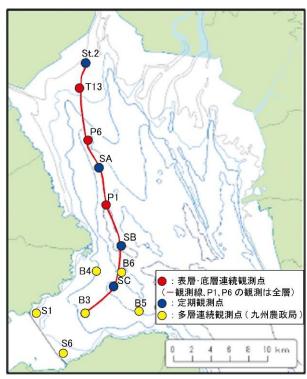
資料4-4(参考)

有明海の環境変化の要因に関する調査(参考資料)

目 次

1	貧酸素現象調査
	1. 調査概要····································
	2. これまでに得られた知見・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3. 令和7年度の調査結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	赤潮調査
	1. 調査概要····································
	2. これまでに得られた知見・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2. これまでに得られた知見・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3	二枚貝類等生息環境調査
	1. 調査概要····································
	2. これまでに得られた知見・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3. 令和7年度の調査結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1 貧酸素現象調査


1. 調査概要

(1)目的

〇 貧酸素水塊の発生と淡水の流入状況や気象・海象等との関係を明らかにするため、水産庁・環境省(水産研究・教育機構に 委託)及び九州農政局が共同で(水温、塩分、DO(溶存酸素)、濁度、クロロフィル等)の観測を実施。

(2) 令和7年度の調査実施状況

有明海湾奥西側海域~諫早湾における調査位置 (観測線での調査位置)

水産研究・教育機構による水質の連続観測 事業名:豊かな漁場環境推進事業

海域	奥部
担当機関	水産研究•教育機構
期間	7月~9月(30分毎)
調査定点数	3点(T13、P6、P1)
調査方法	表層・底層に設置した観測機器(T13) 自動観測ブイによる鉛直観測(P6、P1)
調査項目	水温、塩分、クロロフィル、濁度、DO

定点位置

海域	定点		北緯	東経	水深(m)
奥部	St.2	六角川観測塔	33° 08.15'	130° 13.25'	1
	T13	国営干拓沖	33° 06.75'	130° 12.79'	5
	P6	沖神瀬西	33° 03.75'	130° 13.30'	10
	SA		33° 02.17'	130° 14.08'	12
	P1	大浦沖	33° 00.00'	130° 14.50'	20
	SB		32° 57.67'	130° 15.50'	10
	SC		32° 55.33'	130° 15.00'	13
	В3	諫早湾央	32° 53.79'	130° 12.98'	8

九州農政局による水質の連続観測事業名・国営干拓環境対策調査

- 不日 - 日日 - 日本北州大阪王						
海域	諫早湾					
担当機関	九州農政局					
期間	1月~12月(60分毎)					
調査定点数	6点(S1、S6、B3、B4、B5、B6)					
調査方法	自動昇降観測装置による鉛直連続観測					
調査項目	水温、塩分、DO、濁度、クロロフィル、pH					

定期観測

事業名:豊かな漁場環境推進事業

海域	奥部
担当機関	水産研究・教育機構、福岡県、佐賀県
期間	7月~9月(1週間毎)
調査定点数	8点(T2、T13、P6、SA、P1、SB、SC、B3) 採水は5点(B3、P1、P6、T13、T2)
調査方法	多項目水質計による鉛直観測 採水(表層、2m、5m、海底上1m)
調査項目	水温、塩分、クロロフィル、濁度、DO、透明度 採水(栄養塩、植物プランクトン)

(3) ホームページによる提供

観測速報値については、水産研究・教育機構が管理・運営する「赤潮ネット(沿岸海域水質・赤潮観測情報)」に 集約のうえ、随時、情報提供を実施。 「赤潮ネット(沿岸海域水質・赤潮観測情報)」

https://akashiwo.fra.go.jp

《携带情報対応版》《PC情報対応版》

(水産庁、環境省)

《携带情報対応版》《PC情報対応版》

(九州農政局)

2. これまでに得られた知見

- 底層の酸素濃度は、小潮期の潮流速低下、 塩分躍層の形成(降雨後の河川流量増大に 伴う表層塩分低下)、水温躍層の形成(晴 天の連続による表層水温の上昇)により低 下し、貧酸素水塊を形成。(図-1~3)
- 貧酸素水塊の発生頻度は、有明海湾奥部 西側海域と諫早湾中央から北部沿岸域で高 く、これらの海域では貧酸素水塊が別々に 形成。(図-4)
- 河川から供給された有機懸濁物質や、増殖した植物プランクトンの死骸等が、水中や海底面で好気的分解を受けることにより、溶存酸素が消費され、溶存酸素濃度が低するものと推定。
- 有明海湾奥部西側海域や諫早湾中央から 北部沿岸域では、海中の有機懸濁物や底泥 の有機物が多い粘土やシルトの堆積物が多 く、底泥の酸素消費量が多いため貧酸素水 塊が発生しているものと推定。

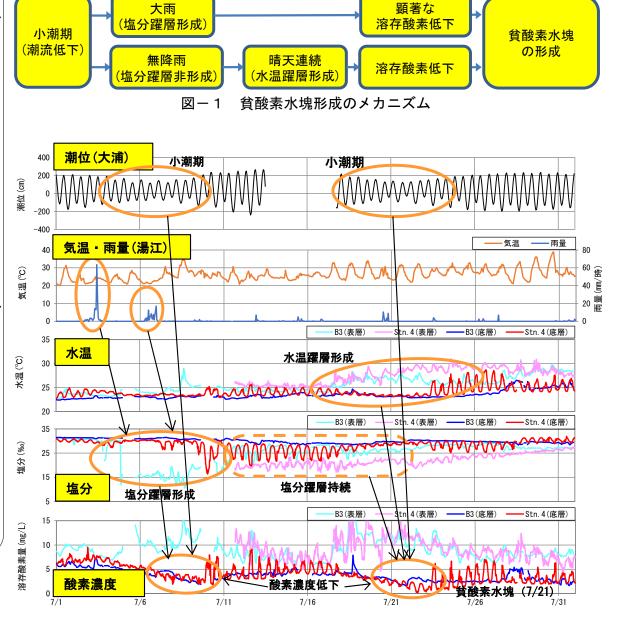
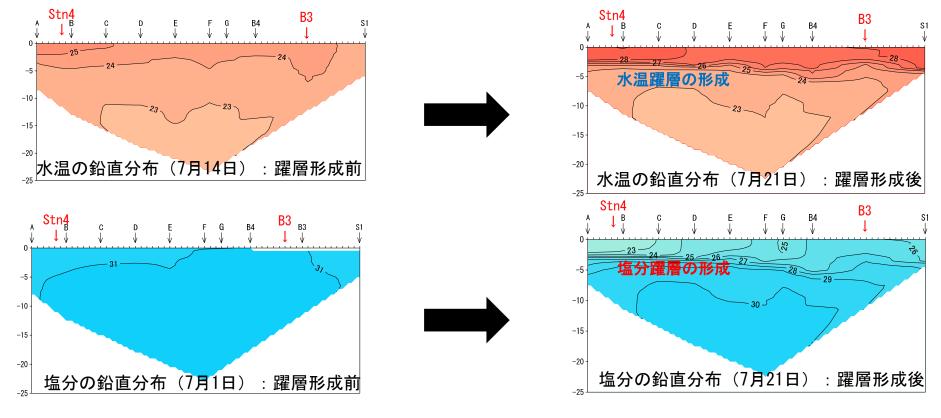



