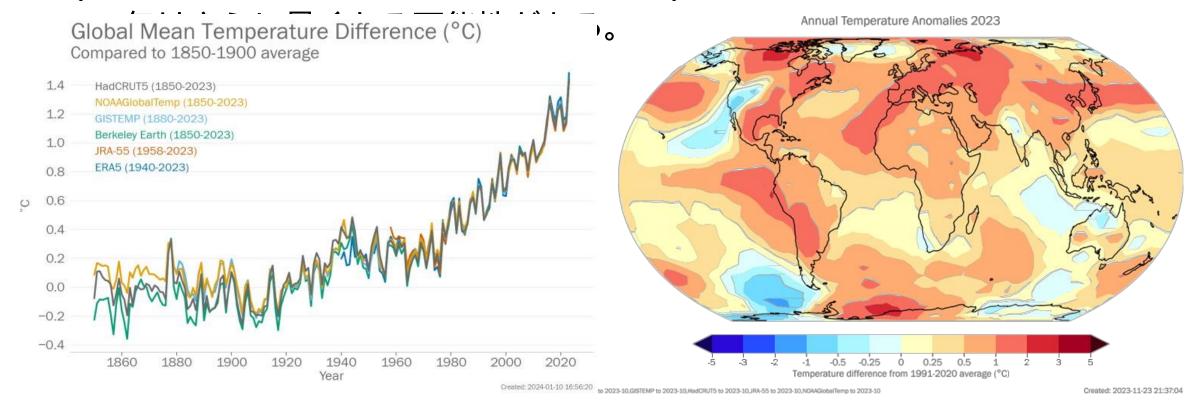
2024年2月1日

高温条件下におけるスマート水稲作WEB勉強会 参考資料

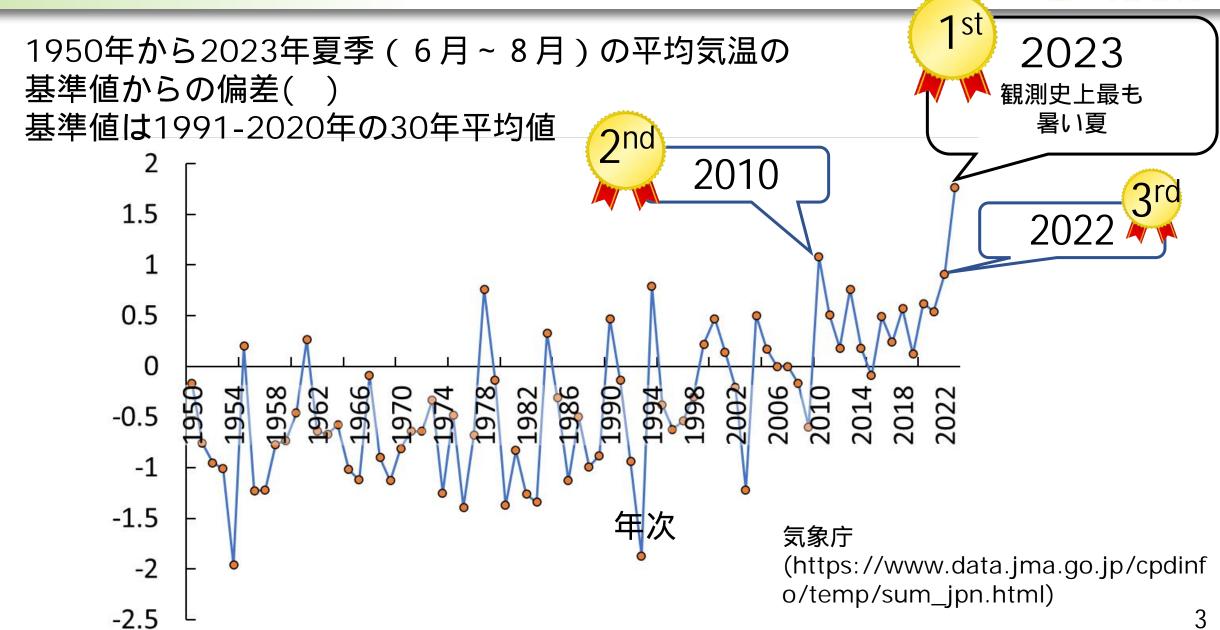
農研機構 農業環境研究部門 長谷川利拡

資料1

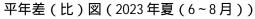

近年の温暖化傾向

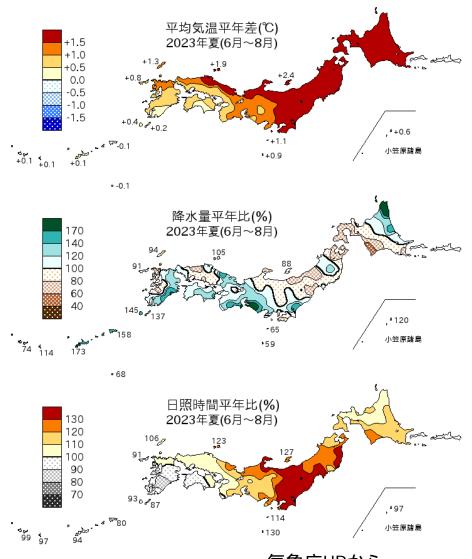
- 世界の気温
- 2023年の高温の特徴
- コ/高温登熟障害の指標

世界の気温(1850-1900年平均からの偏差)


- 2023年は174年間の観測史上最も暑い年となった。
- 2023年の世界の平均地上付近気温は、1850~1900年の平均を約1.45℃上回った (2014-2023年の平均では+1.20±0.12°C)。

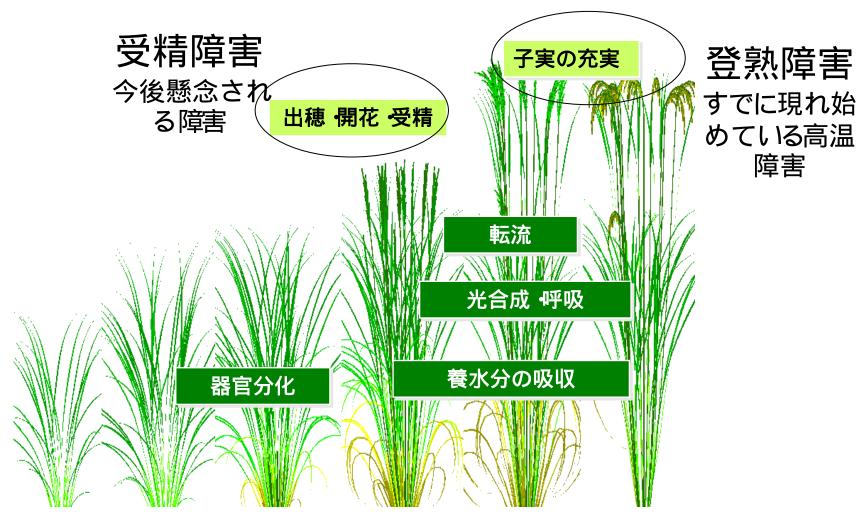
: https://wmo.int/media/news/wmo-confirms-2023-smashes-global-temperature-record


2023年夏季の気象



2023年夏の日本の気象

「文部科学省気候変動予測先端研究プログラム」の研究チームによる速報


「高温イベントに対する発生確率を見積もった結果、今年に入って発生したエルニーニョ現象 6等の影響と地球温暖化の影響が共存する状況下では1.65%程度の確率で起こり得たことが分かりました。これに対し、地球温暖化の影響が無かったと仮定した状況下では、その他の気候条件が同じであっても、発生し得ない事例であったことが分かりました。」

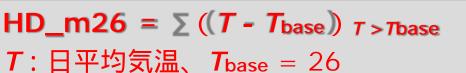
https://www.mext.go.jp/content/20230919-mxt_kankyou-000031916_1.pdf

