食品安全に関するリスクプロファイルシート
（細菌）
作成日：2016年11月30日

| 項 目 |  | 内 容 |
| :---: | :---: | :---: |
| 1 | 病原微生物 |  |
|  | （1）一般名 | セレウス菌 |
|  | （2）分類 |  |
|  | （1）菌種名 | Bacillus cereus |
|  | （2）染色性 | グラム陽性 |
|  | （3）酸素要求性 | 通性嫌気性 |
|  | （4）形状 | 桿菌 |
|  | （5）芽胞形成 | 形成する。 |
|  | （3）特徴 |  |
|  | （1）分布 | - 自然環境中に広く分布する。 <br> - 土壌，植物からしばしば分離される。 <br> （FDA，2012） |
|  | （2）運動性 | 周毛性の鞭毛を有し，運動する。 |
|  | （3）毒素産生性 | 嘔吐毒や下痢毒を産生する菌株が，食品中や腸管内で増殖する ときに産生する。嘔吐毒や下痢毒の性質は以下のとおり。 <br> 嘔吐毒（セレウリド）：嘔吐型食中毒 <br> －菌が食品中で増殖するときに産生する（食品とともに嘔吐毒を摂取することにより，嘔吐型食中毒が発生）。 <br> －嘔吐毒は， $121^{\circ} \mathrm{C}$ で 30 分の加熱， $4^{\circ} \mathrm{C}$ で 60 日間の冷蔵， $\mathrm{pH} 2 \sim 11$ の条件下でも安定。 <br> （FDA，2012） |

－環状ペプチドで，消化酵素や熱，酸・アルカリにも安定。
（国立感染症研究所）

## 下痢毒：下痢型食中毒

－食品とともに摂取された菌が，腸管内で増殖するときに産生す る。高分子タンパク質である。
（FDA，2012）
－ペプシンやトリプシンなどの酵素や， $60^{\circ} \mathrm{C}$ 以上の加熱， pH 4 以下 の酸性条件などによって失活する。
（国立感染症研究所）
（4）その他

- 我が国におけるセレウス菌食中毒は嘔吐型が大半である。
- 鞭毛（H）抗原により26の血清型に型別されている。
（（公社）日本食品衛生協会，2015）
－自然環境からよく分離されるセレウス菌と食中毒の原因となるセ レウス菌との区別にはデンプン分解能検査が役立つ。後者がデ ンプン非分解菌である。
（国立感染症研究所）



|  |  | は20名，死者は0名と推定。（Scallan et al．，2011） |
| :---: | :---: | :---: |
| 5 | 主な食中毒事例 |  |
|  | （1）国内 | －2001年に熊本県で，保育園主催の餅つき大会で提供されたあん入り餅を原因とする患者数346人の嘔吐型食中毒が発生。 <br> （国立感染症研究所感染症情報センター，2002） <br> －2008年に大阪府で，家庭での昼食調理食品を原因とする患者数3人（うち死者1人）の食中毒が発生。 <br> －2015年に群馬県で，ケバブを原因とする患者数 42 人の食中毒が発生。 <br> （厚生労働省） |
|  | （2）海外 | 欧米諸国では，野菜サラダ，肉料理，魚料理，土鍋料理，スパゲッ ティや米飯の調理•加エ食品，チーズや粉乳を加えたバニラ・スラ イス等が原因食品としてあげられ，国内と様相が異なる。 <br> （（公社）日本食品衛生協会，2015） |
| 6 | 食中毒低減のための措置•取組 |  |
|  | （1）国内 | 【厚生労働省】 <br> －「食品衛生法」により，セレウス菌を清涼飲料水，食肉製品，魚肉練り製品及び容器包装詰加圧加熱殺菌食品の総合衛生管理製造過程制度における危害要因と定めている。 <br> －「育児用調製粉乳の衛生的取扱いについて」により，食品安全委員会から，食品健康影響評価の結果，調製粉乳中のセレウス菌に関しては調乳後の適切な取扱いが重要である旨の通知が あったことを情報提供。 <br> （厚生労働省，2005） <br> 【その他】 <br> －（公社）日本食品衛生協会ホームページ「知ろう！防ごう！食中毒」の「セレウス菌食中毒」において，予防法を紹介している。 <br> 〈主な内容〉 <br> $\checkmark$ 調理する時は，十分に加熱する。 <br> $\checkmark$ 調理する時は，食べきれる量だけを作り，大量に料理して残さないようにする。 <br> $\checkmark$ チャーハン，ピラフなどを室温に長時間放置し，その後，食 べることは絶対にしない。 |
|  | （2）海外 | － |
| 7 | リスク評価事例 |  |
|  | （1）国内 | 【食品安全委員会】 <br> －調製粉乳にセレウスの規格基準を設定することに係る食品健康影響評価＊ <br> 低出生体重児が調製粉乳を摂取することにより，セレウスに よる全身性感染症に罹患する食品健康影響（リスク）は，現時点 において極めて低いと考えられる。 <br> 国内に流通している調製粉乳中のセレウスの汚染実態は $100 / \mathrm{g}$（MPN法）よりはるかに低いため， $100 / \mathrm{g}$ の基準値を設定し |