図-2 貧酸素水塊形成時の潮位、気象、水温、塩分の変化(平成26年7月)

図ー3 水温躍層と塩分躍層の形成状況(平成26年7月1日、7月14日、7月21日)

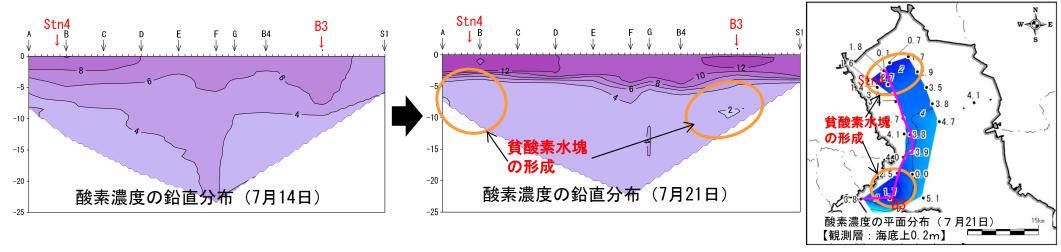
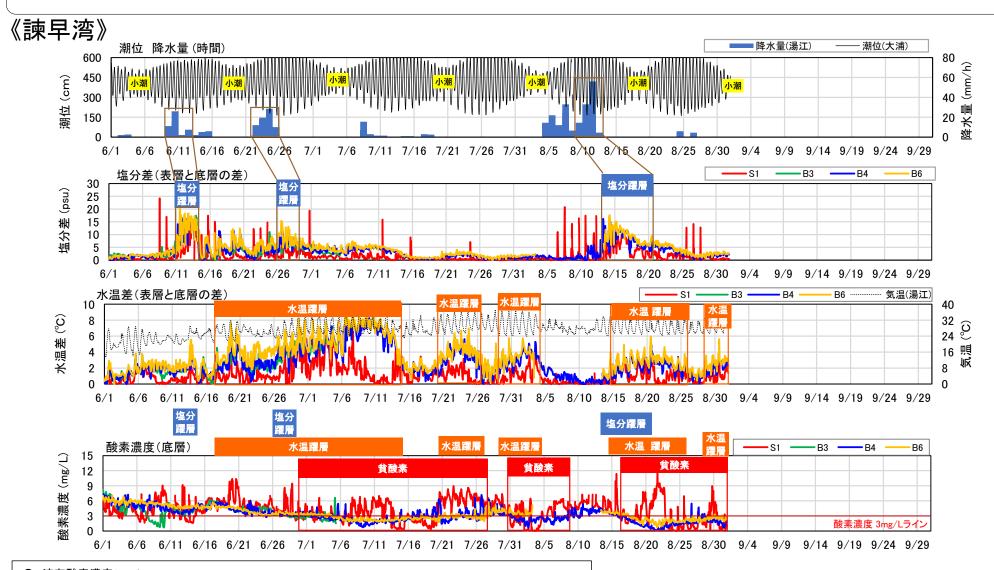
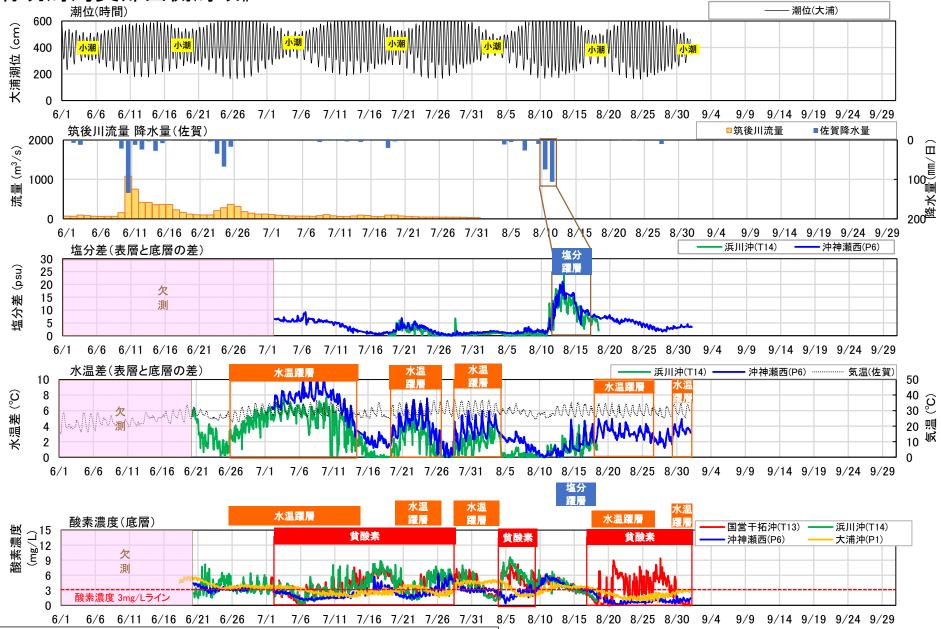



図-4 貧酸素水塊の形成状況 (平成26年7月14日→7月21日)

※有明海・八代海等総合調査評価委員会 中間取りまとめ(本編) p.58掲載 (R2年度の結果)

3. 令和7年度の調査結果

〇 各地点における連続観測記録によれば、貧酸素化はまず諫早湾のB3で6月28日頃、その後有明海湾奥部西側海域のP6で7月2日頃に始まっているが、その中間地点P1で貧酸素水塊が形成されたのは7月6日頃であり、有明海湾奥部西側海域と諫早湾の浅海域で別々に形成された後、拡大したことが確認できる。

