農林水産省消費・安全局長

動物用生物科学的製剤基準の一部改正等について

薬事法（昭和35年法律第145号）第83条第1項の規定により読み替え
て適用される同法第14条第1項の規定に基づき動物用生物科学的製剤が新たに
製造販売承認されること等に伴い、「動物用生物科学的製剤基準」（平成14年10月3日農林水産省告示第1567号）、「動物用生物科学的製剤検査基準」（平
成14年10月3日農林水産省告示第1568号）及び「動物用医薬品の検定
手数料並びに試験品及び出願者の保存用品として抜き取らせるべき数量を定め
る等の件」（平成17年3月18日農林水産省告示第516号）の一部が別紙
1から別紙3までのとおり改正されましたので、貴庁に備え置いて縦覧願いま
す。

また、これらの改正に伴い「薬事法関係事務の取扱いについて」（平成12
年3月31日付け12畜A第729号農林水産省畜産局長通知）の一部を別紙
新旧対照表のとおり改正したので、御了知願います。
ワクチンの部トリニューモウイルス感染症生ワクチンの項を次のように改める。

トリニューモウイルス感染症生ワクチン

1 定義

弱毒七面鳥鼻気管炎ウイルス又は弱毒鶏由来トリニューモウイルスを培養細胞で増殖させて得た
ウイルス液を凍結乾燥したワクチンである。

2 製法

2.1 製造用株

2.1.1 七面鳥鼻気管炎ウイルス株

2.1.1.1 名称

弱毒七面鳥鼻気管炎ウイルス BUT1 # 8544 株又はこれと同等と認められた株

2.1.1.2 性状

7 日齢の鶏に点鼻又は点眼接種しても病原性を示さない。鶏胚初代細胞、鶏胚初代細胞又は
Vero 細胞に接種すると、CPE を伴って増殖する。6 〜 12 日齢の鶏卵の卵黄嚢内及び尿膜腔内
に接種しても、鶏胚に異常を示さない。

2.1.1.3 繁殖及び保存

原株及び原種ウイルスは、生ワクチン製造用材料の規格 2.1.1 の鶏胚初代細胞又は適当と認めら
れた細胞で繁殖する。

原株の繁殖は、原種ウイルスの製造又は原株の恒久的な維持以外の目的で行ってはならない。
原種ウイルスは、直接原株から連続した工程により製造し、その繁殖数は、3 代以内でなければならない。

繁殖ウイルスは、原種ウイルスから 2 代以内に製造しなければならない。

原株及び繁殖ウイルスは、凍結して -70 ℃ 又は凍結乾燥して 5 ℃ 以下で保存する。

繁殖ウイルスは、原種ウイルスからワクチンの製造ごとに用時調製する。

2.1.2 鶏由来トリニューモウイルス株

2.1.2.1 名称

弱毒鶏由来トリニューモウイルス PL21 VERO 1060 株又はこれと同等と認められた株

2.1.2.2 性状

1 日齢の鶏に点鼻又は点眼接種しても、病原性を示さない。Vero 細胞に接種すると、CPE を伴
って増殖する。

2.1.2.3 繁殖及び保存

原株及び原種ウイルスは、Vero 細胞又は適当と認められた細胞で繁殖する。

原株の繁殖は、原種ウイルスの製造又は原株の恒久的な維持以外の目的で行ってはならない。
原種ウイルスは、直接原株から連続した工程により製造し、その繁殖数は、3 代以内でなければならない。

繁殖ウイルスは、原種ウイルスから 2 代以内に製造しなければならない。

原株及び繁殖ウイルスは、凍結して -70 ℃ 又は凍結乾燥して 5 ℃ 以下で保存する。

繁殖ウイルスは、原種ウイルスからワクチンの製造ごとに用時調製する。

2.2 製造用材料

2.2.1 七面鳥鼻気管炎ウイルス

2.2.1.1 培養細胞

生ワクチン製造用材料の規格 2.1.1 の鶏胚初代細胞又は製造に適当と認められた細胞を用いる。

2.2.1.2 培養液
製造に適当と認められた培養液を用いる。
2.2.2 糞由来トリニューモウイルス
2.2.2.1 培養細胞

Vero 細胞又は製造に適当と認められた細胞を用いる。
2.2.2.2 培養液

製造に適当と認められた培養液を用いる。

2.3 原液

2.3.1 頭胞の培養

1 回に処理し、培養した細胞を個体別培養細胞とみなす。ウイルス接種前の培養細胞に異常を認めではない。

個体別培養細胞について、3.1 の試験を行う。
2.3.2 ウイルスの増殖

摘ウイルスを培養細胞で増殖し、ウイルスの増殖極期に個体別培養細胞ごとに採取した培養液及び超音波処理した感染細胞の遠心上清を混合したもの、又は培養液のろ液若しくは遠心上清を原液とする。原液に適当と認められた処害防止剤を加えてよい。

原液について、3.2.1 及び3.2.2 の試験を行う。

2.4 最終培養

原液を混合し、適当と認められた安定剤を加えて調整し、最終培養とする。

2.5 小分製品

最終培養を小分容渠に分注し、凍結乾燥し、小分製品とする。

小分製品について、3.3 の試験を行う。

3 試験法

3.1 培養細胞の試験

個体別培養細胞の 1%以上を対照培養細胞とし、これについて次の試験を行う。

3.1.1 培養観察

対照培養細胞を、ウイルスを接種することなく、ウイルスの培養と同じ条件で培養し、観察するとき、CPB を認めではない。

3.1.2 紅血球凝集試験

3.1.1 の試験最終日に培養液を採取し、0.5vol %鶏赤血球浮遊液を等量加え、60 分間静置し、観察するとき、赤血球凝集を認めではない。

3.2 原液の試験

3.2.1 無菌試験

一般試験法の無菌試験法を準用して試験するとき、適合しなければならない。

3.2.2 ウイルス含有量試験

3.2.2.1 又は3.2.2.2 のいずれかの試験を行う。

3.2.2.1 骨管初代細胞接種試験

3.2.2.1.1 試験材料

3.2.2.1.1.1 試料

検体を細胞接種用培養液（付記 1）で調整した鶏胚初代細胞浮遊液で 10 倍希釈し、各段階の希釈液を試料とする。

3.2.2.1.2 培養細胞

生ワクチン製造用材料の規格 2.1.1 の鶏胚初代細胞浮遊液を用いる。

3.2.2.1.2 試験方法

試料 0.2mL ずつを、それぞれ 96 穴組織培養用プレートの 5 穴以上に接種し、37 ℃で 5 ～ 7 日間培養し、観察する。
3.2.2.1.3 判定
培養細胞に CPE を認めめたものを感染とみなし、TCID₆₀を算出する。
検体のウイルス含有量は、1 mL 中 10⁶ TCID₆₀ 以上でなければならない。

3.2.2.2 Vero 細胞接種試験法
3.2.2.2.1 試験材料
3.2.2.2.1.1 試料
検体を細胞維持用培養液（付記 2）で 10 倍階段希釈し、各段階の希釈液を試料とする。
3.2.2.2.1.2 培養細胞
Vero 細胞を 96 穴組織培養プレートに接種し、単層となったものを用いる。
3.2.2.2.2 試験方法
試料 0.2mL ずつを、それぞれ 5 穴以上の培養細胞に接種し、37 ℃でで 7 〜 9 日間培養し、観察する。

3.2.2.3 判定
培養細胞に CPE を認めめたものを感染とみなし、TCID₆₀を算出する。
検体のウイルス含有量は、1 mL 中 10⁶ TCID₆₀ 以上でなければならない。

3.3 小分製品の試験
3.3.1 特性試験
一般試験法の特性試験法を準用して試験するとき、固有の色調を有する乾燥物でなければならない。
溶解したものは、固有の色調を有する均質な溶液でなければならないが、異物又は異臭を認めれてはならない。小分容器ごとの性状は、均一でなければならない。

3.3.2 真空度試験
一般試験法の真空度試験法を準用して試験するとき、適合しなければならない。

3.3.3 含湿度試験
一般試験法の含湿度試験法を準用して試験するとき、適合しなければならない。

3.3.4 無菌試験
一般試験法の無菌試験法を準用して試験するとき、適合しなければならない。

3.3.5 マイコプラズマ否定試験
一般試験法のマイコプラズマ否定試験法を準用して試験するとき、適合しなければならない。

3.3.6 末入ウイルス否定試験
一般試験法の末入ウイルス否定試験 1.1、2.1.1、2.1.2、2.2.1 及び 2.2.2 を準用して試験するとき、適合しなければならない。
ただし、中和用血清は、抗発面鳥鼻気管炎ウイルス血清（付記 3）又は抗鶏由来トリニューモウイルス血清（付記 4）を非標準化したものを用いる。

3.3.7 ウイルス含有量試験
3.2.2.1 を準用して試験するとき、試験品のウイルス含有量は、1 羽分当たり 10⁶ TCID₆₀ 以上でなければならない。ただし、農林水産大臣が特に認めた場合には、そのウイルス含有量とする。
3.2.2.2 を準用して試験するとき、試験品のウイルス含有量は、1 羽分当たり 10⁶ TCID₆₀ 以上でなければならない。

3.3.8 安全試験
3.3.8.1 又は 3.3.8.2 のいずれかの試験を行う。

3.3.8.1 7 日齢鶏接種試験
3.3.8.1.1 試験材料
3.3.8.1.1.1 接種材料
試験品をリン酸緩衝食塩液で 0.03mL 中 10 羽分となるように調整したものを接種材料とする。
3.3.8.1.2 試験動物
生ワクチン製造用材料の規格 1.1 由来の 7 日齢の鶏を用いる。

3.3.8.1.2 試験方法

試験鶏の 10 羽を試験群、5 羽を対照群とする。

接種材料 0.03mL ずつを試験群に点滴接種し、対照群とともに、3 週間観察する。ただし、体重については、試験開始時及び試験終了時には測定する。

3.3.8.1.3 判定

観察期間中、試験群及び対照群に臨床的な異常を認めてはならない。

3.3.8.2 4 日齢鶏接種試験

3.3.8.2.1 試験材料

3.3.8.2.1.1 接種材料

試験品をリン酸緩衝食塩液で 0.03mL 中 10 羽分となるように調整したものを接種材料とする。

3.3.8.2.1.2 試験動物

生ワクチン製造用材料の規格 1.1 由来の 4 日齢の鶏を用いる。

3.3.8.2.2 試験方法

試験鶏の 10 羽を試験群とし、5 羽を対照群とする。

接種材料 0.03mL ずつを試験群に点滴接種し、対照群とともに、3 週間観察する。ただし、体重については、試験開始時及び試験終了時には測定する。

3.3.8.2.3 判定

観察期間中、試験群及び対照群に臨床的な異常を認めてはならない。

3.3.9 力価試験

3.3.9.1 又は 3.3.9.2 のいずれかの試験を行う。

3.3.9.1 対照抗体反応（以下「ELISA」という。）法 A法

3.3.9.1.1 試験材料

3.3.9.1.1.1 接種材料

試験品を接種材料とする。

3.3.9.1.1.2 試験動物

生ワクチン製造用材料の規格 1.1 由来の 7 日齢の鶏を用いる。

3.3.9.1.2 試験方法

試験動物の 10 羽を試験群とし、5 羽を対照群とする。

接種材料 1 羽分ずつを試験群に点滴接種し、3 週間後に試験群及び対照群から得られた各個体の血清について、ELISA により抗体価を測定する。

七面鳥鼻気管炎ウイルス参照陽性血清（付記 6）、七面鳥鼻気管炎ウイルス参照陰性血液（付記 6）及び試験群及び対照群の被験血清を IB・ELISA 緩衝液（付記 7）で 2 倍段階希釈し、七面鳥鼻気管炎ウイルス抗原固定化プレート（付記 8）に各希釈血清を 100 μL ずつ加え、37 ℃で 30 分間反応させる。反応終了後、洗浄用緩衝液（付記 9）で 2 回洗浄し、山羊抗 IgG ペルオキシダーゼ標識抗体（付記 10）を 100 μL ずつ加え、37 ℃で 30 分間反応させる。反応終了後、洗浄用緩衝液で 2 回洗浄し、七面鳥鼻気管炎ウイルス用基質液（付記 11）を 100 μL ずつ加え、8 分間反応させる。反応終了後、反応停止液（付記 12）を 50 μL ずつ加えて反応を停止させ、波長 450nm で吸光度値を測定する。

