体について、RT-PCR 法等の適切な遺伝子的手法による検定を行って本ウイロイドに侵されていないことを確認し、その旨を検査証明書に追記すること。

なお、平成 28 年の植物防疫法施行規則改正前における本ウイロイドに対する植物検疫措置は次のとおりである。

(1) トマト及びバレイショ

発生地域から輸入される生植物(種子及び果実を除く。)であって栽培の用に供し得るもの及び種子であって栽培の用に供するものに対して、輸出国に栽培地検査(栽培期間中の精密検査を含む。)を実施し、本ウイロイドに侵されていない旨を追記した植物検疫証明書の添付を要求。

(2) トマト及びバレイショ以外の宿主植物

発生地域から輸入される生植物(種子及び果実を除く。)であって栽培の用に供し得るものに対して、ペチュニア属植物については生植物(種子及び果実を除く。)であって栽培の用に供し得るもの及び種子であって栽培の用に供するものに対して、輸出国に精密検査を実施し、本ウイロイドに侵されていない旨を追記した植物検疫証明書の添付を要求。

12 諸外国での検疫措置状況

(1)ニュージーランド(文献2位3)

ア キク属、ダリア属、ディアスキア属、ナス属及びペチュニア属の苗: 本ウイロイドが存在しない「有害動植物無発生地域」或いは「有害動植物無発生生産地」を原産地とすることを求めている。

イ キク属、ダリア属、ディアスキア属、ナス属及びペチュニア属の組織培養体: 本ウイロイドが存在しない「有害動植物無発生地域」或いは「有害動植物無発生生産地」を原産地とすること、又は、PCR 法による精密検定を行うことを求めている。

ウ アボカド等ワニナシ 属(Persea)植物の穂木及び組織培養体: 本ウイロイドが存在しない「有害動植物無発生地域」或いは「有害動植物無発生生産地」を原産地とすることを求めており、また輸入後の隔離検査において栽培中に本種の病徴について検査するとしている。

エ バレイショ

組織培養体: 本ウイロイドを対象として、MPIが認定した輸出国の施設で検査されること、又は、輸入後隔離検疫が実施されることを求めている。

種子: 本ウイロイドを対象として隔離検疫が実施されることを求めている。

- オ ナス属種子: 本ウイロイドが存在しない「有害動植物無発生地域」或いは「有害動植物無発生生産地」を原産地とすること、又は、適切な方法による検定を行うことを求めている。
- カ トウガラシ属種子: 本ウイロイドの発生が知られていない国を原産地とすること、又は親植物の検査で本種が検出されなかった「有害動植物無発生生産地」を原産地とすること、又は 3,000 粒以上のサンプル種子について PCR 法による精密検定を行うことを求めている。

(2) オーストラリア(文献362728)

トマト種子に対して、抽出した種子 20,000 粒について、輸入時に本ウイロイドを含む Columnea latent viroid(CLVd)、Pepper chat fruit viroid(PCFVd)、Potato spindle tuber viroid(PSTVd)、Tomato apical stunt viroid(TASVd)、Tomato chlorotic dwarf viroid(TCDVd)及び Tomato planta macho viroid(TPMVd)を対象 とした検定を受けること、又は、輸出前に 20,000 粒の RT-PCR 法による検定(サブサンプル 400 粒以下)を 行うことを求めている。なお輸入された種子が 100 粒未満の場合は、承認された用地で 8 週間以上栽培され、検定を受けることを求めている。

(3) EU(文献³¹⁾)

- ア 発生国で生産された栽植用ナス科植物(バレイショ塊茎及びトマト種子を除く): 本ウイロイドの病徴が生産 地の植物に直近の1生育期間の初めから観察されていないことを求めている。
- イ 発生国で生産されたバレイショ塊茎(early potatoes を除く): 発芽能力の抑制が行われたことを求めている。
- ウトマト種子:以下のいずれかの措置を求めている。
 - (ア) 種子は本ウイロイドが発生していない地域で生産されたこと。
 - (イ) 本ウイロイドの病徴が、生産地で1生育期間中に観察されていないこと。
 - (ウ) 当該種子は、少なくとも上記の有害生物について、抽出サンプルを適切な方法により公的検定を行った結果、それらの有害生物を認めなかったこと。