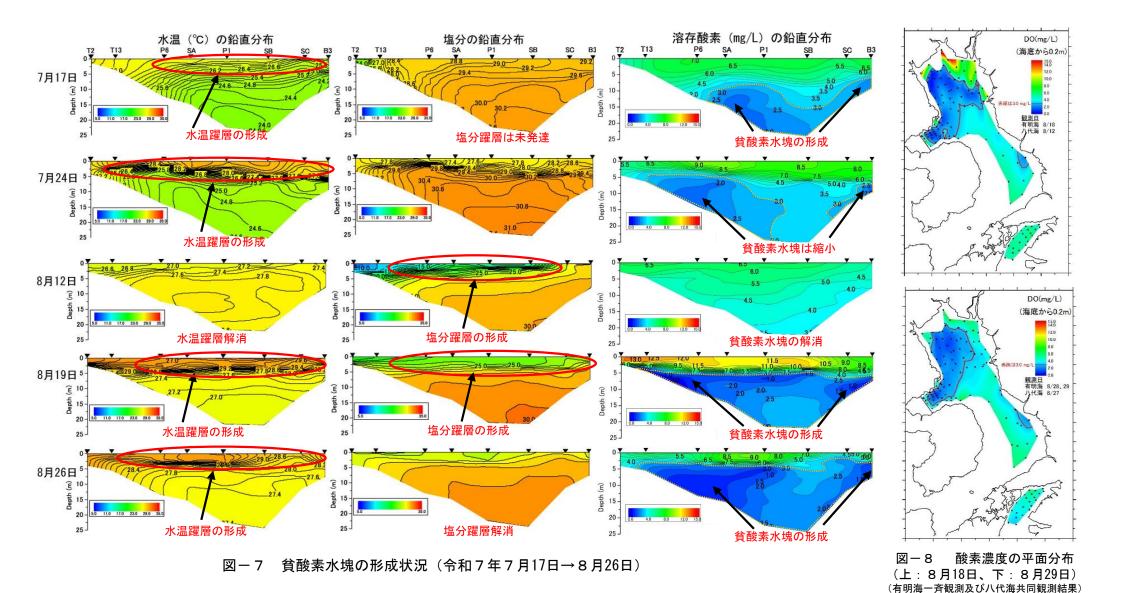


○ 溶存酸素濃度3mg/L 貧酸素の定義は定まっていないが、一般的に溶存酸素が3mg/L以下で生物の生息が困難になるため、 この程度以下が貧酸素と呼ばれる。

- (参考文献:日本海洋学会(2005):有明海の生態系再生をめざして. 211pp, 恒星社厚生閣, 東京) ○ 塩分躍層は、表層(水深0.5m)と底層(海底面+0.5m)の塩分差10程度を目安にしている。
- 水温躍層は、表層(水深0.5m)と底層(海底面+0.5m)の水温差3°C程度を目安にしている。

図ー5 諫早湾における潮位、気象、塩分、水温、 溶存酸素の変化(令和7年度)

《有明海湾奥部西側海域》


〇 溶存酸素濃度3mg/L

貧酸素の定義は定まっていないが、一般的に溶存酸素が3mg/L以下で生物の生息が困難になるため、この程度以下が貧酸素と呼ばれる。

(参考文献:日本海洋学会(2005):有明海の生態系再生をめざして. 211pp, 恒星社厚生閣, 東京)

- 塩分躍層は、表層(水深0.5m)と底層(海底面+0.5m)の塩分差10程度を目安にしている。
- 水温躍層は、表層(水深0.5m)と底層(海底面+0.5m)の水温差3°C程度を目安にしている。

出典元 国立研究開発法人 水産研究・教育機構 水産技術研究所 「水産庁委託事業「豊かな漁場環境推進事業のうち海域特性に応じた赤潮・貧酸素水 塊、栄養塩類対策推進事業」及び環境省請負業務「有明海・八代海党再生評価支援(有明 海二枚貝類の減少要因解明等調査)」において、国立研究開発法人水産研究・教育機構 が取得した観測データ」

出典元:水産技術研究所 環境・応用部門 沿岸生産システム部

赤潮調査

1. 調査概要

(1)目的

赤潮の発生海域や拡大状況を明らかにするため、

- ①水産庁、水産研究・教育機構及び有明海沿岸4県とが連携し、定期的な各種水質やプランクトン調査を実施し、
- ②クロロフィルa衛星画像データによる赤潮の拡大状況の解析等を行っている。

(2)令和7年度の調査実施状況

水産研究・教育機構による水質の連続・定期観測(事業名:豊かな漁場環境推進事業) 定点位置

	調査	山 直	小月
130'00'	130"15"	130°30°	130'45'
325 138	- 1 A	○: 福岡県○: 佐賀県	
	355	•: 熊本県	
27	T13 © T3	一: 水産研究・	
65	P6⊠ °T	4 ◆:九州農政局	
33.00.	□SA □SA □	T5_	33'00'
S97039 75	3 + CR -		33 00
) X	3 (B4) ● □SC	4	
∠X€	(S1) X4 (B3)	• 4	
2	, (•3	
w/		3	
32'45'		•2 •7	32'45'
Sec. 19	(مر	•1	`
The same of the sa	4. 3	The same	3
		5 70	
2	7	1	
130.00.	130"15"	130'30'	32'30' 130'45'
_	Depth (m)		

海域	奥部							
担当機関	水産研究・教育機構	水産研究・教育機構						
期間	10月~2月(30分毎)	10月~2月(隔週毎)						
調査定点数	3点(T13, P6, P1)	8点(T2, T13, P6, SA, P1, SB, SC, B3)						
調査方法	表層・底層に設置した観測機器(T13)	多項目水質計による鉛直観測						
	自動観測ブイによる鉛直観測(P6, P1)							
調査項目	水温、塩分、クロロフィル、濁度、DO(T13を除く)	水温、塩分、クロロフィル、濁度、DO、透明度						
調査項目	水温、塩分、クロロフィル、濁度、DO(113を除く)	水温、塩分、クロロフィル、濁度、DO、透明度						

各県による水質の定期観測 (事業名・豊かな漁場環境推准事業)

