食品安全に関するリスクプロファイルシート
（細菌）
作成日：2018年2月7日

項 目	内 容				
1 病原微生物					
（1）一般名	ボツリヌス菌				
（2）分類					
（1）菌種名	Clostridium botulinum				
（2）染色性	グラム陽性				
（3）酸素要求性	偏性嫌気性				
（4）形状	桿菌				
（5）芽胞形成	形成する。				
（3）特徴					
（1）分布	土壌，河川や海底の泥等の自然環境中に広く分布している。				
（2）運動性	周毛性の鞭毛を有し，運動する。				
（3）毒素産生性	－ボツリヌス毒素（神経毒）を産生する。毒素は腸管から吸収さ れ，コリン作動性末梢神経に作用し，神経伝達物質であるアセ チルコリンの遊離を阻害することにより筋肉の麻痺を引き起こ す。 －毒素自体は易熱性で， $80^{\circ} \mathrm{C}$ で 20 分又は $100^{\circ} \mathrm{C}$ で $1 ~ 2$ 分の加熱で不活化される。 （国立感染症研究所，2008a，2008b，2017；小久保，2005） －ボツリヌス菌は生物学的性状と遺伝学的分類でI群～IV群に分 けられている（IV群は現在，Clostridium argentineseと認識されて いる）。ボツリヌス毒素は抗原性の違いによってA～G型が知られ ている。各群の産生毒素型及びタンパク分解性は次のとおり。				
	性状	I 群	III 群	III群	IV群
	産生毒素型	A，B，F	B，E，F	C，D	G
	タンパク分解性	＋	－	－	＋

（国立感染症研究所，2012a）
－ヒトのボツリヌス症は，主としてA，B及びE型，まれにF型の毒素産生菌で起こる。C，D，E型の毒素産生菌は，他のほ乳類，鳥類，魚類に症状を起こす。
（WHO，2017；国立感染症研究所，2017）
－タンパク非分解菌の毒素は，体内酵素（トリプシン等）の作用で毒力が増強する。
（小久保，2005）

（4）その他	－ヒトの経ロ致死量はA型毒素で数 $\mu \mathrm{g}$ と推定されている。 （小久保，2005）
（4）発育条件	
（1）温度域	タンパク分解菌（群）： $10 \sim 48^{\circ} \mathrm{C}$ タンパク非分解菌（II群）： $3.3 \sim 45^{\circ} \mathrm{C}$（小久保，2005）

	（2） pH 域	タンパク分解菌（I群）：4．0～9．6 タンパク非分解菌（II群）：5．0～9．6（小久保，2005）
	（3）水分活性	タンパク分解菌（I群）：0．94以上 タンパク非分解菌（II群）：0．97以上（小久保，2005）
	（5）発育至適条件	
	（1）温度域	タンパク分解菌（I群）：37～40응 タンパク非分解菌（II群）： $30^{\circ} \mathrm{C}$（小久保，2005）
	（2） pH 域	タンパク分解菌（I群）： $6 \sim 7$ タンパク非分解菌（II群）：6～7（小久保，2005）
	（3）水分活性	タンパク分解菌（I群）：0．98 タンパク非分解菌（II群）：0．99（小久保，2005）
	（6）分離•検査方法	－食品，糞便及び血清からの毒素の検出（例） 食品及び糞便はゼラチン希釈液を加え乳剤化し，遠心・ろ過 して試料原液とする。血清はそのまま試料原液とする。試料に必要に応じトリプシンを加えボツリヌス毒素を活性化した後マウス腹腔内に注射。ボツリヌス毒素による特有の症状（腹壁の陥没，後肢麻痺及び呼吸困難）を呈して死亡することを確認する。種々 の毒素型に対する抗毒素血清を注射したマウスを用意すること により，毒素型を判定する（中和試験）。 －糞便からの菌の分離（例） 糞便はゼラチン希釈液を加え乳化し，遠心・ろ過して試料原液 とする。増菌培地（ブドウ糖・デンプン加クックドミート液体培地） に試料を接種し， $30^{\circ} \mathrm{C}$ で 7 日間嫌気培養する。培養液をマウス腹腔内に注射し，ボツリヌス毒素が存在した場合，分離培地（卵黄加GAM寒天又は卵黄加CW寒天培地）に画線し， $30^{\circ} \mathrm{C}$ で 48 時間嫌気培養する。集落を釣菌し，ブドウ糖・デンプン加クックドミート液体培地に接種し， $30^{\circ} \mathrm{C}$ で 4 日間嫌気培養する。培養液をマウ ス腹腔内に注射し，ボツリヌス毒素を検出し，中和試験により毒素型を決定する。
	（7）特記	－
2	食品への汚染	
	（1）汚染されやすい食品•摂食形態	食餌性ボツリヌス症 －「いずし」とその類似の魚類の発酵食品などの自家製の発酵食品 - 真空調理食品 - 諸外国では野菜の水募缶詰，減塩燻製魚，減塩ハム，酢漬け魚，豆腐，納豆等の大豆製品等の保存食品
	（2）汚染経路	土壌等，広く環境中に存在しており，農作物，食肉，魚介類等あら ゆる食材を汚染する可能性がある。耐熱性の芽胞を形成するた め，汚染された食品を使って加熱調理した食品内に生存し，嫌気条件下で増殖する。
	（3）汚染実態	－