13 引用文献

- ① CABI (2012) Crop Protection Compendium. Data sheet on *Potato spindle tuber viroid*. (Online), available from \(\http://www.cabi.org \)
- ② Hadidi A, Flores R, Randles JW and Semancik JS (2003) Viroids. Edited by Hadidi A, Flores R, Randles JW and Semancik JS. CSIRO Publishing, Collingwoood, Australia, 370 pp.
- International Committee on Taxonomy of Viruses (ICTV) (2012) Virus Taxonomy: 2011 Release (current). (Online), available from \http://ictvonline.org/virusTaxonomy.asp?version=2011\rangle
- ④ CABI and EPPO, Data Sheets on Quarantine Pests *Potato spindle tuber viroid*. 6 pp. (Online), available from \http://www.eppo.int/QUARANTINE/virus/PSTVd/PSTVD0_ds.pdf\rangle
- © EPPO (2012) EPPO Reporting Service. Paris, France: EPPO. (Online), available from \(http://www.eppo.int/PUBLICATIONS/reporting/reporting_service.htm \)
- で 植物ウイルス分類委員会 (2012) 日本に発生する植物ウイルス・ウイロイド, 日本植物病理学会 (Online), available from \http://www.ppsj.org/pdf/mokuroku-viroid 2012.pdf \>

- Matsushita, Y., Usugi,T. and Tsuda, S.(2011) Investigation of actual seed transmission for Potato spindle tuber viroid on Petunia, 日本植物病理学会報 第 77 巻 第 3 号, 194.
- ① CABI(2015) Crop Protection Compendium. Data sheet on Potato spindle tuber viroid. (Online), available from \(\text{http://www.cabi.org} \)
- (I) Batuman, O, M. K. Osei, M. B. Mochiah, J. N. Lamptey, S. Miller, and R. L. Gilbertson (2013) The first report of Tomato apical stunt viroid (TASVd) and Potato spindle tuber viroid (PSTVd) in tomatoes in Ghana. APS ·MSA Joint Meeting August 10-14 Austin, Texas.
- Brunschot, S.L. van, D.M. Persley, A. Roberts and J.E. Thomas (2014) First report of pospiviroids infecting ornamental plants in Australia: Potato spindle tuber viroid in Solanum laxum (synonym S. jasminoides) and Citrus exocortis viroid in Petunia spp. New Disease Reports 29-3: 3p.
- Hennig, E. and Piecinska, J. (2013) First reports of Potato spindle tuber viroid (PSTVd) on Solanum jasminoides and of Tomato apical stunt viroid (TASVd) on Solanum rantonnetti in Poland. Plant Disease 97: 1663pp.
- Ling, K.-S., and Li, R. (2014) First Report of Potato spindle tuber viroid Naturally Infecting Field Tomatoes in the Dominican Republic. Plant Disease, 98: 701pp.
- Milanović, J., Kajić, V., and Mihaljević, S. (2014) Occurrence and molecular variability of Potato spindle tuber viroid and Tomato apical stunt viroid in ornamental plants in Croatia. European journal of plant pathology.
- IPPC(2013) Presence of Potato spindle tuber viroid. IPPC Official Pest Report, No. MLT-03/1, No. MLT-03/1. Rome, Italy: FAO.
- ② 2014 年 6 月日本植物病理学会講演要旨 127 頁「侵入警戒を要するポスピウイロドの種子伝染」(レギュラトリーサイエンス新技術開発事業:課題番号 2309)
- (B) CABI (2018) Potato spindle tuber viroid (spindle tuber of potato). (Online), available from < http://www.cabi.org >, (Last modified 2018_09_06)
- Uigi, M., J. Zindovic, I. Stojanovic and F. Faggioli (2016) First report of *Potato spindle tuber viroid* in Montenegro. Journal of Plant Pathology. 98(1): 171-185.
- Mackie, A. E., B. C. Rodoni, M. J. Barbetti, S. J. McKirdy and R. A. C. Jones (2016) Potato spindle tuber viroid: alternative host reservoirs and strain found in a remote subtropical irrigation area. European journal of plant pathology. 145(2): 433-446.
- ② Netherlands Food and Consumer Product Safety Authority (2017) First finding of *Potato spindle tuber viroid* (PSTVd) in seeds of Solanum sisymbriifolium, originating in Asia.
- © EPPO (2018) *Potato spindle tuber viroid* (PSTVDO).EPPO Global Database. (Online), available from , (accessed 2018_09_11)
- EFSA (2011) Scientific Opinion on the assessment of the risk of solanaceous pospiviroids for the EU territory and the identification and evaluation of risk management options. EFSA Journal 9(8):1-133
- MPI (2018) Seeds for Sowing, Import Health Standard 155.02.05.(Last modified 2018-7-11)
- MPI (2018) Importation of Nursery-Stock, Ministry For Primary Industries Standard 155.02.06. (Last modified 2018-4-4)
- BICON (2018) Australian Biosecurity Import Conditions. Tomato seed for sowing. (online), available from https://bicon.agriculture.gov.au/BiconWeb4.0/>,(accessed 2018-09-25).