1 MI-0	ONEANWWW LAND BURN	(無物水光)正是于木/
海域	奥部	中央部
担当機関	福岡県・佐賀県	熊本県
期間	10月~2月(隔週毎)	10月~2月(隔週毎)
調査定点数	福岡県3点(T4, T5, 6)	8点(1-5,7-9)
	佐賀県5点(T2, T3, T13, P6, P1)	
調査方法	多項目水質計による鉛直観測	多項目水質計による鉛直観測
	採水(表層、海底上1m)	採水(表層、10m又は海底上1m)
調査項目	水温、塩分、クロロフィル、濁度、DO、透明度	水温、塩分、クロロフィル、濁度、DO、透明度
	採水(栄養塩、クロロフィル、植物プランクトン)	採水(栄養塩、植物プランクトン)
	沈殿量	沈殿量(St. 7-9のみ)

九州農政局による水質の定期観測	(事業名:	国営干拓環境対策調査)
	\ Ŧ ***	一日日:旧株先八米明旦/

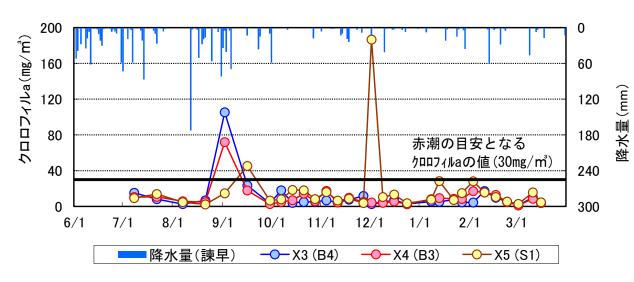
海域	諫早湾
担当機関	九州農政局
期間	7月~9月(隔週毎)、10月~3月(毎週)
調査定点数	3点(X3(B4), X4(B3), X5(S1))
調査方法	多項目水質計による表層・底層観測 採水(表層、海底上1m)
調査項目	水温、塩分、クロロフィル、濁度、DO、pH、透明度 採水(栄養塩、クロロフィル) 沈殿量

,	~C ///\ PE	_				
	海域	定点		北緯	東経	水深(m)
7	奥部	T2	六角川観測塔	33° 08.15′	130° 13.25′	1
7		Т3	早津江川観測塔	33° 06.78′	130° 17.42′	1
+		T4	筑後川沖観測塔	33° 05.57′	130° 20.73′	1
+		T5	大牟田沖	33° 01.76′	130° 21.93′	5
		6		33° 00.70′	130° 18.16′	12
+		T13	国営干拓沖	33° 06.75′	130° 12.79′	5
_		P6	沖神瀬西	33° 03.75′	130° 13.30′	10
		SA		33° 02.17′	130° 14.08′	12
		P1	大浦沖	33° 00.00′	130° 14.50′	20
-		SB		32° 57.67′	130° 15.50′	10
-		SC		32° 55.33′	130° 15.00′	13
-		B3	諫早湾央	32° 53.79′	130° 12.98′	8
	中央部	1	宇土市赤瀬沖	32° 40.80′	130° 29.36′	34
4		2	熊本港沖	32° 45.00′	130° 28.86′	38
		3	菊池川河口沖	32° 49.97′	130° 27.67'	27
-		4	玉名郡長洲町沖	32° 53.49′	130° 23.95′	26
		5	荒尾市沖	32° 57.30′	130° 21.16′	35
		7	熊本港地先	32° 45.20′	130° 32.16′	12
_		8	玉名市横島町地先	32° 48.60′	130° 30.86′	11
		9	菊池川河口地先	32° 51.50′	130° 30.67′	11

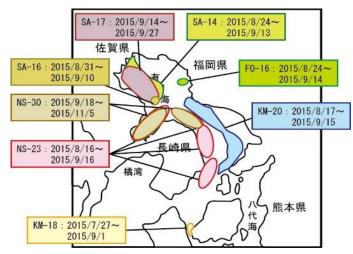
(3) ホームページによる提供

①水産研究・教育機構

観測速報値については、漁業関係者の方々を含めて、広 く一般の方にも伝えることとし、水産研究・教育機構が管理 運営する「赤潮ネット(沿岸海域水質・赤潮観測情報)」に 集約し、随時、情報提供を実施。

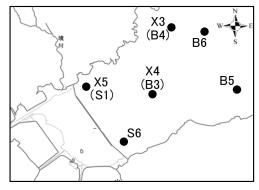

「赤潮ネット(沿岸海域水質・赤潮観測情報)」の ホームページアドレス

https://akashiwo.fra.go.jp


2. これまでに得られた知見

(1)海況調査

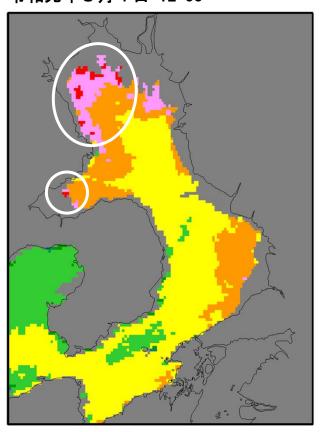
- 諫早湾では、降雨に伴う栄養塩類の流入後や、晴天の継続に伴う高水温により、高いクロロフィルa 濃度(赤潮)を確認。(図-1)
- 高いクロロフィル a 濃度時の赤潮の発生分布をみると、諫早湾、有明海湾口部(長崎県沖)、有明海 湾奥部(福岡県沖・佐賀県沖)、有明海中央東部(熊本県沖)など、それぞれの海域で増加しており、赤潮が特定 の海域から有明海全域へと拡大する状況はみられていない。(図-2)



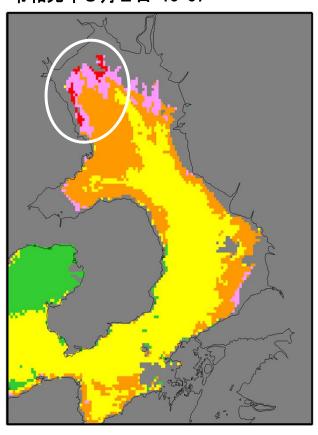
海況調査(諫早湾)におけるクロロフィルaの推移(平成27年度)

※水産庁九州漁業調整事務所「九州海域の赤潮」データを基に作成

図-2 赤潮の分布状況 (平成27年8月下旬~9月上旬)

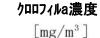

(参考) 赤潮調査地点位置図

○ クロロフィルa衛星画像データから赤潮の拡大状況を見ると、クロロフィルaは諫早湾内と有明海湾奥部(福岡 県沖・佐賀県沖)、有明海中央東部(熊本県沖)など、それぞれの海域で増加したが赤潮が特定の海域から有明 海全域へと拡大する状況は見られていない。(図-3)