3.3.9.1.3 判定

七面鳥鼻気管炎ウイルス参照陽性血清の平均吸光度値の少なくとも 1.5 倍の吸光度値を示す血清の希釈倍数を ELISA 抗体価とする。

試験群の 70 %以上が ELISA 抗体価 2 “ ” 倍以上を示さなければならない。この場合、対照群はすべて 2 “ ” 倍未満でなければならない。七面鳥鼻気管炎ウイルス参照陰性血清は 2 “ ” 倍以上の抗体価を示さなければならない。
3.3.9.2 ELISA B法
3.3.9.2.1 試験材料
3.3.9.2.1.1 接種材料
試験品を接種材料とする。
3.3.9.2.1.2 試験動物
生ワクチン製造用材料の規格1.1由来の7日齢の鶏を用いる。
3.3.9.2.2 試験方法
試験動物10羽を試験群とし、5羽を対照群とする。
接種材料1羽ずつを試験群に点鼻接種し、4週間後に試験群及び対照群から得られた各個体の
血清について、ELISA抗体価を測定する。
鶏由来トリニューモウイルス抗原固相化プレート（付記13）にブロック液（付記14）を
100μLずつ分注し、37℃で60分間反応後、洗浄用希釈液（付記15）で3回洗浄する。次に、
鶏由来トリニューモウイルス参照陽性血清（付記16）、鶏由来トリニューモウイルス参照陰性血清
（付記17）及び試験群及び対照群の被験血清を、それぞれ洗浄用希釈液で50倍に希釈する。各希
釈血清100μLを固相化プレートの2穴ずつに加え、37℃で60分間反応させる。ブランクとし
て2穴を設ける。反応終了後、洗浄用希釈液で3回洗浄し、ウサギ抗鶏IgG・ペルオキシダーゼ標
識抗体（付記18）を100μLずつ加え、37℃で60分間反応させる。反応終了後、洗浄用希釈液
で3回洗浄し、鶏由来トリニューモウイルス用検査液（付記19）を100μLずつ加え、還元して
10分間反応させる。反応終了後、0.5mol/L硫酸を50μLずつ加えて、反応を停止させ、波長
490nmで吸光度値を測定する。
3.3.9.2.3 判定
各血清の平均読み取り値からブランクの平均読み取り値を差し引いた値を、各血清の平均吸光度
値として、次式によりS/P値を算出する。
S/P値=（被験血清の平均吸光度値/参照陽性血清の平均吸光度値）×100
試験群の平均S/P値は30以上、対照群の平均S/P値は10未満でなければならない。この場合、
鶏由来トリニューモウイルス参照陽性血清の平均吸光度値は1.2〜1.8、鶏由来トリニューモウイ
ルス参照陰性血清のS/P値は5以下でなければならない。
4 貯法及び扱い方
有効期間は、製造後3年3か月間とする。ただし、農林水産大臣が特に認めた場合には、その期
間とする。

付記1 細胞増殖用培養液
1,000mL中
トリプトース・ホスファイト・プロス 0.83 g
トリプトース 1.00 g
ラクトアルブミン水解物 1.25 g
炭酸水素ナトリウム 2.45 g
牛血清 50mL
イーグルMEM 残量
必要最低量の抗生物質を加えてもよい。

付記2 細胞維持用培養液
1,000mL中
牛血清 0〜20mL
イーグルMEM又はF10培地 残量
付記3 抗七面鳥鼻気管炎ウイルス血清
弱毒七面鳥鼻気管炎ウイルスで免疫した生ワクチン製造用材料の規格 1.1 由来の鶏の血清で、試験品中のウイルスを完全に中和する力価を有するもの

付記4 抗鶏由来トリニューモウイルス血清
弱毒由来トリニューモウイルス製造用株で免疫した生ワクチン製造用材料の規格 1.1 由来の鶏の血清で、試験品中のウイルスを完全に中和する力価を有するもの

付記5 七面鳥鼻気管炎ウイルス参照陽性血清
弱毒七面鳥鼻気管炎ウイルスで免疫した生ワクチン製造用材料の規格 1.1 由来の鶏の血清で、ELISA 抗体価 2 4th ～ 2 6th 倍を示すもの

付記6 七面鳥鼻気管炎ウイルス参照陰性血清
生ワクチン製造用材料の規格 1.1 由来の鶏の血清で、ELISA 抗体価 2 4th 倍未満を示すもの

付記7 IB・EIA 緩衝液
1,000mL 中
リン酸二水素ナトリウム十二水和物 2.31 g
リン酸水素ナトリウム二水和物 24.06 g
塩化ナトリウム 29.22 g
カオリン処理 30w/v%牛血清アルブミン 3.3 mL
ポリソルベート 20 0.50 g
水 約 880 mL
200nm でろ過滅菌をした後、スキムミルク 2 w/v%及び牛胎子血清 5 vol%を加える。

付記8 七面鳥鼻気管炎ウイルス抗原固定化プレート
製造用株を生ワクチン製造用材料の規格 2.11 の鶏胚代謝細胞で増殖させて得られたウイルス液及び感染細胞の超音波処理後の達心上清をプールし、達心浮上層を七面鳥鼻気管炎ウイルス抗原とする。
七面鳥鼻気管炎ウイルス抗原を七面鳥鼻気管炎ウイルス用固相化緩衝液（付記 20）で、七面鳥鼻気管炎ウイルス参照陽性血清の 100 倍希釈液の吸光度値が 0.8 以上及び七面鳥鼻気管炎ウイルス参照陽性血清の 0.2 以下を示すように濃度調整し、96 深平底マイクロプレートに 100 µL ずつ分注して 37 摂氏で 3 時間静置した後、洗浄用緩衝液で 3 回洗浄した後、乾燥させたものである。

付記9 洗浄用緩衝液
1,000mL 中
無水リン酸水素二ナトリウム 2.9 g
無水リン酸二水素カリウム 0.2 g
塩化ナトリウム 37.2 g
塩化カリウム 0.2 g
ポリソルベート20 1.5 g
水 残量
pH を 6.9 ～ 7.1 に調整する。

付記10 山羊抗鶏IgG ベルオキシダーゼ標識抗體
七面鳥鼻気管炎ウイルス参照陽性血清が規定の抗体価を示すように IB・EIA 緩衝液で調整したものの

付記11 七面鳥鼻気管炎ウイルス用基質液
TMB 溶液 0.2 mL
UP 緩衝液 1.5 mL
水 15 mL
TMB 溶液は、DMSO 1,000mL に TMB (3,3',5,5' テトラメチルベンジン) を 6 g 溶かしたもの
UP 緩衝液は、尿素過酸化物140mg を TMB 緩衝液（酢酸ナトリウム 136g を約 500mL の水に溶かし、1.5mol/L クエン酸でpH5.3 ～ 5.7 に調整した後、水を加え、1,000mL としたもの）100mL に溶かしたもの

付記12 反応停止液
硫酸 110 mL
水 1,000 mL

付記13 鶏由来トリニューモウイルス抗原固定化プレート
製造用株を Vero 細胞で増殖させて得られたウイルス液及び細胞を、凍結融解し、超遠心処理を行った後、界面活性剤及び薬用茶処理して鶏由来トリニューモウイルス抗原とする。
鶏由来トリニューモウイルス抗原を、鶏由来トリニューモウイルス用固定化緩衝液（付記21）でたん白濃度が約 2 μg/mL となるように濃度調整し、96 洞平底マイクロプレートに100 μL ずつ分注して 4℃で一夜静置後、洗浄用希釈液で 3 回洗浄した後、乾燥させたものであり、-20℃で保存する。

付記14 プロッキング液
1,000mL 中
牛血清アルブミン 10 g
リン酸緩衝食塩液 残量

付記15 洗浄用希釈液
1,000mL 中
塩化ナトリウム 58.45 g
リン酸水素二ナトリウム・二水和物 2.69 g
リン酸二水素ナトリウム・二水和物 0.39 g
ポリソルベート20 0.5 mL
水 残量

付記16 鶏由来トリニューモウイルス参照陽性血清
鶏由来トリニューモウイルス製造用株で免疫した生ワクチン製造用材料の規格 1.1 由来の
鶏の血清であって、中和抗体値640～2560倍を示すもの

付記17 鴨由来トリニューモウイルス参照陰性血清
生ワクチン製造用材料の規格1.1由来の鶏から得た血清であって、鴨由来トリニューモウイルスのELISA法で測定した場合には、S/P値が5以下を示すもの

付記18 ウサギ抗鶏IgGベルオキシダーゼ標識抗体
鴨由来トリニューモウイルス参照陽性血清の平均吸光度値が1.2～1.8、鴨由来トリニューモウイルス参照陰性血清のS/P値が5以下を示すように調整したもの

付記19 鴨由来トリニューモウイルス用基質液
1,000mL中
オ-フェニレンアジミン二塩酸塩 0.26 g
30vol%過酸化水素水 0.3 mL
基質緩衝液 残量
基質緩衝液は、0.1mol/Lクエン酸液243mLと0.2mol/Lリン酸水素ナトリウム257mLを混ぜたものに、水を加えて1,000mLとしたもの

付記20 七面鳥鼻気管炎ウイルス用固定化緩衝液
1,000mL中
リン酸二水素ナトリウム二水和物 1.43 g
リン酸水素ナトリウム十二水和物 12.10 g
塩化ナトリウム 8.50 g
水 残量
pHを6.9～7.1に調整する。

付記21 鴨由来トリニューモウイルス用固定化緩衝液
1,000mL中
炭酸ナトリウム 1.5 g
炭酸水素ナトリウム 2.93 g
水 残量
ワクチンの部

マレック病（マレック病ウイルス2型・七面鳥ヘルペスウイルス）・鶏痘混合生ワクチン

1 定義

弱毒マレック病ウイルス（2型）及び七面鳥ヘルペスウイルスをそれぞれ培養細胞で増殖させて得た感染細胞浮遊液を混合し、凍結したマレック病2型ワクチンと弱毒鶏痘ウイルスを発育胚卵又は培養細胞で増殖させて得たウイルス液を凍結乾燥した鶏痘ワクチンを組み合わせたものである。

2 製法

2.1 製造用株

2.1.1 マレック病ウイルス2型株

2.1.1.1 名称

弱毒マレック病ウイルス SB-1 株又はこれと同等と認められた株

2.1.1.2 性状

1 日齢の鶏の皮下、筋肉内又は腹腔内に注射しても病原性を示さない。鶏胚初代細胞に接種すると、CPEを伴って増殖する。

2.1.1.3 繰代及び保存

原株及び原種ウイルスは、生ワクチン製造用材料の規格 2.1.1 の鶏胚初代細胞又は適当と認められる細胞で維代する。

原株の維代は、原種ウイルスの製造又は原株の恒久的な維持以外の目的で行ってはならない。

原種ウイルスは、直接原株から連続した工程により製造し、その維代数は3代以内でなければならない。

種ウイルスは、原種ウイルスから2代以内に製造しなければならない。

原株及び原種ウイルスは、凍結して-100℃以下又は凍結乾燥して5℃以下で保存する。

種ウイルスは、原種ウイルスからワクチンの製造ごとに用時調製する。

2.1.2 七面鳥ヘルペスウイルス株

2.1.2.1 名称

七面鳥ヘルペスウイルス FC126 株又はこれと同等と認められた株

2.1.2.2 性状

1 日齢の鶏の皮下、筋肉内又は腹腔内に注射しても病原性を示さない。鶏、うずら又はあひるの発育胚の胚初代細胞に接種すると、CPEを伴って増殖する。

2.1.2.3 繰代及び保存

原株及び原種ウイルスは、生ワクチン製造用材料の規格 2.1.1 の鶏胚初代細胞、2.3.1 のうずら胚初代細胞、2.4.1 のあひる胚初代細胞又は適当と認められた細胞で維代する。