- ② Australian Government (2018) Pest risk analysis for Pepino mosaic virus and pospiviroids associated with tomato seed. (online), available from (http://www.agriculture.gov.au/biosecurity/risk-analysis/plant/pepino-mosaic-virus-pospiviroids-tomato-seed), (accessed:2018.10.12).
- (accessed:2018.10.12) ISF (2018)Method for the Detection of Pospiviroids on Tomato Seed. (online), available from \(http://www.worldseed.org/wp-content/uploads/2016/05/Tomato_pospiviroids_Jan2015.pdf\),
- ② NAPPO(2004) Absence of Potato spindle tuber viroid (PSTVd) in the United States, North American Plant Protection Organization's Phytosanitary Alert System. (online), available from https://www.pestalerts.org/, (accessed:2018.10.16).
- 30 NAPPO(2005) Absence of Potato spindle tuber viroid in Canada, North American Plant Protection Organization's Phytosanitary Alert System. (online), available from https://www.pestalerts.org/>, (accessed:2018.10.16).
- (3) EU(2018) COUNCIL DIRECTIVE 2000/29/EC of 8 May 2000. (Last modified; 01 Apr. 2018)
- Yanagisawa, H., Y. Shiki, Y. Matsushita, M. Ooishi, N. Takaue and S. suda. (2017) Development of a comprehensive detection and identification molecular based system for eight pospiviroids. European Journal of Plant Pathology, 149(1), 11-23.
- ③ 松下陽介・津田新哉 (2011) ポテトスピンドルチューバーウイロイドの特徴と防除について.植物防疫所病害 虫情報 No.95.1-2
- EPPO (2004) PM 7/33(1) Potato spindle tuber viroid. EPPO Bulletin. 34, 257–269.
- (35) FAO (2016) ISPM 31 Methodologies for sampling of consignments. available from https://www.ippc.int/en/publications/588/), (accessed 2018_08_29)
- ⑤ 山村光司 (2011) 農学と統計学. 計量生物学 Vol. 32, Special Issue, S 19-S 34. (Online), available from 〈https://www.jstage.jst.go.jp/article/jjb/32/Special_Issue/32_Special_Issue_S19/_pdf/-char/ja〉, (accessed 2018 08 29)
- ③ ISTA(2018) ISTA Rules 2018 Chapter 2: Sampling. (Online), available from \(\text{https://www.seedtest.org/upload/cms/user/ISTA_Rules_2018_02_sampling_updated20171214.pdf} \), \((\text{accessed 2018 11 27} \)
- (38) ISF (2018) ISHI-Veg Protocols. (Online), available from http://www.worldseed.org/our-work/phytosanitary-matters/seed-health/ishi-veg-protocols/, (accessed 2018_11_27)
- Australian Government Department of Agriculture and Water Resources (2017) Final pest risk analysis for Cucumber green mottle mosaic virus (CGMMV). (Online), available from http://www.agriculture.gov.au/SiteCollectionDocuments/biosecurity/risk-analysis/plant-reviews/final-pest-risk-analysis-cgmmv.pdf, (accessed 2018_12_04)