令和元年7月31日 13:49

有明海 湾奥部 同時発生して いるものの す 有明海 中央東部 諫早湾

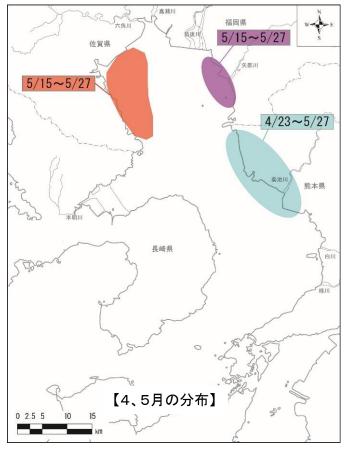
令和元年8月1日 12:53



令和元年8月2日 13:37

注) 衛星画像データによるクロロフィル a 濃度は濁りの影響を受けるため、浅海域(基本水準面0m以浅)は除外

図-3 衛星画像データ(クロロフィルa)で見た令和元年7月下旬~8月上旬の赤潮の発生状況



3. 令和7年度の調査結果

≪諫早湾及び有明海における赤潮発生状況≫

- 〇 令和7年4月下旬に珪藻類のSkeletonema(スケレトネマ)属の赤潮が熊本県沖に発生。5月下旬に終息した。
- 〇 5月中旬にSkeletonema属の赤潮が有明海湾奥部(福岡県沖)、ラフィド藻類のHeterosigma(ヘテロシグマ)属の赤潮が有明海湾奥部(佐賀県沖)に発生。いずれも5月下旬に終息した。
- 〇 6月にSkeletonema属の赤潮が有明海湾奥部(佐賀県沖)や熊本県沖、Heterosigma属が有明海湾奥部(福岡県、佐賀県 沖)、渦鞭毛藻のHeterocapsa(ヘテロカプサ属)、Gyrodinium(ギロディニウム)属が有明海湾奥部(福岡県沖)に発生。
- 7月にはラフィド藻類のChattone I Ia (シャトネラ) 属が諫早湾に発生。

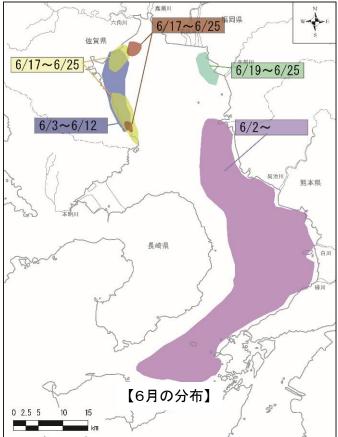


図-4 令和7年度の赤潮の分布状況

※水産庁九州漁業調整事務所「九州海域の赤潮」データを基に作成

≪クロロフィル a 濃度画像データによる赤潮の拡大状況の解析≫

〇 令和7年6月~8月における衛星データによるクロロフィルa濃度の分布をみると、有明海湾奥部~中央部(福岡県沖・佐賀県沖・熊本県沖)と諫早湾、有明海中央東部(熊本県沖)など、それぞれの海域で増加したが赤潮が特定の海域から有明海全域へと拡大する状況は見られておらず、これまでと同様の傾向であった。

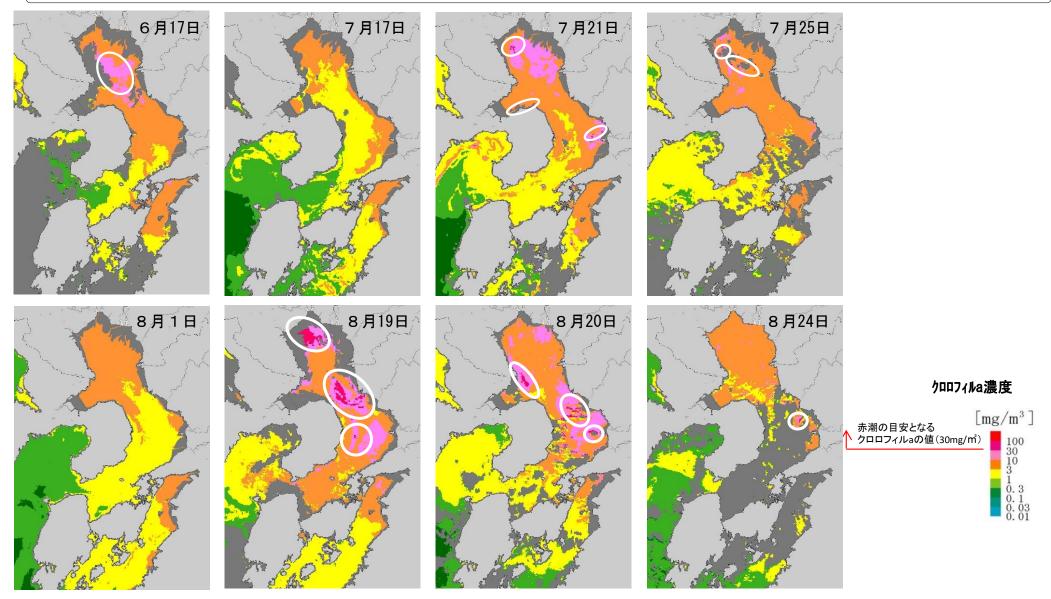


図-5 衛星画像データによるクロロフィル a 濃度の分布状況(令和7年6~8月)

3 二枚貝類等生息環境調査

1. 調査概要

(1)目的

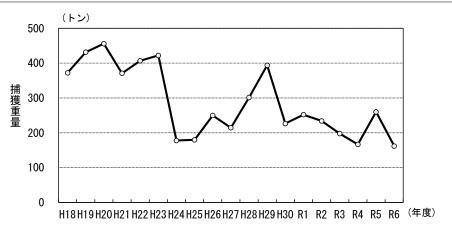
水産有用二枚貝類への影響を把握するために、有明海沿岸4県、水産庁、九州農政局が連携して、有明海全域で水質浄 化機能を有する水産有用二枚貝類等を捕食するナルトビエイの摂餌状況等の調査を実施。

令和7年度の調査実施状況

水産庁及び有明海沿岸4県によるナルトビエイ駆除事業

水産庁:事業名:有害生物漁業被害防止総合対策事業 4県:事業名(県単事業)