原株の維代は、原種ウイルスの製造又は原株の恒久的な維持以外の目的で行ってはならない。

原種ウイルスは、直接原株から連続した工程により製造し、その維代数は3代以内でなければならない。

種ウイルスは、原種ウイルスから2代以内に製造しなければならない。

原株及び原種ウイルスは、凍結して-100℃以下又は凍結乾燥して5℃以下で保存する。

種ウイルスは、原種ウイルスからワクチンの製造ごとに用時調製する。

2.1.3 鶏痘ウイルス株

2.1.3.1 名称
弱毒腺痘ウイルスポーテット株又はこれと同等と認められた株

2.13.2 性状

鶏の腸管に穿刺又は外皮部の毛のうちに挿入すると、5～7日で発症される。　
12日齢発育雛卵の尿管膜上に接種すると増殖し、特徴的なボックを形成する。

2.13.3 繰代及び保存

原株及び原種ウイルスは、生ワクチン製造用材料の規格2.1.1の発育鶏卵又は生ワクチン製造用材料の規格2.1.1の鶏胚初期細胞で維代する。
原株の維代は、原種ウイルスの製造又は原株の増殖の維持以外の目的で行ってはならない。
原種ウイルスは、直接原株から連続した工程により製造し、その維代数は3代以内でなければならない。
種ウイルスは、原種ウイルスから2代以内に製造しなければならない。
原株及び原種ウイルスは、凍結して-70℃以下又は凍結乾燥して5℃以下で保存する。
種ウイルスは、原種ウイルスからワクチンの製造ごとに用時調製する。

2.2 製造用材料

2.2.1 マレック病ウイルス2型

2.2.1.1 培養細胞

生ワクチン製造用材料の規格2.1.1の鶏胚初期細胞又は製造に適当と認められた細胞を用いる。

2.2.1.2 培養液

製造に適当と認められた培養液を用いる。

2.2.2 七面鳥ヘルペスウイルス

2.2.2.1 培養細胞

生ワクチン製造用材料の規格2.1.1の鶏胚初期細胞又は製造に適当と認められた細胞を用いる。

2.2.2.2 培養液

製造に適当と認められた培養液を用いる。

2.2.3 腺痘ウイルス

2.2.3.1 発育鶏卵又は培養細胞

生ワクチン製造用材料の規格2.1.1の9～13日齢の発育鶏卵又は生ワクチン製造用材料の規格2.1.1の鶏胚初期細胞若しくは製造に適当と認められた細胞を用いる。

2.2.3.2 培養液

製造に適当と認められた培養液を用いる。

2.3 原液

2.3.1 マレック病ウイルス2型原液

2.3.1.1 細胞の培養

1回に処理し、培養した細胞を個体別培養細胞と見なし。ウイルス接種前の培養細胞に異常を認めなくてはならない。
個体別培養細胞について、3.1.1.1の試験を行う。

2.3.1.2 ウイルスの増殖

種ウイルスを培養細胞又は細胞浮遊液に接種して培養し、ウイルスの増殖極期の感染細胞を個体別培養細胞ごとに採取して観察し、混合して原液とする。原液に適当と認められた安定剤を加えてもよい。
原液について、3.2.1の試験を行う。

2.3.2 七面鳥ヘルペスウイルス原液

2.3.2.1 細胞の培養

1回に処理し、培養した細胞を個体別培養細胞と見なし。ウイルス接種前の培養細胞に異常を認めなくてはならない。
2.3.2.2 ウイルスの培養

種ウイルスを培養細胞又は細胞浮遊液に接種して培養し、ウイルスの増殖期期の感染細胞を個体別培養細胞ごとに採取して処理し、混合して原液とする。原液に適当と認められた安定剤を加えてもよい。

原液について、2.3.1の試験を行う。

2.3.3 雞痘ウイルス原液

2.3.3.1 発育鶏卵の培養

1回に処理する発育鶏卵を個体別発育鶏卵と見なす。

個体別発育鶏卵について、3.1.2の試験を行う。

2.3.3.2 細胞の培養

1回に処理し、培養した細胞を個体別培養細胞と見なす。ウイルス接種前培養細胞に異常を認めない。

個体別培養細胞について、3.1.1.2の試験を行う。

2.3.3.3.1 発育鶏卵を用いる培養

種ウイルスを発育鶏卵で培養し、液尿膜を採取して乳剤とし、その乳液又は遠心上清を原液とする。

この場合、適当と認められた必要量の抗生物質を加えてもよい。

原液について、2.3.2の試験を行う。

2.3.3.3.2 培養細胞を用いる培養

種ウイルスを鶏胚代細胞又は適当と認められた培養細胞に接種して培養し、培養後の細胞を凍結融解し、その遠心上清を原液とする。

原液について、2.3.2の試験を行う。

2.4 最終バルク

2.4.1 マレック病ウイルス2型及び七面鳥ヘルペスウイルス

マレック病ウイルス2型原液及び七面鳥ヘルペスウイルス原液を混ぜし、適当と認められた希釈を蒸散して処理し、最終バルクとする。

この場合、適当と認められた必要量の抗生物質を加えてもよい。

2.4.2 雞痘ウイルス

鷌痘ウイルス原液を混ぜし、適当と認められた安定剤を加え、最終バルクとする。この場合、適当と認められた必要量の抗生物質を加えてもよい。

2.5 小分製品

2.5.1 マレック病2型ワクチン

最終バルクを小分容積に分注し、凍結し、小分製品とする。

小分製品について、3.3の試験を行う。

2.5.2 雞痘ワクチン

最終バルクを小分容積に分注し、凍結乾燥し、小分製品とする。

小分製品について、3.3の試験を行う。

3 試験法

3.1 培養細胞又は発育鶏卵の試験

3.1.1 培養細胞の試験

3.1.1.1 マレック病ウイルス培養細胞の試験

個体別培養細胞の1%以上を対照培養細胞とし、これについて次の試験を行う。

3.1.1.1.1 培養観察
対照培養細胞を、ウイルスを接種することなく、ウイルスの培養と同じ条件で培養し、観察するとき、CPEを認めでなければならない。

3.1.1.1.2 侵入ウイルス否定試験

3.1.1.1.1 の試験最終日に対照培養細胞のそれぞれの容器から細胞及び培養液を探り、混合したものを試料とし、一般試験法の侵入ウイルス否定試験法 2.1、2.2.1 及び 2.2.2 を準用して試験するとき、抽出しなければならない。

3.1.1.1.3 鶏注射試験

3.1.1.1.3.1 試験材料

3.1.1.1.3.1.1 注射材料

3.1.1.1.1 の試験最終日に対照培養細胞のそれぞれの容器から細胞及び培養液を探り、混合したものを注射材料とする。

3.1.1.1.3.2 試験動物

生ワクチン製造用材料の規格 1.1 由来の 1 ～ 4 日齢の鶏を用いる。

3.1.1.1.3.3 試験方法

注射材料 0.2mLずつを 10 羽の鶏の皮下に注射し、5 週間観察する。

観察最終日に剖検する。

3.1.1.1.3.4 計算

観察期間中の試験動物に臨床的な異常を認めてしまうない。また、剖検したときに異常を認めてはならない。

3.1.1.2 鶏胚ウイルス培養細胞の試験

3.1.1.2.1 培養細胞の試験

個体別培養細胞の 1 % 以上を対照培養細胞とし、これについて次の試験を行う。

3.1.1.2.1.1 培養観察

対照培養細胞を、ウイルスを接種することなく、ウイルスの培養と同じ条件で培養し、観察するとき、CPEを認めでなければならない。

3.1.1.2.1.2 侵入粒子観察試験

3.1.1.2.1.1 の試験最終日に培養液を採取し、0.5vol%赤血球浮遊液を等量加え、60 分間静置し、観察するとき、赤血球凝集を認めでなければならない。

3.1.2 発育個卵の試験

個体別発育個卵の 1 % 以上又は 30 個以上を対照発育個卵とし、これについて次の試験を行う。

3.1.2.1 培養観察

対照発育個卵に、ウイルスを接種することなく、ウイルスの培養と同じ条件で培養し、観察するとき、雛胚に異常を認めでなければならない。

3.1.2.1.2 赤血球凝集試験

3.1.2.1.1 の試験最終日に凝集液を採取し、0.5vol%赤血球浮遊液を等量加え、60 分間静置し、観察するとき、赤血球凝集を認めでなければならない。

3.2 原液の試験

3.2.1 マレック病ウイルス原液の試験

3.2.1.1 ワイルス含有量試験

3.2.1.1.1 試験材料

3.2.1.1.1.1 試料

検体を細胞維持用培養液（付記 1）で 10 倍段階希釈し、各段階の希釈液を試料とする。

3.2.1.1.1.2 培養細胞

生ワクチン製造用材料の規格 2.1.1 の鶏胚維持用培養液（付記 1）で 10 倍段階希釈し、各段階の希釈液を検体とする。
3.2.1.1.2 試験方法
試料 0.2mL ずつをそれぞれ 4 枚以上の培養細胞に接種し、37 ℃で 60 分間静置吸着させた後、細胞維持用培養液を加え、37 ℃で 4 ～ 7 日間培養し、観察する。

3.2.1.3 判定
シャレレ当たり平均 20 個以上検出された試料の希釈倍数及びその平均プラック数又は平均フォーカス数からウイルスの含有量を算出する。
検体のウイルス含有量は 1 mL 中それぞれ 10⁴ PFU 又は 10⁵ TCID₅₀ 以上でなければならない。

3.2.2 鳥痘ウイルス原液の試験
3.2.2.1 生菌数限度試験
一般試験法の生菌数限度試験法を準用して試験するととき、適合しなければならない。

3.2.2.2 ウイルス含有量試験
3.2.2.2.1 発育鶏卵を用いる試験
3.2.2.2.1.1 発育鶏卵
生ワクチン製造用材料の規格 2.1.1 の 11 ～ 13 日鶏のものを用いる。
3.2.2.2.1.2 試料
検体をリン酸緩衝食塩液で 10 倍階段希釈し、各段階の希釈液を試料とする。

3.2.2.2.1.2 試験方法
試料 0.1mL ずつをそれぞれ 5 枚以上の発育鶏卵の腎尿管に接種し、37 ℃で 5 日間培養し、観察する。試験最終日に腎尿管を検査してポック発表の有無を観察する。

3.2.2.2.1 判定
腎尿管にポックの出現したものを感染とみなし、EID₅₀ を算出する。ただし、24 時間以内に死亡したものは除外する。
検体のウイルス含有量は、1 mL 中 10⁵ EID₅₀ 以上でなければならない。

3.2.2.2.2 培養細胞を用いる試験
3.2.2.2.2.1 培養細胞
生ワクチン製造用材料の規格 2.1.1 の鶏胚初代細胞を培養したものを用いる。
3.2.2.2.2.2 試料
検体を細胞維持用培養液で 10 倍階段希釈し、各段階の希釈液を試料とする。

3.2.2.2.2 試験方法
試料 0.1mL ずつを 5 枚以上の培養細胞に接種し、37 ℃で 60 分吸着させた後、細胞維持用培養液を加え、37 ℃で 5 日間培養し、観察する。

3.2.2.2.3 判定
培養細胞に CPE を認めた場合を感染とみなし、TCID₅₀ を算出する。
検体のウイルス含有量は、1 mL 中 10⁴ TCID₅₀ 以上でなければならない。

3.3 小分製品の試験
3.3.1 特性試験
一般試験法の特性試験法を準用して試験するとき、マレック病 2 倍ワクチンにあっては固有の色素を有する凍結物をなければならず、鶏痘ワクチンにあっては、固有の色素を有する乾燥物でなければならない。両ワクチンを溶解し、混合したものは、固有の色素を有する均質な懸濁液でなければならず、異物又は異臭を認めなければならない。小分容器ごとの性状は、均一でなければならない。