寄主又は宿主植物の分布

潜在的検疫有害動植物名 Potato spindle tuber viroid

潜在的検疫有害動植物名 Potato spindl 都道府県		自然植生
北海道	0	H WIE
青森	0	
岩手	0	
宮城	0	
秋田	0	
山形	0	
福島	0	
茨城	0	
栃木	0	
群馬	0	
埼玉	0	
千葉	0	
東京	0	
神奈川	0	
新潟 富山	0	
	0	
石川	0	
福井	0	
山梨	0	
長野	0	
岐阜	0	
静岡	0	
愛知	0	
三重	0	
滋賀	0	
京都	0	
大阪	0	
兵庫	0	
奈良	0	
和歌山	0	
鳥取	0	
島根	0	
岡山	0	
広島	0	
山口	0	
徳島	0	
香川	0	
愛媛	0	
高知	0	
福岡	0	
佐賀	0	
長崎	0	
熊本	0	
大分	0	
宮崎	0	
鹿児島	0	
沖縄	0	

- (注) 1. 寄主又は宿主植物と同属の植物が存在する場合には〇印を記入する。
 - 2. 栽培されていることが確認された都道府県については、自然植生の調査を省略することができる。
 - ※1: 地域特産野菜生産状況調査(2006-2007)、作物統計 面積調査(2007)、花木等生産状況調査(2007)、特産 果樹生産出荷実績調査(2008)、林野庁 統計情報 森林資源の現況(2007)、生産農業所得統計(2005-2009)

農業生産等への影響の評価結果表

学名	Potato spindle tuber viroid								
分類: Pospiviroidae 科 Pospiviroid 属									
	評価項目	得点	文献等の記述						
	1. 寄主植物の利用可能性及び環境の好適性	5	47 都道府県						
	2. 潜在的検疫有害動植物の寄主範囲の広さ		4 科						
定着	3. 有害動植物の侵入歴	5	7区						
定着の可能性	4. 潜在的検疫有害動植物の繁殖戦略	5	有害植物						
性	5. リスク分析を実施する地域における中間宿 主の利用可能性	評価しない	中間宿主は必須ではない						
	6. 潜在的検疫有害動植物の生存の可能性		栄養繁殖体や種子で伝搬する。						
	定着の可能性の評価結果	5.00							
	1. 移動距離 / ベクターの移動距離	5	花粉伝搬、種子伝搬、機械伝搬 が知られている。						
まんび	2. 化数 / 伝染環数 / ベクターの伝搬様式	5	複数の伝染環						
まん延の可能性	3. 農産物を介した分散	5	47 都道府県						
性	4. 非農産物を介した分散	5	栽培作業での伝搬						
	まん延の可能性の評価結果	5.00							
	1. 影響を受ける農作物又は森林資源	4	3609.4 億円						
	2. 生産への影響	4	塊茎の減収、果実の矮小化						
経済的重要性	3. 防除の困難さ		複数の国・地域で、種バレイショ 生産における不在を確立した実 績がある。						
重要性	4. 直接的影響の評価結果	4							
	5. 農作物の政策上の重要性	1	トマト、バレイショ等が該当						
	6. 輸出への影響	1	ニュージーランド						
	経済的重要性の評価結果	5.00							
	面における不確実性 になし								
	生産などへの影響評価の結論 『虫固有のリスク)	125.0	高い						

入り込みの可能性の評価結果表

学名: Potato spindle tuber viroid							
用途:栽植用植物							
評価項目	得点	文献等の記述					
1. 潜在的検疫有害動植物に関連する経路からの入り込みの可能性							
2. 加工処理に耐えて生き残る可能性	5	栽植用					
3. 潜在的検疫有害動植物の個体の見えにくさ	5	有害植物					
4. 輸入品目からの人為的な移動による分散	5	栽植用					
5. 輸入品目からの自然分散	5	栽植用					
評価における不確実性							
特になし							
入り込みの可能性の評価の結論	5.0	高い					