九州農政局によるナルトビエイ、アカエイ等捕獲調査 事業名:有明海特産魚介類生息環境調査



2. これまでに得られた知見

(1) 有明海における捕獲実績

- 平成20年度~23年度は約400トン(約4万個体)のナルトビエイ等を捕獲。
- 平成24年度は約200トン(約2万個体)に減少し、以降、ほぼ横ばい傾向で推移。
- ナルトビエイの来遊量と関係性が強いCPUE(※)についても、捕獲重量と概ね同様の傾向。
- 来遊量は、平成17年度以降継続されている捕獲取り上げ効果により、平成24年度までに大きく減少した後は、変動はあるものの10数万個体でほぼ横ばいで推移している。

※CPUE (Catch Per Unit Effort) : 1網当たり(一定努力量あたり)の捕獲数

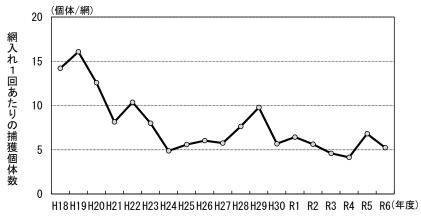
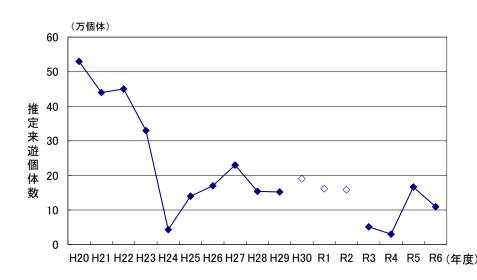



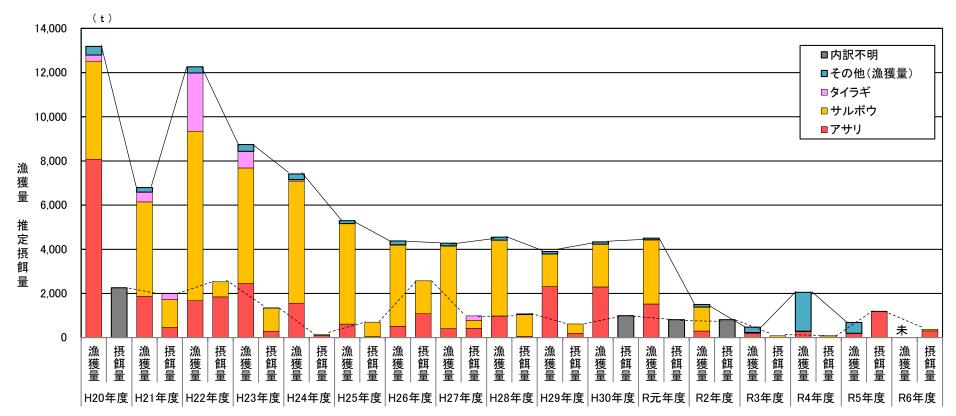
図-1 広域分布調査注1における捕獲状況(左:捕獲重量、右:CPUE)

注1) 広域分布調査の捕獲数、重量

- ・H18:九州農政局調査+県単事業の集計値
- ・H19~R6:九州農政局調査+県単事業+水産庁事業の集計値
- ・漁業者による日報をとりまとめた結果であり、<u>ナルトビエイ以外</u> の混獲魚種を含んでいる可能性有
- ・流し刺網、固定刺網、囲い刺網など、県や漁協によって漁法の異なるものをすべて集計したものとなっている。

図-2 ナルトビエイ推定来遊量の経年変化(DOIRAP法)

※平成30年度は体盤幅、生残率、混獲率、令和元年度、

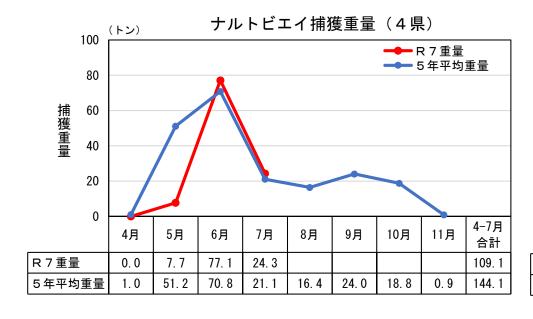

令和2年度は生残率、混獲率の調査を実施していないため、

平成27~29年度の3ヵ年の平均値を使用してDOIRAP法で推定した参考値を示した。 DOIRAP法:・捕獲されたナルトビエイのサイズデータを元に、年齢構成、寿命、 生残率、産仔数などの生態情報を加味して、年齢別の来遊量を推定する方法。

(2) ナルトビエイの摂餌量の推定結果

- 〇 水産有用二枚貝類の推定摂餌量(※)は、平成20~22年度の2,000~2,500トンから、平成24年度には200トン以下にまで減少した。平成27年度以降は1,000トン程度で横ばいの状況である。
- 平成20年度以降の水産有用二枚貝類の漁獲量は概ね13,000トン以下で、平成26年度までは減少傾向、その後横ばいで推移し、令和2、3年度に大きく減少し、令和4年度は2,000トンまで回復した。

※ナルトビエイの推定来遊量に対して、胃内容物のアサリ、サルボウ、タイラギの比率を乗じて算出



- ※漁獲量データは『九州農林水産統計年報(九州農政局統計部)』より抜粋。R6年度の「未」は、令和7年9月現在、未集計。
- ※平成20年度は胃内容物調査を実施していないため、内訳不明の参考値を示した。
- ※平成30~令和2年度は来遊量が参考値であり、胃内容物調査を実施していないため、内訳不明の参考値を示した。
- ※本図の推定摂餌量は、漁獲量に対する割合を示すものではない。ナルトビエイによる摂餌は漁場外でも確認されており、すべてが直接的に漁業資源へ影響するとは限らないが、漁場内での摂餌も行われていることから、漁業への影響は否定できない。

3. 令和7年度の調査結果(調査継続中)

(1) 有明海における捕獲実績

〇 ナルトビエイの7月までの捕獲量は約109トン(約8千個体)と過年度の約144トン(約1万2千個体) から個体数、捕獲重量ともに少なかった。

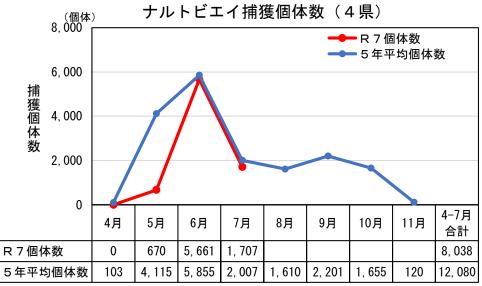


図-4 広域分布調査注における捕獲状況(左:捕獲重量、右:個体数)