3.3.2 真空度試験
一般試験法の真空度試験法を準用して試験するとき、鶏痘ワクチンは、適合しなければならない。

3.3.3 含浸度試験
一般試験法の含蓄試験法を準用して試験するとき、鶏痘ワクチンは、適合しなければならない。

3.3.4 無菌試験
一般試験法の無菌試験法を準用して試験するとき、適合しなければならない。
ただし、オレンジ病 2 倍ワクチン及び鶏痘ワクチンのそれぞれ 1 本を 50ml の溶解用液（付記 2）に溶解したものに小分容器ごとの試料とする。

3.3.5 マイコプラズマ否定試験
一般試験法のマイコプラズマ否定試験法を準用して試験するとき、適合しなければならない。
ただし、オレンジ病 2 倍ワクチン及び鶏痘ワクチンのそれぞれ 1 本を 50ml の溶解用液に溶解したものを小分容器ごとの試料とする。

3.3.6 サルモネラ否定試験
一般試験法のサルモネラ否定試験法を準用して試験するとき、鶏痘ワクチンは、適合しなければならない。

3.3.7 遊入ウイルス否定試験
一般試験法の遊入ウイルス否定試験法 1.1、2.1.1、2.1.2、2.2.1 及び 2.2.2 を準用して試験するとき、オレンジ病 2 倍ワクチンは、適合しなければならない。
ただし、試験値を溶解用液で 0.1ml 当たり 10 羽分となるように調整し、20KHz で 1 分間疫学波処理し、抗オレンジ病ウイルス血液（付記 3）を非優化したものを中和したものを試料とする。

3.3.8 ウイルス含有量試験
3.3.8.1 オレンジ病ウイルス
オレンジ病 2 倍ワクチンを細胞維持用培養液で 10 倍段階希釈し、各段階の希釈液を試料とする。

3.3.8.2 遊入ウイルス
3.2.2.2 を準用して試験するとき、鶏痘ワクチンのウイルス含有量は、1 羽分当たり 10^4 ～ 10^6 EID₅₀ 又は 10^4 ～ 10^4 TCID₅₀ でなければならない。

3.3.9 安全試験
3.3.9.1 試験材料
3.3.9.1.1 注射材料
オレンジ病 2 倍ワクチン及び鶏痘ワクチンを溶解用液で 0.2ml 中 10 羽分となるように調整したものを、注射材料とする。

3.3.9.2.2 試験動物
オレンジ病製造用材料の規格 1.1 由来の 1 ～ 4 月齢の鶏を用いる。

3.3.9.2 試験方法
試験動物 10 羽を試験群、5 羽を対照群とする。
注射材料 0.2ml ずつを試験群の皮下に注射し、対照群とともに 5 週間臨床観察を行い、観察終了時に体重を測定し、剖検する。

3.3.9.3 判定
観察期間中、試験群及び対照群に、臨床的な異常を認めはねならない。また、剖検したときに異常を認めはねならない。

3.3.10 オレンジ病持力価試験
3.3.10.1 試験材料
3.3.10.1.1 注射材料
マレック病2価ワクチン及び陰症ワクチンを溶剤用液で0.2 mL中1羽分となるように調整したものに注射材料とする。

3.3.10.1.2 試験動物

生ワクチン製造用材料の規格1.1由来の1〜4日齢の鶏を用いる。

3.3.10.2 試験方法

試験動物10羽を試験群、3羽を対照群とする。
注射材料の1羽分ずつを試験群の皮下に注射し、対照群とともに3週間観察する。
観察最終日に得られた各個体の血清について、蛻光抗体法により両ウイルス株に対する抗体価を測定する。
血清をリン酸緩衝食塩液で20倍に希釈し、更に2倍階段希釈する。感染細胞（付記4）に各希釈液を加え、37℃で45〜60分間処理した後、リン酸緩衝食塩液で3回洗浄し、風乾後、4単位の抗鶏IgG蛻光標識抗体（付記5）を加え、37℃で45〜60分間処理した後、リン酸緩衝食塩液で3回洗浄し、UV励起法で観察する。

3.3.10.3 判定

特異蛻光が認められる血清の最高希釈倍数を抗体価とする。
抗体価は、試験群の80％以上に陽性ウイルス株に対してそれぞれ40倍以上でなければならない。
この場合、対照群では、全て20倍以下でなければならない。

3.3.11 陰症発症試験

3.3.11.1 試験材料

3.3.11.1.1 接種材料

マレック病2価ワクチン及び陰症ワクチンを溶剤用液で0.01mL中1羽分となるように調整したものを接種材料とする。

3.3.11.1.2 試験動物

生ワクチン製造用材料の規格1.1由来の1〜4日齢の鶏を用いる。

3.3.11.2 試験方法

試験動物の10羽の翼膜に接種材料の0.01mLずつをそれぞれ穿刺接種し、3週間観察する。

3.3.11.3 判定

接種後5〜7日で発症発育し、病歴は21日以内に完全に消退しなければならない。

4 新設及び有効期間

マレック病2価ワクチンは140℃以下の液体窒素容器内で、陰症ワクチンは2〜5℃で保存する。
有効期間は、2年間とする。ただし、農林水産大臣が特に認めた場合には、その期間とする。

付記1 細胞維持用培養液
1,000mL中
トリプトース・ホスファイト・プロス 2.95g
牛血清 適量
イーグルMEM又はF10培地
炭酸水素ナトリウムでpHを7.0〜7.4に調整する。
必要最低量の抗生物質を加えるもよい。

付記2 溶解用液
1,000mL中
塩化ナトリウム 8.0 g
無水リン酸水素二ナトリウム 1.2 g
リン酸二水素カリウム 0.19 g
フェノールレッド 0.025 g
水 残量

付記3 抗マレック病ウイルス血清
マレック病ウイルス SB-1 株又はこれと同等と認められた株及び七面鳥ヘルペスウイルス FC126 株又はこれと同等と認められた株で免疫した生ワクチン製造用材料の規格 1.1 由来の鶏の血清で、試験品中のウイルスを完全に中和する力値を有するもの

付記4 感染細胞
生ワクチン製造用材料の規格 2.1.1 の鶏胚初代細胞を 37 ℃ 5vol%炭酸ガス下で培養し、カバーグラスに単層を形成させたものにマレック病ウイルス SB-1 株又はこれと同等と認められた株、及び七面鳥ヘルペスウイルス FC126 株又はこれと同等と認められた株をそれぞれ接種し、2 〜 4 日間培養したもので、特異抗原を有するもの

付記5 抗鶏 IgG 燃光標識抗体
抗鶏 IgG 血清からγ-グロブリンを調製し、これを燃光色素で標識したもので、8 単位以上を含むもの
ワクチンの部マイコプラスマ・ガリセプチカム感染症（油性アジュバント加）不活化ワクチンの項を次のように改める。

マイコプラスマ・ガリセプチカム感染症（油性アジュバント加）
不活化ワクチン

1 定義
マイコプラスマ・ガリセプチカムの培養菌液を不活化し、油性アジュバントを添加したワクチンである。

2 製法
2.1 製造用株
2.1.1 名称
マイコプラスマ・ガリセプチカム R-980 株又はこれと同等と認められた株
2.1.2 性状
鴨に対して病原性を示す。

2.1.3 繰代及び保存
原株及び種菌は、適当と認められた培地で維代する。
繰代は、原株では3代以内、種菌では2代以内でなければならない。ただし、特に承認されたものは、その繰代数以内とする。
原株及び種菌は深凍に －40℃以下又は凍結乾燥して5℃以下で保存する。

2.2 製造用材料
2.2.1 培地
製造に適当と認められた培地を用いる。

2.3 原液
2.3.1 培養
培養した種菌を製造用培地に植種し、培養したものを培養菌液とする。

培養菌液について、3.1 の試験を行う。

2.3.2 不活化
培養菌液にホルマリンを加えて不活化後、適当と認められた希釈用液で遠心洗浄し、適量の希釈用液に再浮遊させたもの又は培養菌液にホルマリンを加えて不活化後、適当と認められた方法で深凍したものを不活化剤液とする。

不活化剤液について、3.2 の試験を行う。

2.3.3 アジュバントの添加
不活化剤液を適当と認められた希釈用液で濃度調整し、油性アジュバントを添加したものを原液とする。この場合、適当と認められた保存剤を添加してもよい。
ただし、アジュバントは最終パルクの調製時に添加してもよい。

原液について、3.3 の試験を行う。

2.4 最終パルク
原液を混合し、濃度調整し、最終パルクとする。この場合、適当と認められた保存剤を添加してよい。

2.5 小分製品
最終パルクを小分容器に分注して、小分製品とする。

小分製品について、3.4 の試験を行う。

3 試験法
3.1 培養菌液の試験
3.1.1 失敗菌否定試験

一般試験法の無菌試験法1を準用して試験するとき、適合しなければならない。

3.1.2 生菌数試験

適当と認めた方法で試験するとき、適合しなければならない。

3.2 滅菌数試験

一般試験法の無菌試験法を準用して試験するものについては、本試験を準用しなくてもよい。

3.2.1 不活化試験

適当と認められた方法で試験するとき、適合しなければならない。

3.2.2 明菌数試験

適当と認められた方法で試験するとき、適合しなければならない。

3.3 原液の試験

3.3.1 無菌試験

一般試験法の無菌試験法を準用して試験するとき、適合しなければならない。

3.3.2 特性試験

一般試験法の特性試験法を準用して試験するとき、固有の色調を有する均質な懸濁液でなければならない。

3.4 小分製品の試験

3.4.1 特性試験

一般試験法の特性試験法を準用して試験するとき、固有の色調を有する均質な懸濁液でなければならない。

3.4.2 無菌試験

一般試験法の無菌試験法を準用して試験するとき、適合しなければならない。

3.4.3 チメロサール定量試験

チメロサール添加製剤については、適当と認められた方法で試験品を処理したものを試料とし、
一般試験法のチメロサール定量法を準用して試験するとき、適合しなければならない。

3.4.4 ホルマリン定量試験

ホルマリン添加製剤については、適当と認められた方法で試験品を処理したものを試料とし、
一般試験法のホルマリン定量法を準用して試験するとき、ホルマリンの含有量は、0.2vol %以下でなければならない。

3.4.5 安全試験

3.4.5.1 試験材料

3.4.5.1.1 注射材料

試験品を注射材料とする。

3.4.5.1.2 試験動物

生ワクチン製造用材料の規格1.1由来の4〜7週齢の雛を用いる。

3.4.5.2 試験方法

試験動物10羽を試験群、3羽を対照群とする。

注射材料1羽分を試験群の頭部皮下又は脚部筋肉内に注射し、対照群とともに4週間観察する。

3.4.5.3 判定

観察期間中、試験群及び対照群に臨床的な異常を認めではない。

3.4.6 力価試験

3.4.6.1 試験材料

3.4.6.1.1 試験動物

3.4.6.1.2 赤血球凝集抗体
マイコプラズマ・ガリセプチカム赤血球凝集抗原（付記1）を用いる。

3.4.6.2 試験方法

3.4.5 の試験最終日に試験動物から得られた各個体の血清について、赤血球凝集抑制試験を行う。
血清をリン酸緩衝食塩液で2倍間隔希釈し、各希釈血清25 µLに等量の4単位のマイコプラズマ・ガリセプチカム赤血球凝集抗原を加えて混合し、15 ～ 20 分間処理した後、0.25vol %の鶏赤血球浮遊液を50 µLずつ加えて振盪混合し、4℃で一夜処理した後、赤血球凝集の有無を観察する。

3.4.6.3 判定

赤血球の凝集が抑制された血清の最高希釈倍数を赤血球凝集抑制抗体価（以下「HI抗体価」という。）とする。
試験群のHI抗体価の幾何平均値が、40倍を超えないればならない。ただし、特に承認されたもののは、その幾何平均値とする。この場合、対照群は全てHI抗体価4倍未満でなければならない。

4. 貯蔵及び有効期間

有効期間は、1年9か月間とする。ただし、農林水産大臣が特に認めた場合には、その期間とする。

5. その他

5.1 他付文書等記載事項

1. 貯蔵に用いる便携容器は、保冷剤等を用いること。
2. 貯蔵に用いる便携容器は、保冷剤等を用いること。

付記1 マイコプラズマ・ガリセプチカム赤血球凝集抗原

製造用株を培養し、ポルマリンを加えて不活化した菌液を各群洗浄後、再度浮遊し、これにグリセリンを等量加え、－20℃以下に保存したもの。
<table>
<thead>
<tr>
<th>改</th>
<th>正 案</th>
</tr>
</thead>
<tbody>
<tr>
<td>島インフルエンザ（油性アジュボント）不活化ワクチン</td>
<td></td>
</tr>
</tbody>
</table>