気象庁HPから

異常高温の影響

温度は,作物の収量形成,品質にかかわる多くの生理過程に影響するが,温度域や生育ステージなどによって,増収に働く場合と減収に働く場合がある。

高温による白未熟粒の発生と高温指標



出穂後20日間の平均気温が約26 を越えると温度上昇とともに増加

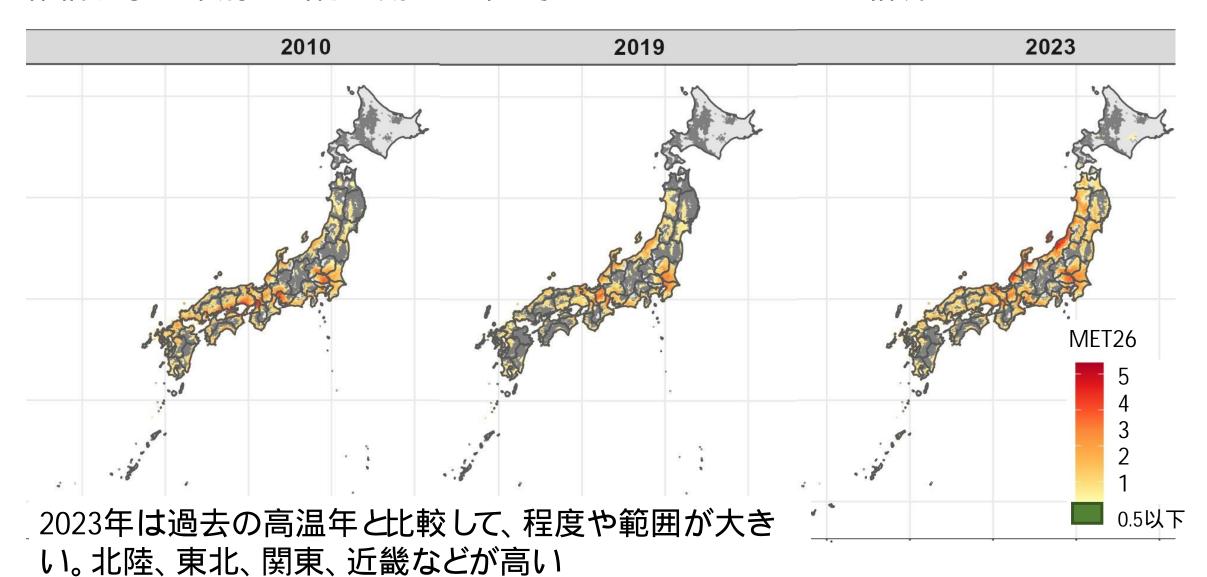
高温指標HD_m26(ヒートドーズ)の定義

乳白粒 基部 未熟粒 腹白 未熟粒 背白粒

> 農林水産省ホームページより https://www.maff.go.jp/j/seisan/syo ryu/kensa/kome/k_kikaku/k_kaisetsu /index.html

(出穂~20日間の積算値)

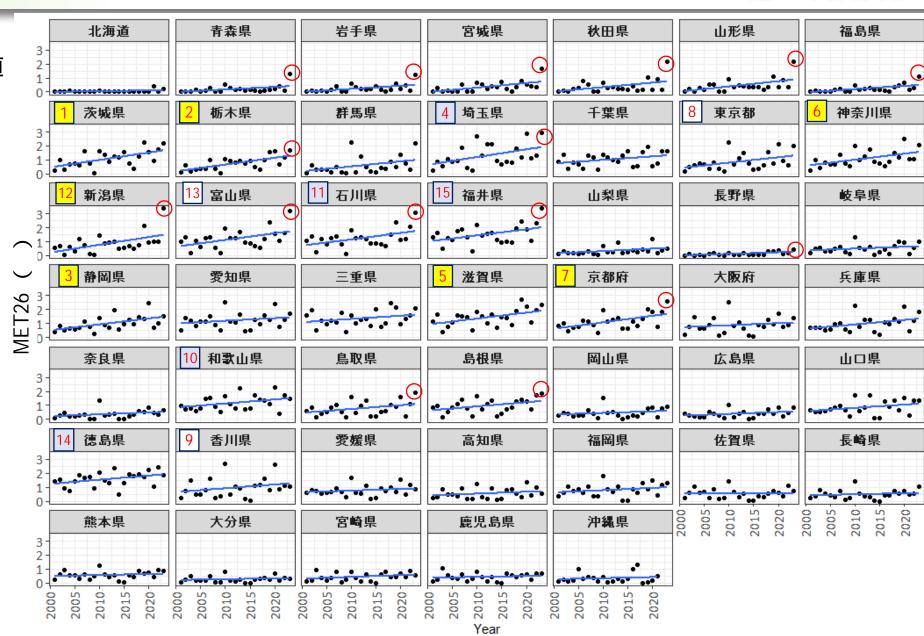
高温指標MET26(平均超過温度)