	（4）殺菌•滅菌•失活条件	－芽胞を形成するので，通常の加熱調理条件で菌を完全に死滅さ せることができない。毒素は易熱性であるため，食べる直前に加熱することは有効である。ボツリヌス菌食中毒の発生防止には次の方法のいずれかを実施する。 $120^{\circ} \mathrm{C}$ で4分又は $100^{\circ} \mathrm{C}$ で 360 分以上の加熱による芽胞の完全殺菌 物理的（ pH 4.6 以下，水分活性 0.94 以下，温度 $3.3^{\circ} \mathrm{C}$ 以下），化学的（亜硝酸ナトリウムのような抗菌剤の添加，ただし pH6以上ではあまり効果が期待できない）に芽胞の発芽，菌 の増殖防止 $80^{\circ} \mathrm{C}$ で 20 分又は $100^{\circ} \mathrm{C}$ で数分の加熱調理により，産生毒素 の喫食直前の不活化 （小久保，2005）					
3	食中毒の特徴						
	（1）分類•機序	食餌性ボツリヌス症：生体外毒素型乳児ボツリヌス症：生体内毒素型 毒素は腸管から吸収され，コリン作動性末梢神経に作用し，神経伝達物質であるアセチルコリンの遊離を阻害することにより筋肉の麻痺を引き起こす。 （国立感染症研究所，2008a，2008b，2017；小久保，2005）					
	（2）潜伏期間	毒素を摂取した場合（食餌性ボツリヌス症），4時間～8日間（通常 は12～36時間） （WHO，2017）					
	（3）症状	－食餌性ボツリヌス症 初期症状で視覚異常を訴えるとともに，ロ内の渴き，嗄声，腹部の膨満感，吐き気，嘔吐，歩行異常，嚥下困難，便秘，全身 の筋弛緩等の症状を呈する。 重症の場合は呼吸筋の麻痺による呼吸不全で致命的となる。 －乳児ボツリヌス症 便秘傾向に始まり，全身の筋力低下をきたす。鳴き声や乳を吸う力が弱まり，頚部筋肉の弛緩によって頭部を支えられなくな る。顔面は無表情になり，散瞳，眼瞼下垂，対光反射の緩慢等，食餌性ボツリヌス症と同様な症状が現れる。 （国立感染症研究所，2008b，2008d，2017）					
	（4）有症期間	数週間～数か月					
	（5）予後	致死率が高い（食餌性ボツリヌス症：10～20\％，乳児ボツリヌス症： 2% 程度） （国立感染症研究所，2008b）					
	（6）発症に必要な菌数	－					
4	食中毒件数•患者数	－ボッリヌス菌食中毒発生状況					
	（1）国内						
	（1）実報告数						
		年	2013	2014	2015	2016	2017＊
		事件数（件）	0	0	0	0	1
		患者数（人）	0	0	0	0	1
		※2017年12月28日時点までの速報値を農林水産省で集計。					