トリニューモウイルス感染症ワクチン

<table>
<thead>
<tr>
<th>現</th>
<th>行</th>
</tr>
</thead>
<tbody>
<tr>
<td>島インフルエンザ（油性アジュボント）不活化ワクチン</td>
<td></td>
</tr>
</tbody>
</table>

トリニューモウイルス感染症ワクチン
2.2.2.3 培養法

Vero 細胞又は脳内に適当と認められた細胞を用いる。

2.2.2.4 培養法

Vero 細胞と適当と認められた培養液を用いる。

2.2.2.5 培養法

Vero 細胞と適当と認められた各細胞を用いる。

2.2.2.6 培養法

Vero 細胞又は脳内に適当と認められた細胞を用いる。
3.3.1 呼吸器試験
一般試験の特性を用いて試験するとき、固有の色を含む乾燥試験であるためなら
ない。試験の結果も固有の色を含む乾燥試験であるためならな
ない。本分類のごとの性質は、均一でなければならない。

3.3.2 真空度試験
一般試験の真空度試験を用いて試験するとき、適合しなければならない。

3.3.3 合成度試験
一般試験の合成度試験を用いて試験するとき、適合しなければならない。

3.3.4 耐熱試験
一般試験の耐熱度試験を用いて試験するとき、適合しなければならない。

3.3.5 マイクロプラズマ安定試験
一般試験のマイクロプラズマ安定試験を用いて試験するとき、適合しなければならない。

3.3.6 送入ウイルス安定試験
一般試験の送入ウイルス安定試験を用いて試験するとき、適合しなければならない。

ただし、新著用血清は、九州産多気管炎ウイルス血清（付則3）又は抗穏由来トリニーメ
ウイルス血清（付則4）を非構造のものとする。

3.3.7 ワイルス対策試験
一般試験のウイルス対策試験を用いて試験するとき、適合しなければならない。

ただし、新著用血清は、九州産多気管炎ウイルス血清（付則3）又は抗穏由来トリニーメ
ウイルス血清（付則4）を非構造のものとする。

3.3.8 安全試験
一般試験の安全試験を用いて試験するとき、適合しなければならない。

3.3.9 皮膚試験
一般試験の皮膚試験を用いて試験するとき、適合しなければならない。

3.3.10 生存試験
一般試験の生存試験を用いて試験するとき、適合しなければならない。

3.3.11 耐熱試験
一般試験の耐熱試験を用いて試験するとき、適合しなければならない。

3.3.12 マイクロプラズマ安定試験
一般試験のマイクロプラズマ安定試験を用いて試験するとき、適合しなければならない。

3.3.13 耐熱度試験
一般試験の耐熱度試験を用いて試験するとき、適合しなければならない。

3.3.14 送入ウイルス安定試験
一般試験の送入ウイルス安定試験を用いて試験するとき、適合しなければならない。

ただし、新著用血清は、九州産多気管炎ウイルス血清（付則3）又は抗穏由来トリニーメ
ウイルス血清（付則4）を非構造のものとする。
3.3.1.2 試験方法

試験模型の10羽を試験群とし、5羽を対照群とする。

接種材料を0.5mlずつを試験群に皮下接種し、3週間後に試験群及び対照群から得られた各個体の血清について、ESILAB 抗体価を測定する。

- 七面鳥鼻炎ウイルス受感染性血清（付図5）：七面鳥鼻炎ウイルス受感染性血清（付図6）及び試験群及び対照群の試験血液を100,000回転/分で30分間遠心分離し、七面鳥鼻炎ウイルス抗血清を除く硫酸水素ナトリウム-β-プロピオニトリートの酸化酸（付図8）に各試料血液を100 μlずつ加え、37℃で30分間反応させる。反応後、冷蔵庫で12時間静置し、各試料血液を100 μlずつ加え、37℃で30分間反応させる。反応後、洗浄用唾液を2%使用し、七面鳥鼻炎ウイルス受感染性血清（付図12）を100 μlずつ加え、5分間反応させ、定時反応（付図12）を50 μlずつ加えて反応を停止させ、延べ450μmの拡散距離を測定する。

- 七面鳥鼻炎ウイルス受感染性血清の平均吸光度値の平均値である1.5 倍の吸光度値を示す血清の抗体価をESILAB 抗体価とする。

- 各試料の70 %以上がESILAB 抗体価として示されなければならず、この場合、対照群はすべて2倍未満でなければならず、七面鳥鼻炎ウイルス受感染性血清は2倍以上の抗体価を示さなければならない。

3.3.2 接種材料

3.3.2.1 接種材料

試験群を接種する材料として、

- 七面鳥鼻炎ウイルス受感染性血清の規格1.1 由来の7日目の鶏の腺を用いる。

3.3.2.2 接種方法

接種材料の1羽分を試験群に接種し、4週間に隔て試験群及び対照群から得られた各個体の血清について、ESILAB 抗体価を測定する。

3.3.2.3 試験方法

3.3.2.3.1 接種材料

試験群を接種する材料として、

- 七面鳥鼻炎ウイルス受感染性血清の規格1.1 由来の7日目の鶏の腺を用いる。

3.3.2.3.2 接種方法

接種材料の1羽分を試験群に接種し、4週間に隔て試験群及び対照群から得られた各個体の血清について、ESILAB 抗体価を測定する。

- 七面鳥鼻炎ウイルス受感染性血清の規格1.1 由来の7日目の鶏の腺を用いる。

3.3.2.3.3 接種方法

4. 処理及び分析期間

4.1 处理期間は、接種後3年3か月間とする。ただし、農林水産大臣が許可した場合には、その期間とする。

付図1 予防接種用接種器

1.00 μl

トリプトフラス・ホスファート・プロス

トリプトフラス・ホスファート・プロス

ラクトアルブミン水解物

炭酸水素ナトリウム

牛血清

EMLA

必要最小量の抗生物質を加えてよい。
<table>
<thead>
<tr>
<th>付記2</th>
<th>透析液使用前準備液</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000mL中</td>
<td>牛血清</td>
</tr>
<tr>
<td>0～20 mL</td>
<td>インフルエンザ A型又はB型培地</td>
</tr>
<tr>
<td>8.8～7.4に調整する</td>
<td>菌液処理ウイルスA型又はB型</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>透析液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>透析液処理ウイルスA型又はB型</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>付記3</th>
<th>透析液使用前準備液</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000mL中</td>
<td>牛血清</td>
</tr>
<tr>
<td>0～20 mL</td>
<td>インフルエンザ A型又はB型培地</td>
</tr>
<tr>
<td>8.8～7.4に調整する</td>
<td>菌液処理ウイルスA型又はB型</td>
</tr>
<tr>
<td>液量を減らし</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>付記4</th>
<th>抗原検査</th>
</tr>
</thead>
<tbody>
<tr>
<td>透析液処理ウイルスA型又はB型</td>
<td>菌液処理ウイルスA型又はB型</td>
</tr>
<tr>
<td>培地を減らし</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>付記5</th>
<th>透析液使用前準備液</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000mL中</td>
<td>牛血清</td>
</tr>
<tr>
<td>0～20 mL</td>
<td>インフルエンザ A型又はB型培地</td>
</tr>
<tr>
<td>8.8～7.4に調整する</td>
<td>菌液処理ウイルスA型又はB型</td>
</tr>
<tr>
<td>液量を減らし</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>付記6</th>
<th>透析液使用前準備液</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000mL中</td>
<td>牛血清</td>
</tr>
<tr>
<td>0～20 mL</td>
<td>インフルエンザ A型又はB型培地</td>
</tr>
<tr>
<td>8.8～7.4に調整する</td>
<td>菌液処理ウイルスA型又はB型</td>
</tr>
<tr>
<td>液量を減らし</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>付記7</th>
<th>透析液使用前準備液</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000mL中</td>
<td>牛血清</td>
</tr>
<tr>
<td>0～20 mL</td>
<td>インフルエンザ A型又はB型培地</td>
</tr>
<tr>
<td>8.8～7.4に調整する</td>
<td>菌液処理ウイルスA型又はB型</td>
</tr>
<tr>
<td>液量を減らし</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>付記8</th>
<th>透析液使用前準備液</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000mL中</td>
<td>牛血清</td>
</tr>
<tr>
<td>0～20 mL</td>
<td>インフルエンザ A型又はB型培地</td>
</tr>
<tr>
<td>8.8～7.4に調整する</td>
<td>菌液処理ウイルスA型又はB型</td>
</tr>
<tr>
<td>液量を減らし</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>付記9</th>
<th>透析液使用前準備液</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000mL中</td>
<td>牛血清</td>
</tr>
<tr>
<td>0～20 mL</td>
<td>インフルエンザ A型又はB型培地</td>
</tr>
<tr>
<td>8.8～7.4に調整する</td>
<td>菌液処理ウイルスA型又はB型</td>
</tr>
<tr>
<td>液量を減らし</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>付記10</th>
<th>山県透析管10gペレオキシダーゼ準備</th>
</tr>
</thead>
<tbody>
<tr>
<td>透析液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>培地を減らし</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>付記11</th>
<th>透析液処理ウイルスA型又はB型</th>
</tr>
</thead>
<tbody>
<tr>
<td>透析液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>培地を減らし</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>付記12</th>
<th>透析液処理ウイルスA型又はB型</th>
</tr>
</thead>
<tbody>
<tr>
<td>透析液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>培地を減らし</td>
<td>培地を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>液量を減らし</td>
</tr>
<tr>
<td>菌液処理ウイルスA型又はB型</td>
<td>培地を減らし</td>
</tr>
</tbody>
</table>
TB 溶液
UP 経管液
水

TB 溶液は、DMSO 1,000mL に TB（3,3',5,5' テトラメチルペンジン）を 5g 溶かしたものを
UP 経管液は、尿素酸性塩化物 140g を TB 溶液（軽量ナトリウム 13g を約 500mL の水
に溶かし、1.5mL/ℓ クエン酸で pH5.3 〜 5.7 に調整した後、水を加えて 1,000mL としたもの
100mL に溶かしたもの

付記12 反応停止液
硫酸
110 mL

付記13 反応停止液
硫酸
1,000 mL

付記14 プロキシング液
1,000mL 中
抗血清アルブミン
10 g
抗原

付記15 洗浄用希釈液
1,000mL 中
塩化ナトリウム
58.45 g
リン酸二水素ナトリウム十二水和物
2.69 g
リン酸二水素ナトリウム十二水和物とソルビットール 20 g

付記16 洗浄用希釈液
1,000mL 中
塩化ナトリウム
58.45 g
リン酸二水素ナトリウム十二水和物とソルビットール 20 g

付記17 酵母クレアチン製造用材料の溶出
酵母クレアチン製造用材料のドリプス 1.1 由来の酵

付記18 ウサギ抗igg ベルオクテーゼ捕獲抗体
酵母クレアチン製造用材料の溶出
酵母クレアチン製造用材料の溶出

付記19 酵母クレアチン製造用材料の溶出
酵母クレアチン製造用材料の溶出
酵母クレアチン製造用材料の溶出

付記20 七面鳥汝鼻管炎ウイルス用検体収録液
1,000mL 中
リン酸二水素ナトリウム十二水和物
12.10 g
リン酸二水素ナトリウム十二水和物
1.43 g
<table>
<thead>
<tr>
<th>材料</th>
<th>量（g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>水素化ナトリウム</td>
<td>8.50</td>
</tr>
<tr>
<td>水</td>
<td>残量</td>
</tr>
</tbody>
</table>

pHを5.9～7.1に調製する。

付記22

トリニューモウイルス感染症（油性アジュバント加）不活化ワクチン

(以下略)