MET26 = $1/200 (T - T_{base})_{T > T_{base}}$

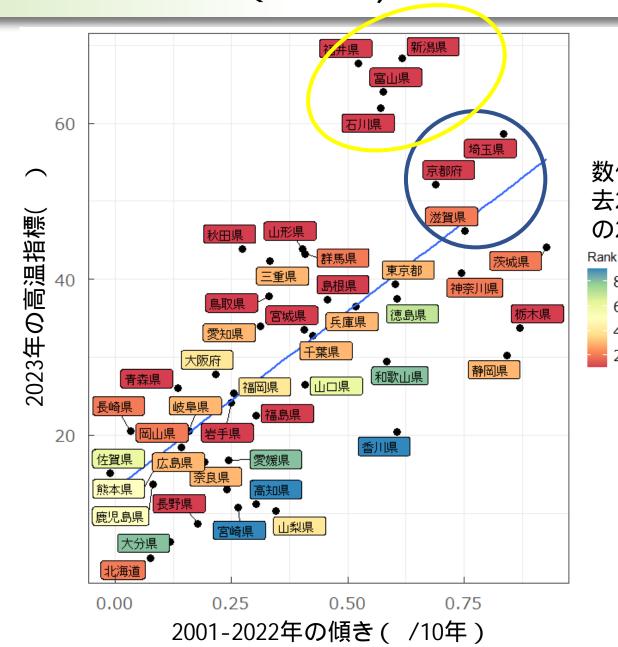
高温登熟障害の指標 (MET26)の2010 ·2019 ·2023年の分布

作柄表示地帯別の出穂盛期を基準に水田のある1kmメッシで計算

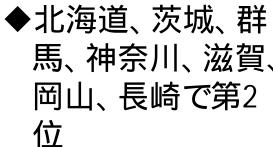
2001~2023年の出穂後20日間の高温指標(MET26)