		乳児ボツリヌス	ヌス!	発生状	（食品	（厚生労 品媒介性以	労働省「食 外も含む	毒統計」）
		年		2011	2012	2013	2014	2015
		患者数（人）		5	0	0	0	1
			国立感	染症研	所「感	感染症発生	生動向調	より抜粋）
	（2）推定数	－						
	（2）海外							
	（1）報告数	【米国】 －ボツリヌス症	患者	数（確				
		年		2011	2012	2 2 213	2014	2015
		全ボツリヌス	ス症	140	160	0 153	161	199
		うち，食餌	餌性	20	25	5 2	15	39
		うち，乳児		102	122	2135	128	141
								（CDC）
	（2）推定数	－						
5	主な食中毒事例							
	（1）国内	$\begin{aligned} & \text { - 1984年6月 } \\ & \text { 下のとおり。 } \end{aligned}$ （食餌性ボツ	$\begin{aligned} & \sim 201 \\ & 29 \text { 件 } \\ & \text { ソリヌン } \end{aligned}$	2年3月 のうち 13 ス症）	国内 牛は，	で発生した いずしが原	主な食中因食品	毒事例は以 ある。
		年月		原因食品		患者数 （死者数）		典
		1984.6	辛子	れんこん		36（11）	国立感染	症研究所， a
		1984.12	$\begin{aligned} & \text { ハタ } \\ & \text { ずし } \end{aligned}$	スハタ・鮭		6 （0）	国立感染 2012a	症研究所，
		1995.10	鮭の	いずし		6 （0）	国立感染 2012a	症研究所，
		1998.7		ーンオリ 詰）		18 （0）	$\left\lvert\, \begin{array}{l\|l\|} \text { 国立感染 } \\ 2000,201 \end{array}\right.$	症研究所， a
		2012.3	あず	きばっと		2 （0）	$\begin{array}{\|l\|l\|} \hline \text { 国立感 } \\ 2012 b \end{array}$	症研究所，
		（乳児ボツリス	ヌス症					
		年月		原因食品		患者数 （死者数）		典
		1986.5	蜂蜜			1 （0）	$\begin{array}{\|l\|} \hline \text { 国立感染 } \\ 1986,201 \end{array}$	症研究所， a
		1987.10	蜂蜜			1 （0）	国立感染 $\text { 1988, } 201$	症研究所， a
		1996.3		製野菜准定）	スー	1 （0）	$\begin{aligned} & \text { 国立感染 } \\ & 1996,201 \end{aligned}$	症研究所， a
		2006.9	井戸			1 （0）	$\begin{array}{\|l} \text { 国立感染 } \\ \text { 2007, } 201 \\ \hline \end{array}$	症研究所， a

		2017.3 ※原因食	蜂蜜（推定）${ }^{*}$ 離乳食として与えたハ	1 （1） チミツを混ぜ	東京都 2017 たジュース	福祉保健局，
	（2）海外	【米国】 －過去に米国で発生した主な食中毒事例は以下のとおり。 （食餌性ボツリヌス症）				
		年	原因食品	患者数 （死者数）	国	出典
		2001	とうがらしの缶詰 （冷凍）	16 （0）	米国	CDC， 2015
		2015	ポテトサラダ（じゃ がいもの自家製缶詰を使用）	$29 \text { (1) }$	米国	CDC， 2015
		【EU】 －2016年11月にドイツとスペインで塩干しローチ（Rulilus retulus）を原因食品とするボツリヌス菌のE型毒素による食中毒事例が発生（患者5名）（EFSA，2016）。				
6	食中毒低減のための措置•取組					
	（1）国内	【農林水産省】 －ウェブページ「食中毒をおこす細菌・ウイルス・寄生虫図鑑 ボツ リヌス菌（細菌）［Clostridium botulinum］」において，予防のポイ ントを紹介。 〈内容〉 \checkmark 作りおきの料理を食べる場合は，十分に加熱してから食べ る。 $\checkmark 120^{\circ} \mathrm{C}$ で 4 分， $100^{\circ} \mathrm{C}$ で 360 分以上の加熱をしなければ菌は死 なないので，家でいずしや瓶詰などを作るときは注意する。 \checkmark この菌は土の中にいるので，材料はしっかり洗う。 \checkmark この菌は酸素の少ないところで増殖するので，真空パックや缶詰が膨張していたり，異臭があるときは，食べないように する。 レトルト食品と似た包装がされていても冷蔵保存が必要な食品が，多く出回っている。見た目だけで判断するのではなく，保存方法の表示も確認するようにする。 $\checkmark 1$ 歳未満の乳児に，ハチミツや，ハチミツ入りの離乳食•飲料 －お菓子などを与えない。				

		foodstuffs．＂ 芽胞を殺すことが最も信頼でき安全な選択肢である。通常の家庭調理では芽胞を殺すことは出来ないため，調理品は速やか に食べるか， $63^{\circ} \mathrm{C}$ 程度の高温で保つ又は $7 \sim 8^{\circ} \mathrm{C}$ 以下に急速に冷やし，数日のうちに食べきるべき。 （EFSA，2005）
8	今後必要とされるデー タ	－
9	その他参考となる情報	－
10	参考文献	－CDC．Botulism．Annual Summaries of Botulism Surveillance Reported to CSTE． http：／／www．cdc．gov／botulism／surveillance．html（accessed December 18，2017） －CDC．Foodborne Outbreak Online Database． http：／／wwwn．cdc．gov／foodborneoutbreaks／（accessed December 18，2017） －CDC．2015．Notes from the Field：Large Outbreak of Botulism Associated with a Church Potluck Meal－Ohio，2015．Morbidity and Mortality Weekly Report（MMWR），64（29），802－803． https：／／www．cdc．gov／mmwr／preview／mmwrhtml／mm6429a6．ht \underline{m}（accessed December 18，2017） －Codex．1979．Code of Hygienic Practice for Low and Acidified Low Acid Canned Foods（CAC／RCP 23－1979）． －EFSA．2005．Opinion of the Scientific Panel on Biological Hazards on the request from the Commission related to Clostridium spp in foodstuffs．EFSA J，199，1－65． http：／／onlinelibrary．wiley．com／doi／10．2903／j．efsa．2005．199／epdf （accessed December 18，2017） －EFSA．2016．Type E botulism associated with fish product consumption－Germany and Spain．EFSA Supporting publication．2016；EN－1157． http：／／onlinelibrary．wiley．com／doi／10．2903／sp．efsa．2016．EN－ 1157／epdf（accessed December 18，2017） －USDA．2009．Complete Guide to Home Canning．Agriculture Information Bulletin．No．539．（Revised 2015） http：／／nchfp．uga．edu／publications／publications＿usda．htm｜ （accessed December 20，2017） －WHO．2017．Botulism． http：／／who．int／mediacentre／factsheets／fs270／en／（accessed December 18，2017） －厚生労働省．1987．昭和62年10月20日付け健医感第71号•衛食第170号•衛乳第53号•児母衛第29号厚生省保健医療局感染症対策室長•生活衛生局食品保健•乳肉衛生•児童家庭局母子衛生課長連名通知「乳児ボツリヌス症の予防対策について」。 －厚生労働省．1999．平成11年8月30日付け衛食第130号厚生省生活衛生局食品保健課長通知「気密性のある容器包装詰めの要冷蔵食品に係る取扱いについて」。