<table>
<thead>
<tr>
<th>材料</th>
<th>量（g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>水素化ナトリウム</td>
<td>8.50</td>
</tr>
<tr>
<td>水</td>
<td>残量</td>
</tr>
</tbody>
</table>

pHを6.9～7.1に調製する。

付記22

トリニューモウイルス感染症（油性アジュバント加）不活化ワクチン

(以下略)
新旧対照表
動物病理学的観察基準各条を併せた新旧対照表

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニューカッスル病・鶏伝染性気管支炎2価混合（油性アジュバント加）不活化ワクチン</td>
<td>ニューカッスル病・鶏伝染性気管支炎2価混合（油性アジュバント加）不活化ワクチン</td>
<td></td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>

マレット病（マレット病ウイルス2型・七面鳥ヘルペスウイルス）

<table>
<thead>
<tr>
<th>改</th>
<th>正</th>
<th>案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2価ワクチン</td>
<td>マレット病ウイルス2型株</td>
<td>マレット病ウイルス2型株</td>
</tr>
<tr>
<td>2.1.2.1 名称</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
<td>マレット病ウイルス2型株SB-1株又はこれと同等と認められた株</td>
</tr>
</tbody>
</table>
2.2.2.1 培養液

卵巣に適当と認められた培養液を用いる。

2.2.2.2 培養細胞

卵巣に適当と認められた培養細胞を用いる。

2.2.2.3 培養細胞の管理

卵巣に適当と認められた培養細胞を用いる。

2.2.2.4 培養細胞の使用

卵巣に適当と認められた培養細胞を用いる。

2.2.2.5 培養細胞の保存

卵巣に適当と認められた培養細胞を用いる。

2.2.2.6 培養細胞の処理

卵巣に適当と認められた培養細胞を用いる。

2.2.2.7 培養細胞の保存

卵巣に適当と認められた培養細胞を用いる。

2.2.3 原液

卵巣に適当と認められた原液を用いる。

2.2.3.1 原液の保存

卵巣に適当と認められた原液を用いる。

2.2.3.2 原液の処理

卵巣に適当と認められた原液を用いる。

2.2.3.3 原液の使用

卵巣に適当と認められた原液を用いる。

2.2.3.4 原液の保存

卵巣に適当と認められた原液を用いる。

2.3 雌巣

卵巣に適当と認められた雌巣を用いる。

2.3.1.1 雌巣の保存

卵巣に適当と認められた雌巣を用いる。

2.3.1.2 雌巣の処理

卵巣に適当と認められた雌巣を用いる。

2.3.1.3 雌巣の使用

卵巣に適当と認められた雌巣を用いる。

2.3.1.4 原液の保存

卵巣に適当と認められた原液を用いる。

2.3.1.5 原液の処理

卵巣に適当と認められた原液を用いる。

2.3.1.6 原液の使用

卵巣に適当と認められた原液を用いる。
2.3.3.2ウイルスの培養

ウイルスを発育させ棘の管で培養し、膜を採取して乳鉢とし、そのろ液を適当に処理し、

この場合、適当と認められた必要な無菌の抗生物質を加えてよい。なお、

3.2.2の試験を行う。

2.4最終結果

2.4.1マレットのウイルス二次及び四面体ヘリプスウイルス

マレットのウイルス二次及び四面体ヘリプスウイルスを混ぜ、適当と認められた症

状の差を示すもので、適当と認められた安全の抗生物質を加えて最終結果とする。

この場合、適当と認められた必要な抗生物質の抗生物質を加えてよい。

2.4.2調理ウイルス

調理ウイルス原液を混ぜ、適当と認められた安全の抗生物質を加えて、最終結果とする。この場合、

適当と認められた必要な抗生物質の抗生物質を加えてよい。

2.5小分け試験

2.5.1マレットの2個ワタシ

最終結果を小分け容器に分注し、凍結し、小分け試験とする。

2.5.2保存ワタシ

最終結果を小分け容器に分注し、凍結乾燥し、小分け試験とする。

3試験法

3.1宿主細胞の存否

3.1.1宿主細胞の存否

3.1.1.1宿主細胞の存否

3.1.1.1.1宿主細胞の存否

3.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1宿主細胞の存否

3.1宿主細胞の存否

3.1宿主細胞の存否

3.1宿主細胞の存否

3.1宿主細胞の存否
3.1.2.1.1 の試験最終日に励起波を処理し、0.5vol％報酬血球懸濁液を等量加え、60 分間静置し、
発酵させる。前もって、発酵後濃度を確認しておくこと。

3.1.2.1.2 試験結果
体液を通常の方法で、CPE を使用して検討した結果、濃度、CPE の発酵波を確認して、結果を示す。

3.1.2.1.3 試験結果の評価
試験終了日に、CPE の発酵波を確認し、0.5vol％報酬血球懸濁液を等量加え、60 分間静置し、
発酵させ、CPE の発酵波を確認した。

3.2 原形の試験
3.2.1 ラッカースライス材料の試験
3.2.1.1 ウイルス含有供試品
3.2.1.1.1 試験方法
試料で、ラッカースライスを用いる。部位を組織学的検査に用いる。部位を組織学的検査に用いる。

3.2.1.1.2 試験結果
ラッカースライスを用いる。部位を組織学的検査に用いる。部位を組織学的検査に用いる。

3.2.1.1.3 試験結果の評価
試料で、ラッカースライスを用いる。部位を組織学的検査に用いる。部位を組織学的検査に用いる。

3.2.1.1.4 試験結果の意義
ラッカースライスを用いる。部位を組織学的検査に用いる。部位を組織学的検査に用いる。

3.2.2 ウイルス含有供試品
3.2.2.1 試験方法
試料で、ラッカースライスを用いる。部位を組織学的検査に用いる。部位を組織学的検査に用いる。

3.2.2.1.1 試験方法
試料で、ラッカースライスを用いる。部位を組織学的検査に用いる。部位を組織学的検査に用いる。

3.2.2.1.2 試験結果
試料で、ラッカースライスを用いる。部位を組織学的検査に用いる。部位を組織学的検査に用いる。

3.2.2.1.3 試験結果の評価
試料で、ラッカースライスを用いる。部位を組織学的検査に用いる。部位を組織学的検査に用いる。

3.2.2.1.4 試験結果の意義
ラッカースライスを用いる。部位を組織学的検査に用いる。部位を組織学的検査に用いる。

3.3 培養液の試験
3.3.1 培養法
一般試験法の特定試験法を用いて試験するときは、ラッカースライスを用いて試験するとき、マレック病 2 例、ウッチャンにあっては培養の
色を有する有機物でなければならず、細菌状 Lugol にあっては、有機の色を有する有機物でなければならず。細菌を同定し、検出したものは、有機の色を有する有機物でなければならず、異物又は異臭を認めなければならない。小容器密ごとの性状は、同一でなければならない。

3.3.2 酸性測定

一般試験法のスパゲッティ試験法を用いて試験すると、異変が認められな
い。

3.3.3 甘味測定

一般試験法のスパゲッティ試験法を用いて試験すると、酸味が認められな
い。

3.3.4 極甘試験

一般試験法の極甘試験法を用いて試験すると、甘味が認められな
い。

3.3.5 低干試験

一般試験法の低干試験法を用いて試験すると、無湿性試験を行ってより、無湿性が認められる。

3.3.6 サルモネラ菌検出

一般試験法のサルモネラ菌検出試験法を用いて試験すると、無湿性が認められな
い。

3.3.7 通入ウレンス菌検出

一般試験法の通入ウレンス菌検出試験法を用いて試験すると、無湿性が認められ
ない。

3.3.8 含トウキリス菌検出

一般試験法の含トウキリス菌検出試験法を用いて試験すると、無湿性が認められ
ない。

3.3.9 酸味測定

一般試験法の酸味測定法を用いて試験すると、無湿性が認められ
ない。

3.3.10 甘味測定

一般試験法の甘味測定法を用いて試験すると、無湿性が認められ
ない。

3.3.11 通入ウレンス菌検出

一般試験法の通入ウレンス菌検出試験法を用いて試験すると、無湿性が認められ
ない。

3.3.12 サルモネラ菌検出

一般試験法のサルモネラ菌検出試験法を用いて試験すると、無湿性が認められ
ない。
3.3.10.2 試験方法

試験動物は、10羽を試験群、3羽を対照群とする。

試験材料の1羽分ずつを試験群の皮下に注射し、対照群とともに3週間観察する。

観察終了日に供試された各個体の体重、栄養状態により無ウィルス群に対する栄養体を測定する。

血清をリン酸緩衝生理食塩液で20倍に希釈し、更に2倍毎に増減させ測定する。感染細胞（付図4）にて各希釈液を加え、37℃で45〜60分間処理した後、リン酸緩衝生理食塩液で3回洗浄し、風乾後、10^5 個の殺菌 IgG 抗体（付図5）を加え、37℃で45〜60分間処理した後、リン酸緩衝生理食塩液で3回洗浄し、UV照射法で観察する。

3.3.10.3 判定

観察値が規定された値の最高値を検出体とする。

抗腫瘍効果が80%以上が同ウィルス群に対してそれぞれ40倍以上でなければならず、

この場合、対照群では、すべて20倍以下でなければならず。

3.3.11 適用範囲

3.3.11.1 試験材料

3.3.11.1.1 抗腫瘍効果

3.3.11.1.2 体外試験

3.3.11.1.3 体内試験

3.3.11.2 試験方法

3.3.11.2.1 体外試験

3.3.11.2.2 体内試験

3.3.11.3 判定

3.3.11.4 有効期間

3.3.12 試験動物

生ワクチン製造用材料の規格1.1 由来の1〜4日齢の鶏を用いる。

3.3.12.1 試験方法

3.3.12.2 判定

3.3.12.3 有効期間

付図1 体外殺菌剤用塗装液

1,000mL中

トルトロール 20g

中性

あるいは

イグザル MEM A又はF10培地

塩水洗浄トリツムでpHを7.0〜7.4に調整する。

必要最少塗布量を加えてよい。

付図2 無菌用液

1,000mL中

塩化ナトリウム 8.0 g

硫酸ビスマスニトリッキム 1.0 g

リン酸二水素カルシウム 0.19 g

フェアールレッド 0.025 g

塩水洗浄

付図3 抗マレック病ウイルス血液

マレック病ウイルスSD1株又はこれと同等と認められた株及び稲ませヘラベスウイルスFC126株又はこれと同等と認められた株及び稲ませヘラのウイルス血液で免疫したウサギウイルス血液を完全に中和する力を持たるもの

付図4 感染顕微

生ワクチン製造用材料の規格2.1.1の雛鶏初生雛を37℃5%CO2雑菌ガス下で培養し、カバーガラスを用い、温度80℃で10分間熱滅菌し、さらに37℃で10分間熱滅菌し、試験群として20株、対照群として3株をそれぞれ接种し、2〜4日間観察したもので、抗腫瘍効果を有するもの

付図5 抗マレックIgG抗原標抗体
<table>
<thead>
<tr>
<th>抗鶏IgG 血清からヘッドプロリンを調製し、これを塩酸溶液で調製したもので、8単位以上を含むもの</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニューカッスル病・鶏伝染性気管支炎2価・鶏伝染性ファブリキウス囊病混合（油性アクセプト加）不活化ワクチン</td>
</tr>
<tr>
<td>（以下略）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>抗鶏IgG 血清からヘッドプロリンを調製し、これを塩酸溶液で調製したもので、8単位以上を含むもの</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニューカッスル病・鶏伝染性気管支炎2価・鶏伝染性ファブリキウス囊病混合（油性アクセプト加）不活化ワクチン</td>
</tr>
<tr>
<td>（以下略）</td>
</tr>
</tbody>
</table>
| 新 | 旧 | 対照 | 表
|---|---|---|---|
| **マイクロプラズマ・ガリセプスチカム感染症（アジュベント加）** | **不活性ワクチン** | **不活性ワクチン** | **特徴**

1. 微細なマイクロプラズマ・ガリセプスチカムの抗原刺激を不活性化し、適当なアジュベントを加えたワクチン

2. 2.1 調製
2.1.1 原料
2.1.2 材料
2.1.3 調製
2.1.4 検査
2.1.5 保存

3. 副作用

4. 使用

5. 注意

6. 備考
一般試験法の無差試験法2を用いて試験するとき、違和しなければならない。

3.5.1 前処理試験

試験試料を適当な方法で試験するとき、違和しなければならない。

3.5.2 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.2.1 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.3 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.4 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.5 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.6 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.6.1 生食試験