2023年は16府県(○)で最高値

▶ 2001 ~ 2022年の回 帰直線


県名の横の数値は傾きの大きさ順位 黄色は傾きが5%水準で、水色は 10%水準で有意

1キロメッシュで水田のある グリッ を平均(Ishigooka et al., 2017) 出穂日は作柄表示地帯別 出穂最盛期を基準



高温登熟障害の指標 (MET26)の趨勢と023年値

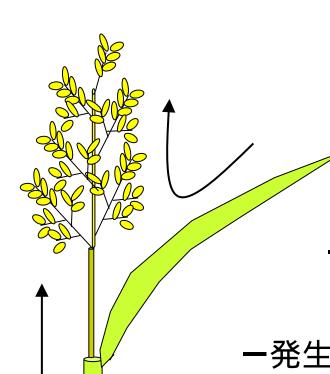
数値は各県の過 去23年間の中で の2023年の順位

降で過去最高 馬、神奈川、滋賀、

◆東北、北陸全県、

長野、京都、鳥取、

島根で2001年以


資料 2

高温影響のしみと対策

- ・高温登熟障害のメカニス
- 高温耐性品種導入の効果
- その他の基本技術

高温登熟障害のメカニズム

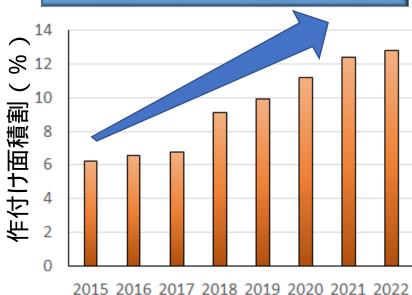
登熟の良,不良は主として籾の成長と炭水化物供給速度と のバランスで決定する。

そのため , 籾の充実度には , 単に登熟期の温度条件だけで はなく 籾数 ,光合成 ,分配 ,でんぷん合成などに関わる多 くの要因が関連する。

ー症状: 籾の充実不足はる粒重の減少,外観品質の低下(白 未熟粒の発生)胴割れの発生

一発生条件

出穂後20日間の高温(平均気温が6-27以上)で白未熟粒が増加し やすい(森田2005)。


登熟初期(出穂後約0日)の高温条件で発生しやすい(長田ら 2005)。

白未熟のタイプによって温暖化に対する影響も異なる。

高温耐性(登熟性)品種導入の効果

Year 農林水産省地球温暖化影響調査レポート

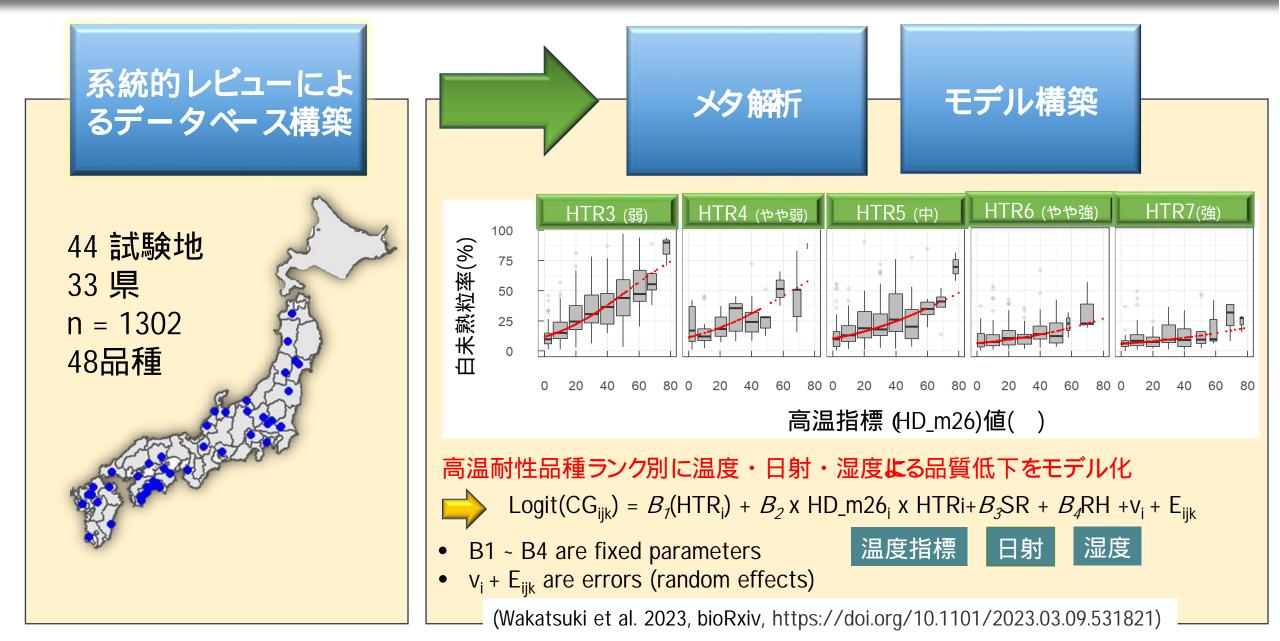
(https://www.maff.go.jp/j/seisan/kankyo/ondanka/report.html) から