学名 : Potato spindle tuber viroid							
用途:栽植用球根類							
評価項目	得点	文献等の記述					
1. 潜在的検疫有害動植物に関連する経路からの入り込みの可能性							
2. 加工処理に耐えて生き残る可能性	5	栽植用					
3. 潜在的検疫有害動植物の個体の見えにくさ	5	有害植物					
4. 輸入品目からの人為的な移動による分散	5	栽植用					
5. 輸入品目からの自然分散	からの自然分散 5 栽植用						
評価における不確実性							
特になし							
入り込みの可能性の評価の結論	5.0	高い					

学名: Potato spindle tuber viroid							
用途:栽植用種子							
評価項目	得点	文献等の記述					
1. 潜在的検疫有害動植物に関連する経路からの入り込みの可能性							
2. 加工処理に耐えて生き残る可能性	5	栽植用種子、 有害植物					
3. 潜在的検疫有害動植物の個体の見えにくさ	5	有害植物					
4. 輸入品目からの人為的な移動による分散	5	栽植用					
5. 輸入品目からの自然分散	5	栽植用					
評価における不確実性							
特になし							
入り込みの可能性の評価の結論	5.0	高い					

学名: Potato spindle tuber viroid							
用途:消費用生植物							
評価項目	得点	文献等の記述					
1. 潜在的検疫有害動植物に関連する経路からの入り込みの可能性							
2. 加工処理に耐えて生き残る可能性	5	消費用生植物					
3. 潜在的検疫有害動植物の個体の見えにくさ	5	有害植物					
4. 輸入品目からの人為的な移動による分散	4	人口比 1					
5. 輸入品目からの自然分散	評価中止	ウイロイド					
評価における不確実性							
消費用生植物のうち生果実を経路とした場合、果実に含まれる種子が本来の用途ではない栽培目的で使 用される可能性があるため、評価の結論には不確実性が伴う。							
入り込みの可能性の評価の結論	評価中止	無視できる					

病害虫リスク評価の結論一覧表

学名: Potato spindle tuber viroid								
農業生産等への影響評価 (病害虫固有のリスク		高い						
用途	入り込みの可能性の結論		輸入経路における 病害虫リスク					
栽植用植物	高い		高い					
栽植用球根類	高い		高い					
栽植用種子	高い	١	高い					
消費用生植物	無視で	きる	無視できる					

関連する経路の年間輸入量

用途	植物名	生産国	発生国		015		016)17
用处	但初石		九工四	件数 数量		件数	数量	件数	数量
栽植用	カリフ゛ラコア属	ヘートナム	×			1	800	7	1,540
私恒用 植物		韓国	×	4	3,840			6	12,000
们旦 720	カリフ゛ラコア属 (地上部)	ウカ゛ンタ゛	×	33	1,800	5	500	2	10,100
		ケニア	×	249	177,800	380	198,717	444	266,860
	トウカブラシ属	韓国	×	16	85,155				
	トウカブラシ	韓国	×			1	945	1	1,680
	ピーマン	韓国	×	13	64,470	31	162,960	33	156,525
	シシトウ	韓国	×					3	4,620
	ダリア属	イタリア	0	13	1,040	7	400		
		オランタ゛	0	241	154,214	276	183,438	243	163,846
		キ゛リシャ	0					15	5,356
		スペ゚イン	0	22	31,462	10	19,090	3	1,328
		デンマーク	×	17	690	17	660	17	660
		ト・イツ	0	2	20				
	ダリア属(地 上部)	エルサルハ゛ ト゛ル	×	8	245				
		ケニア	×	30	3,000	39	46,825	55	53,300
		スペ゚イン	0	2	166	4	120		
		ト・イツ	0			4	700		
		ニカラク゛ア	×					3	300
	ýリア (地上 部)	ケニア	×			60	3,420	62	25,400
	ワニナシ属	チリ	×	1	3				
	アホ゛カト゛	イスラエル	0					1	390
		タイ	×					1	10
		韓国	×			1	50		
		台湾	×					1	85
	アホカ (地上部)	米国	0	1	900	4	700	1	300
	ペチュニア属	ウカンタ゛	×			3	5,600		
		ト・イツ	0					1	15
	へ [°] チュニア属 (地上部)	ウカ゛ンタ゛	×	18	3,550	13	17,700	10	15,300
		ケニア	×	10	2,200	178	119,062	324	756,100
	へ。チュニア	オランダ	0			11	26		
	へ [°] チュニア (地 上部)	ケニア	×	91	25,400	78	36,900	55	34,100
	171	韓国	×	102	868,978	107	862,731	114	781,134
		台湾	×	3	4,800	2	2,845	1	1,000
	トマト (地上部)	フィリヒ゜ン	×					1	120