試験試料を試験するとき、違和しなければならない。

3.5.6.2 試験方法

試験試料を試験するとき、違和しなければならない。

3.5.6.3 判定

試験試料を試験するとき、違和しなければならない。

3.5.7 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.7.1 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.7.2 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.7.3 判定

試験試料を試験するとき、違和しなければならない。

3.5.8 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.8.1 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.8.2 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.8.3 判定

試験試料を試験するとき、違和しなければならない。

3.5.9 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.9.1 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.9.2 生食試験

適当な方法で試験するとき、違和しなければならない。

3.5.9.3 判定

試験試料を試験するとき、違和しなければならない。

3.6 生食試験

適当な方法で試験するとき、違和しなければならない。

3.6.1 生食試験

適当な方法で試験するとき、違和しなければならない。

3.6.2 生食試験

適当な方法で試験するとき、違和しなければならない。

3.6.3 判定

試験試料を試験するとき、違和しなければならない。
有効期間は、1年9か月間とする。ただし、原料処理員が特に認めた場合には、その期間とする。

その他
5.1 給付文書等記載事項
1 規定に基づき使用しない旨
2 採用後反応は認め、調剤を考慮して使用するための所定の期間は使用しない旨

付記1 マイコブラズマ・ガリセプチカム不活化ワクチン
製造用株を増殖し、ポルマリンを加えて不活化した菌株を遠心洗浄後、再浮遊し、これにグリセリンを等量加え、-20℃以下に保存したもの

鶏伝染性コリーザ（A・C型）・マイコブラズマ・ガリセプチカム感染症混合（アジュバント・油性アジュバント加）不活化ワクチン

（以下略）
（別紙2）

農林水産省告示第千五百六十四号

薬事法施行令（昭和三十六年政令第十一号）第八十三条の規定に基づき、動物用生物学的製剤検定基準（平成十四年十月三日農林水産省告示第千五百六十八号）の規定に基づく、動物用生物剤の製造、販売、使用、輸入及び検査に関する規定（平成二十年十月二十八日）

備え置いて縦覧に供する。

（次のことごと）は、省略し、その関係書類を農林水産省消費・安全局畜水産安全管理課及び都道府県庁に

農林水産大臣 未破 茂
ワクチンの部

豚パルボウイルス感染症（油性アジュバント加）不活化ワクチン

豚パルボウイルスを培養細胞で増殖させて得たウイルス液を不活化し、油性アジュバントを添加したワクチンである。

1 小分製品の試験
1.1 無菌試験
一般試験法の無菌試験法により試験を行い、これに適合しなければならない。

1.2 不活化試験
1.2.1 試験材料
1.2.1.1 試料
試験品 10mL に等量のクロロホルムを加え、よく混和後、遠心分離した水層の 5mL を約 100 倍、量以上をリン酸緩衝食塩液で 4℃で一夜透析したものを試料とする。

1.2.1.2 培養細胞
PK-15 細胞を培養びんで培養し、単層となったものを用いる。

1.2.2 試験方法
試料の全量を 1 mL につき 3 cm³以上の培養細胞に接種し、37℃で 60 分間静置吸着させる。試料を抜き取り、ウイルス増殖用培養液（付録 1）を加え、37℃で 10 日間培養後、培養上清にペロニール緩衝食塩液（以下「VBS」という。付録 2）で調製した 0.5vol%の非凝集性の醤又はモルモットの赤血球浮遊液を等量加え、室温で 60 分間静置した後、赤血球凝集の有無を観察する。

1.2.3 判定
赤血球の凝集を認めない場合、活性ウイルス陰性と判定する。
試料に活性ウイルスを認めではない。

1.3 毒性限度確認試験
一般試験法の毒性限度確認試験法 1 により試験を行い、これに適合しなければならない。ただし、注射量は 0.4mL とする。

1.4 力価試験
1.4.1 試験材料
1.4.1.1 注射材料
試験品を注射材料とする。

1.4.1.2 試験動物
体重約 300g のモルモットを用いる。

1.4.1.3 赤血球凝集抗原
豚パルボウイルス 90HS 株又は同株の 2 倍稀釈試験に用いる。

1.4.2 試験方法
注射材料 2 mL ずつを、5 匹の試験動物の皮下に注射し、28 日目に得られた各個体の血清について、赤血球凝集抑制試験を行う。

被検血清を VBS で 5 倍に稀釈し、等量の 25w/v%カオリン液を加え、室温で 20 分間処理する。
遠心後の上清に既に同株のモルモットの赤血球を加え、室温で 15 分間処理し、再度遠心し、上清を採取する。これを VBS で 2 倍稀釈し、各段階の希釈液に 8 単位の赤血球凝集抗原を等量加え、4℃で一夜処理する。これに VBS で調製した 0.5vol%の非凝集性の醤又はモルモットの赤血球浮
通則の２を次のように改める。

２ この基準による検定については、動物用生物学的製剤基準（平成１４年１０月３日農林水産省告示第１５６７号。以下「動物基準」という。）の通則中７から１１まで、２６、３０から３４まで及び３６から３８まで、医薬品各条中各医薬品に係る定義、一般試験法並びに規格中生ワクチン製造用材料の規定を準用するものとする。
ワクチンの部
サルモネラ症（サルモネラ・エンテリティディス・サルモネラ・ティフィムリウム）（アジュバント加）不活化ワクチンの項目を次のように改める。

鶏サルモネラ症（サルモネラ・エンテリティディス・サルモネラ・ティフィムリウム）（アジュバント加）不活化ワクチン

サルモネラ・エンテリティディス（以下「SE」という。）及びサルモネラ・ティフィムリウム（以下「ST」という。）の培養菌液をそれぞれ不活化したもの、又は培養菌液をそれぞれ不活化し、濃縮したものを混合し、アルミニウムグルアジュバントを添加したワクチンである。

1 小分製品の試験
1.1 無菌試験

一般試験法の無菌試験法により試験を行い、これに適合しなければならない。

1.2 安全試験
1.2.1 試験材料
1.2.1.1 注射材料

試験品を注射材料とする。

1.2.1.2 試験動物

生ワクチン製造用材料の規格1.1由来の5週齢の鶏を用いる。

1.2.2 試験方法

試験動物の10羽以上を試験群、3羽以上を対照群とする。

注射材料1羽ずつを試験群の脚部筋肉に注射し、対照群とともに4週間観察し、試験終了日に注射部位を剖検する。

1.2.3 判定

観察期間中、試験群及び対照群に臨床的な異常を認めることはならない。ただし、一過性の跛行が認められることがあるが、3日以内に消失する。

また、剖検したとき、注射部位に著しい異常を認めはならない。

1.3 力価試験
1.3.1.1 及び1.3.2.1の試験、又は1.3.1.2及び1.3.2.2の試験のいずれかを行う。

1.3.1 鶏サルモネラ症（SE）力価試験
1.3.1.1 SE 力価試験
1.3.1.1.1 試験材料
1.3.1.1.1 試験動物

1.2の試験に使用した試験動物を用いる。
1.3.1.1.2 代謝抗体反応（以下「ELISA」という。）用抗原

SE 精製ペル毛抗原（付記1）を用いる。
1.3.1.2 試験方法

1.2の試験の2週目に、試験群及び対照群から得られた各個体の血清について、ELISA を行う。

試験群と対照群の血清、SE 参照陽性血清1（付記2）及び参照陰性血清1（付記3）を5 w/v％スクリムルト加洗浄液（付記4）で100 倍に希釈したものを SE 抗原固相化プレート1（付記5）
遊液を加え、室温で60分間静置し、赤血球凝集の有無を観察する。

1.4.3 判定
赤血球凝集を阻止した血清の最高希釈倍数を赤血球凝集抑制抗体価とする。
試験動物の赤血球凝集抑制抗体価の幾何平均は、80倍以上でなければならない。

付記1 ウイルス増殖用培養液
1,000mL中
トリプトース・ホスファイト・プロス
牛胎子血清又は牛血清アルブミン 2.95g
イーグルMBM
炭酸水素ナトリウムでpHを7.2〜7.6に調整する。
必要最少量の抗生素質を加えてもよい。

付記2 ベロナール緩衝食塩液（pH7.2）
1,000mL中
パルビタール 0.575g
パルビタールナトリウム 0.375g
塩化ナトリウム 8.5g
水

付記3 赤血球凝集抗原
豚パルボウイルス90HS株又は選定と認められた株を用いて調製した赤血球凝集抗原で、赤血球凝集価は64倍以上のもの
のそれぞれ4穴に50 µLずつ加え、37℃で1時間反応させた後、洗浄液1（付記6）で洗浄する。
各穴に酵素標識抗体1（付記7）を50 µLずつ加え、37℃で1時間反応させた後、洗浄液1で洗浄する。
基質液1（付記8）を100 µLずつ加え、遮光して25℃で30分間反応させた後、反応停止液1（付記9）を50 µLずつ加えて反応を停止させ、各穴の吸光度を主波長492nm、副波長630nmで測定する。
1.3.1.1.3 判定
4穴の吸光度の最高値と最低値を除いた2穴の値の平均値を吸光度値としたとき、試験群の70%以上が、試験群血清の吸光度値／SE参照陽性血清1の吸光度値≧1でなければならない。この場合、対照群では、すべてSE参照陽性血清1の吸光度値／対照群血清の吸光度値≧2でなければならない。また、SE参照陰性血清1は、吸光度値0.3〜0.7の値を示さなければならず、参照陰性血清1は、吸光度値0.1以下を示さなければならない。
1.3.1.2 SE力価試験
1.3.1.2.1 試験材料
1.3.1.2.1.1 試験動物
1.2の試験に使用した試験動物を用いる。ただし、試験群は10羽以上、対照群は5羽とする。
1.3.1.2.1.2 ELISA用抗原
SEペシト血清2（付記10）を用いる。
1.3.1.2.2 試験方法
1.2の試験最終日に、試験群及び対照群から得られた各個体の血清について、ELISAを行う。
希釈用緩衝液（付記11）を用い、試験群の血清及びSE参照陽性血清2（付記12）を400倍に、対照群の血清及び参照陰性血清2（付記13）を50倍に希釈する。SE標準陽性血清（付記14）を希釈用緩衝液で100、200、400、800、1600、3200及び6400倍に希釈する。希釈した各血清をSE抗原固定化プレート2（付記15）のそれぞれ4穴に100 µLずつ加え、37℃で1時間反応させた後、洗浄液2（付記16）で洗浄する。各穴に酵素標識抗体2（付記17）を100 µLずつ加え、37℃で1時間反応させた後、洗浄液2で洗浄する。基質液2（付記18）を100 µLずつ加え、遮光して25分間反応させた後、反応停止液2（付記19）を50 µLずつ加えて反応を停止させ、各穴の吸光度を波長450nmで測定する。
1.3.1.2.3 判定
SE標準陽性血清の希釈列の吸光度より作成したSigmoid曲线から、試験群及び対照群の血清、並びにSE参照陽性血清2及び参照陰性血清2のELISA抗体価を算出する。
試験群の70%以上がELISA抗体価2^2倍以上でなければならず、ELISA抗体価の幾何平均値は2^2倍以上でなければならず。この場合、対照群のELISA抗体価の幾何平均値は、2^2倍未満でなければならない。また、SE参照陽性血清2は2^2倍以上、参照陰性血清2は2^2倍以下のELISA抗体価を示さなければならない。
1.3.2 腫サルボネラ症（ST）力価試験
1.3.2.1 ST力価試験1
1.3.2.1.1 試験材料
1.3.2.1.1.1 試験動物
1.2の試験に使用した試験動物を用いる。
1.3.2.1.1.2 ELISA用抗原
13.2.1.2 試験方法
13.2.1.2.1 試験動物
13.2.1.2.2 ELISA 用抗原
13.2.1.2.3 試験方法
13.2.1.2.3.1 判定
付記 1
フィーにより精製し、リン酸緩衝食塩液水透析したもので、-20 ℃以下に保存する。本抗原を用いて 13.1.1.2 の試験により ELISA を実施するとき、SE 参照陰性血清 1 の吸光度値が 0.3 〜 0.7、参照陽性血清 1 の吸光度値が 0.1 以下を示し、使用時の蛋白量は 0.04 〜 0.34 μg/mL となるように炭酸緩衝液 (付記 27) で調整する。