- 注) 広域分布調査の捕獲数、重量
- H18:農政局調査+県単事業の集計値
- ・H19~R7:農政局調査+県単事業+水産庁事業の集計値
- ・漁業者による日報をとりまとめた結果であり、<u>ナルトビエイ以外の混獲魚種を含んでいる可能性有</u>
- ・流し刺網、固定刺網、囲い刺網など、県や漁協によって漁法の異なるものをすべて集計したものとなっている。

(2) ナルトビエイの胃内容物

- 長崎大学山口教授の先行研究*1により、ナルトビエイの食性については貝類を専食すること、中でも 二枚貝を好むことが分かっている。
- 本調査でも貝類を専食し、アサリ、サルボウなどの 水産有用二枚貝類を一定量摂餌していることを確認。
- しかし、産仔後2年までの小型サイズ(体盤幅55cm 未満)では、サルボウ等の小型の個体や巻貝類、そ の他二枚貝類などを多く摂餌していることを確認。
- 未成魚、成魚では、アサリ、サルボウ、カキの3種 の割合が多い。年度によってその割合が相違してお り、資源量を反映しているものと推定。
- タイラギの確認は平成21、23、27年度の3か年の みで、ごくまれであった。
- 1日の摂餌量は、体盤幅40cmの小型サイズで体重に対して0.9%から140cmの雌成魚で0.2%まで大型になるほど低下する傾向。
- 令和7年度の調査では、過年度同様、二枚貝類を 専食していることを確認。未成魚の胃内容物から 水産有用二枚貝のアサリとサルボウが出現し た。
- ※1出典: Yamaguchi, Kawahara, Itoh (2005) Occurrence, growth and food of longheaded eagle ray, *Aetobatus flagellum*, in Ariake Sound, Kyushu, Japan. Environmental Biology of Fishes 74:229-238

表-1 成長段階別の胃内容物重量に占める各餌生物の百分率(%)

10		· I	₽日 刀"」 V.						10000		
成長段階	調査年度		水産有用二	- 枚貝類(%)			その他の	# 🗆 🗥	7 O 11h/0/)	ナルト	
		アサリ	サルボウ	タイラギ	小計	カキ(%)	二枚貝(%)	巻貝(%)	その他(%)	個体数	平均体盤
	1101	F.0	107	0.0	00.0	0.0	100	E0.0	E 1	(n)	幅(cm)
	H21 H22	5.6	16.7 7.1	0.0	22.3 14.4	0.0	18.9	53.6	5.1	30	48
		7.3		0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0	33.0	41.8	10.8	41 49	43
	H23 H24	8.2 1.7	34.6 0.0	0.0	42.8 1.7	0.0	16.3 17.6	34.8 61.0	6.1 19.6	59	46
	H25	4.5	70.9	0.0	75.4	0.0	17.0	5.0	7.6	40	48
	H26	43.0	3.4	0.0	46.4	0.0	42.7	8.6	2.4	35	42
幼魚	H27	21.0	12.9	0.0	33.9	0.0	32.4	26.2	7.5	29	45
(小型	H28	0.0	62.4	0.0	62.4	0.0	0.0	25.0	12.6	8	48
サイズ)	H29	0.0	2.9	0.0	2.9	0.0	42.8	30.9	23.5	35	44
7 170	R3	0.0	0.0	0.0	0.0	0.0	83.3	16.7	0.0	6	43
	R4	0.0	0.0	0.0	0.0	0.0	74.3	10.7	15.4	13	43
	R5	0.0	28.6	0.0	28.6	0.0	14.3	14.3	42.9	7	43
	R6	10.0	0.0	0.0	10.0	10.0	80.0	0.0	0.0	10	43
	R7	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0	4	40
	全期間	9.2	18.1	0.0	27.3	0.4	54.7	7.4	10.2	366	45
	H21	19.4	36.8	3.0	59.2	8.8	21.4	0.0	10.7	67	72
	H22	42.6	14.3	0.0	56.9	0.0	17.0	5.7	20.4	58	72
	H23	20.5	58.8	0.3	79.6	9.3	6.2	2.8	2.1	64	69
	H24	31.1	9.1	0.0	40.2	30.4	14.7	14.6	0.1	55	69
	H25	5.9	56.6	0.0	62.5	13.3	22.8	0.0	1.4	72	68
	H26	42.2	40.0	0.0	82.2	12.2	3.9	0.0	1.7	72	72
	H27	19.5	13.9	0.0	33.4	21.5	25.6	13.9	5.6	36	72
未成魚	H28	4.6	62.0	0.0	66.6	6.2	14.7	8.2	4.4	25	71
>1 20mm</td <td>H29</td> <td>14.5</td> <td>29.8</td> <td>0.0</td> <td>44.2</td> <td>21.2</td> <td>32.5</td> <td>0.2</td> <td>1.8</td> <td>26</td> <td>71</td>	H29	14.5	29.8	0.0	44.2	21.2	32.5	0.2	1.8	26	71
	R3	0.0	26.3	0.0	26.3	21.0	46.9	5.3	0.5	19	73
	R4	7.1	7.1	0.0	14.3	48.2	7.1	9.0	21.4	14	76
	R5	50.0	0.0	0.0	50.0	22.2	11.1	11.2	5.5	18	76
	R6	33.3	0.0	0.0	33.3	25.0	41.7	0.0	0.0	12	70
	R7	6.8	6.7	0.0	13.4	13.3	64.9	8.3	0.0	15	72
	全期間	23.3	32.7	0.4	56.4	14.7	21.0	5.6	2.3	555	71
	H21	22.9	43.0	0.0	65.9	1.2	32.9	0.0	0.0	9	88
	H22	44.4	28.1	0.0	72.5	0.0	9.1	9.1	9.3	11	87
	H23	3.7	67.8	0.0	71.5	8.8	5.6	0.0	14.0	27	87
	H24	1.4	11.4	0.0	12.8	77.2	10.0	0.0	0.0	10	82
	H25	0.0	66.7	0.0	66.7	11.1	22.2	0.0	0.0	9	83
	H26	7.7	75.9	0.0	83.6	9.4	6.3	0.2	0.5	32	86
	H27	14.3	14.8	0.0	29.0	27.6	42.4	0.0	0.9	14	87
雄成魚	H28	0.0	42.5	0.0	42.5	23.2	32.6	1.4	0.3	12	86
милосия	H29	0.0	25.1	0.0	25.1	37.3	36.7	0.0	0.9	8	85
	R3	0.0	35.7	0.0	35.7	42.9	7.1	14.3	0.0	14	86
	R4	11.1	21.9	0.0	33.0	55.5	11.1	0.0	0.3	9	87
	R5	44.4	0.2	0.0	44.6	33.3	22.0	0.0	0.0	9	86
	R6	24.4	12.5	0.0	36.9	25.0	25.0	12.5	0.6	8	83
	R7	0.0	0.0	0.0	0.0	50.0	0.0	0.0	50.0	2	83
	全期間	11.2	42.5	0.0	53.7	23.5	17.4	4.2	1.2	174	85
	H21	0.0	29.1	18.9	48.0	23.6	7.0	0.0	21.4	15	111
	H22	57.2	21.5	0.0	78.7	15.9	0.2	0.8	4.5	12	103
	H23	7.7	43.0	0.0	50.7	41.1	0.0	1.0	7.2	12	112
	H24	7.1	11.4	0.0	18.6	67.2	0.0	7.1	7.0	14	108
	H25	0.0	83.4	0.0	83.4	16.6	0.0	0.0	0.0	12	110
	H26	0.0	60.8	0.0	60.8	26.3	8.7	4.0	0.1	23	109
	H27	0.1	5.1	15.3	20.5	56.0	16.6	6.3	0.7	16	105
雌成魚	H28	0.0	1.1	0.0	1.1	78.6	20.0	0.0	0.3	5	101
	H29	0.0	9.9	0.0	9.9	48.9	28.5	3.9	8.8	10	120
	R3	0.0	0.0	0.0	0.0	66.7	33.3	0.0	0.0	9	117
	R4	0.0	8.3	0.0	8.3	66.7	0.0	0.0	25.0	12	103
	R5	14.5	0.0	0.0	14.5	56.9	14.0	0.0	14.7	14	117
	R6	0.0	0.3	0.0	0.3	66.3	33.3	0.0	0.1	18	113
	R7	0.0	0.0	0.0	0.0	33.3	66.7	0.0	0.0	3	106
	全期間	6.2	23.3	3.0	32.5	46.0	14.0	4.0	3.5	176	110
ツまホの								0	5.0	. , ,	