	ハ゛レイショ(シ゛ャ カ゛イモ)	オランダ゛	0	0	0				
	ハーレイショ(シャ								
	ガイモ) (地下部)	オランダ゛	0	0	0				
+5.1+	カリフ゛ラコア属	イスラエル	0	68	94	65	65	38	71
栽植用		オランダ	0					1	92
植物(組織技事)		スペイン	0	63	174	13	37	43	253
織培養)		トイツ	0	122	402	123	507	178	970
		ヘートナム	×	16	90			9	51
		ホ [°] ーラント [*]	0	51	68	23	110	45	631
		米国	0	38	62	39	75	46	105
	ダリア属	ドイツ	0			2	4		
	ペチュニア属	イスラエル	0	165	639	172	189	139	297
		オランダ	0	10	255	2	3	4	400
		スペイン	0	74	241	55	185	39	158
		ト・イツ	0	135	304	112	908	108	270
		ヘートナム	×	66	356			21	125
		ホ [°] ーラント゛	0	10	22	8	9	18	28
		米国	0	24	63	7	19	15	42
	へ。チュニア	イスラエル	0	46	71	10	56	11	14
		オランタ゛	0	51	216	65	571	36	229
		ドイツ	0	9	257	16	39	36	62
		米国	0			6	7	4	9
栽植用	ダリア属	ト・イツ	0	1	2				
球根		英国	0	1	18				
栽植用	ハマアカサ゛属	デンマーク	×	1	1				
種子	カリフ゛ラコア属	米国	0	4	4				
	トウカ゛ラシ属	イタリア	0	20	20	11	11		
		イント゛	0	6	6				
		チリ	×	1	1	1	2		
		ヘートナム	×	1	1	3	3		
		マレーシア	×	1	1				
		韓国	×					1	1
		台湾	×	2	2	1	1	1	1
		中国	0	1	30	6	196		
		米国	0			1	1		
	トウカ゛ラシ	イスラエル	0			5	5		
		イタリア	0	43	43	44	44		
		イント゛	0	3	4	6	549	21	698
		イント・ネシア	×	12	544			7	31
		オランダ	0	25	25	41	41	37	37
		グアテマラ	×			1	1		
		スペペイン	0	11	11	23	23	40	40
		スリランカ	×	6	6	1	5	2	3
		タイ	×	6	28	11	219	27	1,343
		チリ	×	61	89	64	67	16	16
		デンマーク	×	75	75	111	111	24	25
		トルコ	0	42				1	1