|  |  | たとしても，リスクに影響を及ぼすとは考えにくい。調乳後に適切 な取り扱いが行われるようにするための指導等が重要と考えら れる。 <br> （食品安全委員会，2005） ※2003年当時，国内で低出生体重児におけるセレウス菌感染症（原因等因果関係は不明）が報告されていたこと，米国•豪州で調製粉乳に規格基準が設定又は検討されていたことから，厚生労衝省が食品安全委員会へ食品健康影響評価を倲頼した（厚生労働省，2003）。 |
| :---: | :---: | :---: |
|  | （2）海外 | 【EU】 <br> －Risks for public health related to the presence of Bacillus cereus and other Bacillus spp．including Bacillus thuringiensis in foodstuffs． <br> セレウス菌グループ（B．cereus，B．thuringiensis など計8種）に よる食中毒事例の多くは，食品の菌濃度が $10^{5} \mathrm{cfu} / \mathrm{g}$ 以上であ る。しかし，嘔吐型食中毒•下痢型食中毒の両方で，食品の菌濃度が $10^{3} \sim 10^{5} \mathrm{cfu} / \mathrm{g}$ であった事例がある。 <br> セレウス菌グループの主な管理手段は，食品を $7^{\circ} \mathrm{C}$ 以下（でき れば $4^{\circ} \mathrm{C}$ 以下）に維持することである。他の手段としては，加熱や高圧処理等がある。ただし，栄養細胞は不活化できても，芽胞 は不活化できない手段も含まれる。食品製造で嘔吐毒を不活化 できる手段はない。 |
| 8 | 今後必要とされるデー タ | － |
| 9 | その他参考となる情報 | － |
| 10 | 参考文献 | －CDC．Foodborne Outbreak Online Database． <br> http：／／wwwn．cdc．gov／foodborneoutbreaks／Default．aspx （accessed July 21，2016） <br> －EFSA，2005．Opinion of the Scientific Panel on Biological Hazards on Bacillus cereus and other Bacillus spp in foodstuffs．EFSA J．，175，1－48． <br> http：／／www．efsa．europa．eu／sites／default／files／scientific＿output ／files／main＿documents／175．pdf（accessed October 7，2016） <br> －EFSA，2016a．Public health risks of the Bacillus cereus group． https：／／www．efsa．europa．eu／en／press／news／160720 （accessed July 28，2016） <br> －EFSA，2016b．Risks for public health related to the presence of Bacillus cereus and other Bacillus spp．including Bacillus thuringiensis in foodstuffs．EFSA J．，14（7）， 4524. <br> https：／／www．efsa．europa．eu／en／efsajournal／pub／4524 <br> －FDA，2012．Bacillus cereus and other Bacillous species．Bad Bug Book，Foodborne Pathogenic Microorganisms and Natural Toxins． $2^{\text {nd }}$ Ed． <br> http：／／www．fda．gov／Food／FoodbornelllnessContaminants／Caus esOfillnessBadBugBook／default．htm <br> －Scallan E，et al．，2011．Foodborne Illness Acquired in the United States－Major Pathogens．Emerg Infect Dis．17，1，7－15． |



表1 食品のセレウス菌汚染状況

| 食品の分類 | 検体総数 | 陽性検体数 | 陽性率 $(\%)$ | 備考 |
| :--- | ---: | ---: | ---: | ---: |
| 水産食品 | 3 | 0 | 0 |  |
| 水産加工食品 | 114 | 14 | 12 |  |
| 畜産食品 | 2 | 0 | 0 |  |
| 畜産加エ食品 | 42 | 3 | 7 |  |
| その他の動物性食品 | 7 | 3 | 43 |  |
| 農産食品 | 34 | 17 | 50 | $10^{4} \mathrm{cfu} / \mathrm{g}$ 以上の検体あり |
| 農産加エ食品 | 1158 | 152 | 13 | $10^{4} \mathrm{cfu} / \mathrm{g}$ 以上の検体あり |
| 惣菜 | 1113 | 52 | 5 | $10^{4} \mathrm{cfu} / \mathrm{g}$ 以上の検体あり |
| 惣菜半製品 | 7 | 2 | 29 |  |
| パン類•菓子類 | 707 | 37 | 5 | $10^{4} \mathrm{cfu} / \mathrm{g}$ 以上の検体あり |
| 飲料 | 59 | 4 | 7 |  |
| 油脂 | 9 | 0 | 0 |  |
| 複合調理食品 | 360 | 7 | 2 | $10^{4} \mathrm{cfu} / \mathrm{g}$ 以上の検体あり |
| その他の食料品 | 1355 | 219 | 16 | $10^{4} \mathrm{cfu} / \mathrm{g}$ 以上の検体あり |
| 食品添加物 | 7 | 0 | 0 |  |
| 計 | 4977 | 510 | 10 |  |