－厚生労働省．2006．平成18年12月8日付け健水発第1208001号 －食安監発第1208001号•雇児母発第1208001号厚生労働省健康局水道課長•医薬食品局食品安全部監視安全課長•雇用均等•児童家庭局母子保健課長通知「井戸水を原因食品とする乳児ボツリヌス症の報告について」。
http：／／www．mhlw．go．jp／topics／bukyoku／kenkou／suido／hourei／ji muren／h14／dl／061208－2．pdf（accessed December 18，2017）
－厚生労働省．2008．平成20年6月17日付け食安基発第0617003号厚生労働省医薬食品局食品安全部基準審査•監視安全課長通知「容器包装詰低酸性食品に関するボツリヌス食中毒対策に ついて」．http：／／www．mhlw．go．jp／shingi／2008／07／dl／s0708－ 3q．pdf（accessed December 18，2017）
－厚生労働省．2017．平成29年4月7日付け事務連絡「蜂蜜を原因 とする乳児ボツリヌス症による死亡事案について」。
http：／／www．mhlw．go．jp／file／06－Seisakujouhou－11130500－ Shokuhinanzenbu／0000161263．pdf（accessed December 18， 2017）
－厚生労働省．食中毒事件一覧速報。
http：／／www．mhlw．go．jp／stf／seisakunitsuite／bunya／kenkou＿iryou ／shokuhin／syokuchu／04．html（accessed December 18，2017）
－小久保彌太郎編．2005．現場で役立つ食品微生物Q\＆A．中央法規出版株式会社．ISBN：4－8058－2579－0．
－国立感染症研究所．1984．からしれんこんによるボツリヌス中毒事件の概要．病原微生物検出情報（IASR），5，ページ数不明． http：／／idsc．nih．go．jp／iasr／CD－ROM／records／05／05702．htm （accessed December 18，2017）
－国立感染症研究所．1986．「乳児ボツリヌス症」の本邦第一例．病原微生物検出情報（IASR），7，ページ数不明。 http：／／idsc．nih．go．jp／iasr／CD－ROM／records／07／07904．htm （accessed December 18，2017）
－国立感染症研究所．1988．愛媛県で確認された乳児ボツリヌス症．病原微生物検出情報（IASR），9，ページ数不明。
http：／／idsc．nih．go．jp／iasr／CD－ROM／records／09／09706．htm
（accessed December 18，2017）
－国立感染症研究所．1996．自家製野菜スープが原因と推定され る乳児ボツリヌス症－東京都。病原微生物検出情報（IASR），17， ページ数不明．http：／／idsc．nih．go．jp／iasr／CD－
ROM／records／17／20003．htm（accessed December 18，2017）
－国立感染症研究所．2000．東京都内で発生したグリーンオリー ブの塩漬けによるB型ボツリヌス食中毒事例（1）－臨床．病原微生物検出情報（IASR），21，ページ数不明。
http：／／idsc．nih．go．jp／iasr／21／241／dj2412．html（accessed
December 18，2017）
－国立感染症研究所．2007．乳児ボツリヌス症の発生原因と考え られた井戸水からの菌分離。病原微生物検出情報（IASR），28， 113－114．http：／／idsc．nih．go．jp／iasr／28／326／kj3261．html （accessed December 18，2017）

		http：／／www．maff．go．jp／j／syouan／seisaku／foodpoisoning／f＿encyc lopedia／clostridium．botulinum．html $2017)$