[※]表中の濃い網掛けは50%以上、淡い網掛けは20%以上を示す

その他の二枚貝類にはアサリ、サルボウ、タイラギ、カキ以外の二枚貝類と消化が進んだ二枚貝、不明二枚貝を含む。その他にはヤドカリなどの甲殻類や貝類以外の生物群と、同定困難な不明種を含む。

(3) アカエイ類の胃内容物調査の状況

- 二枚貝類を専食するナルトビエイ来遊量の減少傾向がみられる一方で、その他の二枚貝類食害生物として、熊本県や福岡県 の漁業関係者からアカエイ類が二枚貝類を摂餌しているとの情報が多く寄せられた。
- 本調査では、有明海に生息するアカエイ科魚類6種^{※2}の胃内容物組成を調べて、二枚貝類への食害の実態を調べた。

※2出典:山口敦子、古満啓介、田北徹(2009)2章 有明海の魚類相、干潟の海に生きる魚たちー有明海の豊かさと危機ー(日本魚類学会自然保護委員会編、)、p. 15~21、東海大学出版会

調査結果

- 〇 令和3年度からの調査で、アカエイ165個体、ヤジリエイ23個体、アリアケアカエイ11 個体、シロエイ12個体の胃内容物を調査した。
- アカエイ類の胃内容物の割合から、多くの個体は甲殻類、多毛類、魚類を摂餌していた。また、ヤジリエイからは二枚貝類が確認されず、甲殻類、魚類を多く摂餌していた。
- 〇 アカエイ類はクロダイ、イシガニ等と同様に雑食性でアサリを含む二枚貝類も摂餌しているが、ナルトビエイが二枚貝類を専門に摂餌する^{※3}のに比べ、アカエイ類は0~18.2%と低かった。先行して調査されている長崎大学の結果と同様、アカエイ類の二枚貝類への依存度は小さいと考えられる。
- ※ 3出典:山口敦子(2009) 3章 有明海が育むサメ・エイ類、干潟の海に生き る魚たちー有明海の豊かさと危機一(日本魚類学会自然保護委員会編、)、p. 33~64、東海大学出版会

〔アカエイ類の胃内容物確認個体数内訳〕

年度	アカエイ	ヤジリ エイ	アリアケ アカエイ	シロエイ
R3	44	5	1	1
R4	14	14	7	5
R5	41	2	3	4
R6	47	1	0	2
R7	19	1	0	0
合計	165	23	11	12

〔アカエイ類の胃内容物重量に占める各餌生物の百分率(%)〕

種名	二枚貝類	巻貝	頭足類 (イカ)	甲殻類(エビ,カニなど)	多毛類(ゴカイ)	魚類 (ハセなど)	その他 (ナマコ,不明 種)
アカエイ (n=165)	5.8	0.0	2.1	53.6	20.6	11.9	6.0
ヤジリエイ(n=23)	0.0	0.0	0.9	72.2	4.3	18.2	4.3
アリアケアカエイ (n=11)	18.2	0.0	0.0	28.0	26.6	9.1	18.2
シロエイ(n=12)	0.4	0.0	0.0	49.6	41.7	0.0	8.3

※表中の濃い網掛けは50%以上、淡い網掛けは20%以上を示す。

赤文字の二枚貝類は、DNA分析によりアサリの他、マテガイ属、ウネナシトマヤガイ、シカメガキ、シズクガイ、イヨスダレガイと同定された。

〔胃内容物採取状況〕

〔胃内容物を確認したアカエイ類4種〕

○ また、近年では、クロダイ(チヌ)がエイ類以外のアサリ食害生物^{※4}として浮上している。

17

※4出典:有明海・八代海等総合調査評価委員会第13回水産資源方策検討作業小委員会(令和6年2月)「有用二枚貝に係る資料の採集・整理・分析状況~資源の現状及び減耗要因関係を中心に~」