	ハンカ゛リー	×			2	2	1	1
	ブラジル	×			3	23	3	22
	フランス	0	31	31	4	4		
	ヘートナム	×	53	804	39	775	43	193
_	へ°ルー	0	41	47	38	73	19	19
_	メキシコ	0	15	15	5	5	11	11
	英国	0			2	2	5	5
	韓国	×	9	111	6	170	1	10
	台湾	×	4	17	3	3	3	28
	中国	0	59	6,365	52	5,388	20	527
	日本	0	1	1				
	米国	0	6	10	6	10	2	4
トウカ゛ラシ コーテ ィンク゛種子	チリ	×					1	1
コトウカ゛ラシ	タイ	×	1	2				
ホシトウカブラシ	中国	0			1	1		
ピ [°] ーマン	イスラエル	0	7	7				
	イタリア	0					1	1
	インド	0	1	122				
	オランダ	0	2	2				
	タイ	×	11	738	5	586		
	チリ	×	3	5	5	24		
	ハンカ゛リー	×			1	1		
	フランス	0	1	1				
	ヘートナム	×	19	158	15	307	6	85
	台湾	×	3	3				
	中国	0	4	14	2	2		
	米国	0	1	210	2	2		
イズハハコ属	英国	0					1	1
	米国	0	1	1				
ダリア属	オランダ゛	0	14	14	10	10	3	9
	チリ	×	1	1				
	デンマーク	×	1	1				
	ト・イツ	0	1	1				
	フランス	0			3	4	2	2
	ホ [°] ーラント [*]	0	1	1				
	中国	0	8	52	21	101	12	36
	米国	0	9	25	5	5	3	4
テンシ゛クホ゛タン	オランダ゛	0	1	1				
アホ゛カト゛	ニューシ゛ーラ ント゛	0	3	2,266	1	2,200	1	2,000
	台湾	×			1	19		
	米国	0	2	188	1	87	1	53
ペチュニア属	イント・ネシア	×	71	71	39	39	16	16
	オランダ゛	0	1	1				
	グアテマラ	×	66	66	31	31	65	65
	ケニア	×	6	6			1	1
	コスタリカ	0			18	18	76	79
	スリランカ	×	23	23	6	6	18	18

	チリ	×	32	32	19	19	5	5
	トイツ	0			3	3		
	米国	0					119	119
へ [°] チュニア属 コ ーティンク [*] 種子	イント・ネシア	×	9	9			10	10
	スリランカ	×					1	1
へ [°] チュニア	イント・ネシア	×	21	21	4	4	2	2
	コスタリカ	0	58	58	20	20		
	スリランカ	×	51	51	58	58	30	30
	ドイツ	0	1	1	1	1		
	ヘートナム	×					4	4
	韓国	×	166	166	3	3	11	11
	台湾	×	1	1	1	1	1	1
	米国	0	88	88				
ウィオラーケア	チリ	×	1	1				
ホオス゛キ属	イタリア	0	5	5	2	2	1	1
	中国	0			1	8	1	1
トマト属	ク゛アテマラ	×			1	1		
	タンサ゛ニア	×			1	1		
	日本	0			1	1		
	米国	0			1	1		
チェリートマト	イスラエル	0	3	3				
	インド	0			5	29		
	日本	0			2	2		
トマト	イスラエル	0	44	55	12	33	20	27
	イタリア	0	4	4	3	3	3	3
	インド	0	106	1,018	152	1,792	45	746
	イント・ネシア	×	17	101				
	オーストラリア	0	101	407	1	1	4.45	4.45
	オランダ	0	104	107	92	92	145	145
	クアテマラ	×	21	21	28	32	10	10
	ケニア	×	30	36	22	26	13	13
	スイス スヘ°イン	× 0	5	5				
	1	×	18	18				
	スリランカ タイ	×	348	2,432	362	1 076	307	1,604
	タンサニア	×	2	2,432	14	1,976 14	307	1,004
	チリ	×	80	215	58	133	89	225
	ドイツ	0	00	210	2	2	09	223
	トルコ	0					6	6
	フィリヒ゜ン	×					1	1
	ブータン	×			1	1	•	<u>'</u>
	ブラジル	×	23	166	27	252	99	582
	フランス	0	13	13	28	29	16	16
	ベトナム	×	13	13	5	13	105	205
	ペルー	0	7	7	8	13	33	64
	メキシコ	0	15	28			32	32
	モロッコ	×	41	41	36	36	49	49

	ラオス	×			4	43	5	52
	英国	0			1	1	4	4
	台湾	×	8	8	5	5	7	7
	中国	0	33	600	33	244	28	225
	日本	0	6	6			3	3
	米国	0	1	1	3	35	4	4
トマト コーティング 種子	タイ	×					2	2
	メキシコ	0	4	4				
イヌホオス゛キ	英国	0	1	1				
タマサンコ゛	デンマーク	×	1	1	6	6		
ハリナスヒ゛	オランダ	0			1	140	1	1,400

単位:栽植用植物;本、栽植用球根;個、栽植用種子;kg