高温耐性向上による白未熟抑制効果の定量化が必要 _____

高温耐性品種ランク別白未熟粒発生 モデル構築

表 1 各地域における作期・品種別の高温登熟性分類

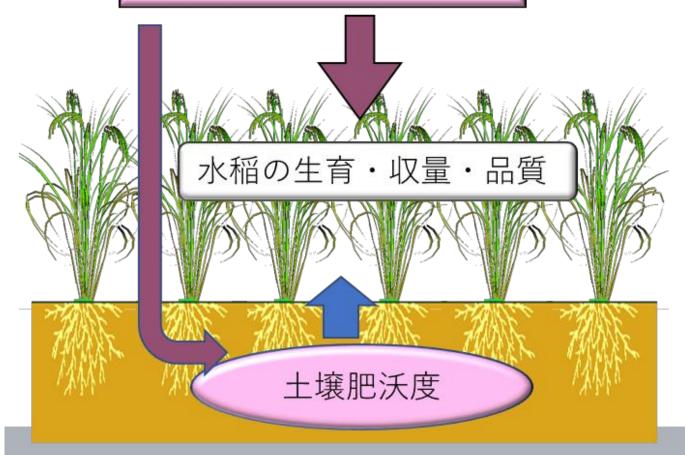
地域区分	生態型	高温登熟性				
		扇	やや弱	中	かや強	強
寒冷地北部・中部 (東北地方)	極早生・早生	駒の舞 初星		むつほまれ あきたこまち	ふ系227号 里のうた こころまち	ふさおとめ
	中生	ササニシキ		ひとめぼれ はえぬき	みねはるか	
	晩生・極晩生			コシヒカリ	つや姫	笑みの絆
寒冷地南部 (北陸地方)	極早生・早生	初星		あきたこまち ひとめぼれ	ハナエチゼン	
	中生	ともほなみ	コシヒカリ			笑みの絆
	晩生・極晩生	祭り晴		日本晴みずほの輝き	あきさかり	
温暖地東部 (関東・東山・東海地方)	極早生・早生	初星 あかね空		あきたこまち コシヒカリ	とちぎの星	ふさおとめ 笑みの絆
	中生	彩のかがやき さとじまん		日本晴	なつほのか	
	晩生・極晩生	英の風 ヒノヒカリ		シンレイ	コガネマサリ	
温暖地西部 (近畿·中国·四国地方)	極早生・早生		キヌヒカリ	あきたこまち ひとめぼれ コシヒカリ	ハナエチゼン つや姫	ふさおとめ
	中生	祭り晴		日本晴		
	晩生・極晩生	英の風 ヒノヒカリ			コガネマサリ	
暖地 (九州地方)	極早生・早生	初星 祭り晴	黄金晴	日本晴	みねはるか	なつほのか
	中生	ヒノヒカリ	シンレイ	にこまる	コガネマサリ	おてんとそだち
	晩生・極晩生	あきさやか	たちはるか		ニシヒカリ	


(令和2年度現在、産地品種銘柄に指定されていないものを含む。)

農研機構2017年研究成果情報 北海道を除 全国の水稲高温登熟性標準品種の選定 (https://www.naro.affrc.go.jp/project/results/4th_laboratory/nics/2017/17_038.html)を農林水産省「農業生産における気候変動適応ガイド水稲編」で変変

(https://www.maff.go.ip/i/seisan/kankvo/ondanka/attach/pdf/index-102.pdf)

高温耐性品種ランク別白未熟発生率のモデル化



温暖化が作物収量に与える直接的な影響と間接的な影響

大気co₂増加・温暖化・ 降水量とパターンの変化

まとめ

登熟に関わる環境要因、生理過程は様々で、単一の技術オプションだけは、十分な対応が難しい。総合的な回避・耐性強化技術の適用とその評価が重要。

- ・ 登熟期の危険温度を避ける作期 ,品種の選択 (回避技術)
- ・秋勝り型生育を可能にする土壌管理耐性強化技術)
- ・高温でも品質低下がしにいる耐性品種の導入、耐性強化技術)
- ・根の活性の維持のための中干し「耐性強化技術)
- ・ 落水時期の遅延 (耐性強化技術)
- · 適期収穫 (回避技術)