付記 2 SE 参照陽性血清 1
SE NT391 株で免疫した生ワクチン製造用材料の規格1.1 由来の鶏の血清で、13.1.1.2 の試験により ELISA を実施するとき、吸光度値が 0.3 〜 0.7 を示す。凍結して -20 ℃以下で保存する。

付記 3 参照陰性血清 1
生ワクチン製造用材料の規格 1.1 由来の鶏の血清で、13.1.1.2 及び 13.2.1.2 の試験により ELISA を実施するとき、いずれの試験においても吸光度値が 0.1 以下を示す。凍結して -20 ℃以下で保存する。

付記 4 5 w/v％スキムミルク加洗浄液
洗浄液 1 にスキムミルクを 5 w/v％とすることがよし加え、溶解したもの

付記 5 SE 抗原固相化プレート 1
SE 精製済毛抗原 1 を炭酸緩衝液で希釈し、96 深プレートの各穴に 50 μL ずつ加え、37 ℃で 1 時間反応させた後、洗浄液 1 で洗浄する。各穴に 5 w/v％スキムミルク加洗浄液を 200 μL ずつ加え、37 ℃で 1 時間反応させた後、洗浄液 1 で洗浄したものを用いる。

付記 6 洗浄液 1
1,000mL 中
塩化ナトリウム 8.0 g
塩化カリウム 0.2 g
リン酸二水素カリウム 0.2 g
リン酸酸二ナトリウム三水和物 2.89 g
ポリソルベート 20 0.5 mL
水 残量
pH を 7.2 〜 7.4 に調整する。

付記 7 酵素標識抗体 1
パーキンズメセラーゼ標識抗ニホントリ IgG (H+L) 抗体で、13.1.1.2 及び 13.2.1.2 の試験により ELISA を実施するとき、SE 参照陰性血清 1 及び ST 参照陰性血清 1 の吸光度値が 0.3 〜 0.7 を示し、参照陽性血清 1 の吸光度値が 0.1 以下を示すように 5 w/v％スキムミルク加洗浄液で調整する。

付記 8 基質液 1
σ-フェニレンジアミンニ塩酸塩 10mg をリン酸クエン酸緩衝液（付記 28）25mL に逆光して溶解し、使用直前に過酸化水素水を 10 μ L 添加する。

付記 9 反応停止液 1
1,000mL 中
硫酸 112.2 mL
水 残 量

付記 10 SE べん毛抗原 2
SE P125/109 株の培養上清を作製したもので、SDS-PAGE では分子量 40 〜 50Kd のバンドを認める。本抗原を用いて 1.3.1.2.2 の試験により ELISA を実施するとき、100 倍から 6400 倍まで 2 倍階段希釈した SE 正常陽性血清の吸光度が、1.3 ≥ 100 倍希釈液吸光度 > 200 倍希釈液吸光度 > 400 倍希釈液吸光度 > 800 倍希釈液吸光度 > 1600 倍希釈液吸光度 > 3200 倍希釈液吸光度 > 6400 倍希釈液吸光度 ≥ 0.05 を示す場合を 1 単位とし、抗原濃度を決定する。抗原濃度が 1 単位となるように調整した SE 抗原固定化プレート 2 を作製し、1.3.1.2.2 の試験により ELISA を実施するとき、SE 正常陽性血清は ELISA 抗体価 2 〜 112 倍を示し、ST 正常陽性血清は ELISA 抗体価 2 〜 64 倍以下を示す。

付記 11 希釈用緩衝液
1,000mL 中
塩化ナトリウム 8.0 g
塩化カリウム 0.2 g
リン酸二水素カリウム 0.2 g
無水リン酸水素ナトリウム 1.15 g
水 残 量
pH を 7.4 〜 7.6 に調整後、カゼイン 10.0 g を加えて溶解する。

付記 12 SE 参照陽性血清 2
SE P125/109 株の不活化抗原で免疫あるいは強毒株を接種した生ワクチン製造用材料の規格 1.1 由来の鶏の血清で、1.3.1.2.2 の試験により ELISA を実施するとき、ELISA 抗体価 2 〜 112 倍以上を示す。

付記 13 参照陰性血清 2
生ワクチン製造用材料の規格 1.1 由来の鶏の血清で、1.3.1.2.2 及び 1.3.2.2.2 の試験により ELISA を実施するとき、いずれの試験においても ELISA 抗体価 2 〜 112 倍以下を示す。

付記 14 SE 正常陽性血清
SE P125/109 株の不活化抗原で免疫あるいは強毒株を接種した生ワクチン製造用材料の規格 1.1 由来の鶏の血清で、1.3.1.2.2 の試験により ELISA を実施するとき、100 倍から 6400 倍まで 2 倍階段希釈した SE 正常陽性血清の吸光度は、1.3 ≥ 100 倍希釈液吸光度 > 200 倍希釈液吸
光度 > 400 倍希釈吸光度 > 800 倍希釈吸光度 > 1600 倍希釈吸光度 > 3200 倍希釈吸光度
6400 倍希釈吸光度 minimalist 0.05 を示し、Sigmoid 曲線に当てはめた場合に相関係数 R²が 0.9 以上を示すように調整（1000 単位 SE 陽性血清）したものです。また、1.3.1.2.2 及び 1.3.2.2.2 の試験により ELISA を実施するとき、1.3.1.2.2 の試験では ELISA 抗体価 2 3 ～ 11 倍を示し、1.3.2.2.2 の試験では ELISA 抗体価 2 4 ～ 11 倍以下を示す。

付記 15 SE 抗原固相化プレート 2
SE べん毛抗原 2 を炭酸溶液で 1 単位となるように希釈し、96 穴平底プレートの各穴に 100 µ L ずつ加え、4 ℃で一夜反応させた後、洗浄液 2 で洗浄したもの。

付記 16 洗浄液 2
1,000mL 中
塩化ナトリウム 8.0 g
塩化カリウム 0.2 g
リン酸二水素カリウム 0.2 g
無水リン酸水素二ナトリウム 1.15 g
水 余 満
pH を 7.4 ～ 7.6 に調整後、ポリソルベート 20 を 0.5mL 添加する。

付記 17 酵素標識抗 2
ベルオキシダーゼ標識抗ニワトリ IgG ヤギ抗体で、1.3.1.2.2 及び 1.3.2.2.2 の試験により ELISA を実施するとき、1.3.1.2.2 の試験では SE 参照陽性血清 2 は ELISA 抗体価 2 3 ～ 11 倍以上、1.3.2.2.2 の試験では ST 参照陽性血清 2 は ELISA 抗体価 2 4 ～ 11 倍以上を示し、いずれの試験においても参照陰性血清は ELISA 抗体価 2 4 ～ 11 倍以下を示すように、牛胎児血清を 5 vol % とするように添加した洗浄液 2 で調整する。

付記 18 基質液 2
TMB 溶液 0.2 mL
UP 緩衝液 1.5 mL
水 15.0 mL
TMB 溶液は、ジメチルスルホキシド 1,000mL に TMB（3,3', 5,5' ツドレスチルベンゼン）6 g を溶かしたもの
UP 緩衝液は、尿素過酸化物 140mg を TMB 緩衝液（酢酸ナトリウム 136g を約 500mL の水に溶かし、1.5mol/L クエン酸で pH5.3 ～ 5.7 に調整後、水を加え、1,000mL としたもの）100mL に溶かしたもの

付記 19 反応停止液 2
硫酸 110 mL
水 1,000 mL
付記20 ST精製ベニ毛抗原1

ST A723 株の培養組成から作製したベニ毛抗原を、ゲルろ過及びイオン交換クロマトグラフィーにより精製し、リン酸緩衝食塩液で透析したもので、-20℃以下に保存する。本抗原を用いて1.3.2.1.2の試験によりELISAを実施するとき、ST参照陽性血清1の吸光度値が0.3〜0.7、参照陰性血清1の吸光度値が0.1以下を示し、使用時の蛋白質量は0.07〜0.36μg/mLとなるように炭酸緩衝液で調整する。

付記21 ST参照陽性血清1

ST A723株で免疫した生ワクチン製造用材料の規格1.1由来の鴨の血清で、1.3.2.1.2の試験方法によりELISAを実施するとき、吸光度値が0.3〜0.7を示す。凍結して-20℃以下で保存する。

付記22 ST抗原固相化プレート1

ST精製ベニ毛抗原1を炭酸緩衝液で希釈し、96穴プレートの各穴に50μLずつ加え、37℃で1時間反応させた後、洗浄液1で洗浄する。各穴に5w/v%スケミミルク加洗浄液を200μLずつ加え、37℃で1時間反応させた後、洗浄液1で洗浄したものを用いる。

付記23 STベニ毛抗原2

ST S7886/96株の培養組成から作製したもので、SDS-PAGEでは分子量40〜50Kdのバンドを認める。本抗原を用いて1.3.2.2.2の試験によりELISAを実施するとき、100倍から6400倍まで2倍段階希釈したST標準陽性血清の吸光度が、1.3≧100倍希釈液吸光度＞200倍希釈液吸光度＞400倍希釈液吸光度＞800倍希釈液吸光度＞1600倍希釈液吸光度＞3200倍希釈液吸光度＞6400倍希釈液吸光度≧0.05を示す場合を1単位とし、抗原濃度を決定する。抗原濃度が1単位となるように調整したST抗原固相化プレート2を作製し、1.3.2.2.2の試験によりELISAを実施するとき、ST標準陽性血清はELISA抗体価2倍〜10倍を示し、SB標準陽性血清はELISA抗体価2倍〜4倍以下を示す。

付記24 ST参照陽性血清2

ST S7886/96株の不活性化抗原で免疫あるいは強毒株を接種した生ワクチン製造用材料の規格1.1由来の鴨の血清で、1.3.2.2.2の試験によりELISAを実施するとき、ELISA抗体価2倍〜4倍以上を示す。

付記25 ST標準陽性血清

ST S7886/96株の不活性化抗原で免疫あるいは強毒株を接種した生ワクチン製造用材料の規格1.1由来の鴨の血清で、1.3.2.2.2の試験によりELISAを実施するとき、100倍から6400倍まで2倍段階希釈したST標準陽性血清の吸光度は、1.3≧100倍希釈液吸光度＞200倍希釈液吸光度＞400倍希釈液吸光度＞800倍希釈液吸光度＞1600倍希釈液吸光度＞3200倍希釈液吸光度＞6400倍希釈液吸光度≧0.05を示し、Sigmoid曲線に当てはめた場合に相関係数R²が0.9以上を示すように調整（1000単位ST陽性血清）したもの。また、1.3.1.2.2及び1.3.2.2.2の試験によ
診断値の部牛白血病診断用受身赤血球凝集反応抗原の次に次の項目を加える。

牛白血病診断用酵素抗体反応キット

牛白血病ウイルスを不活化及び可溶化後、牛白血病ウイルスgp51蛋白に対するモノクローナル抗体を用いて抽出した抗原をマイクロストリップに吸着させ、酵素抗体法により牛白血病ウイルス抗体を検出するためのキットである。
1 小学製品の試験
1.1 発光度試験
1.1.1 試験材料
1.1.1.1 被検材料
指示陽性血清及び指示陰性血清を用いる。
1.1.1.2 反応用抗原
抗原吸着マイクロストリップを用いる。
1.1.1.3 標識抗体
抗体希釈用液で100倍に希釈したペルオキシダーゼ標識プロテインG溶液（以下「標識抗体制」という）を用いる。
1.1.2 試験方法
抗原吸着マイクロストリップの保存液を捨て、抗原陽性血及び抗原陰性血の各3穴に指示陽性血清及び指示陰性血清をそれぞれ100 µLずつ加える。また、2穴をプランクとする。マイクロストリップを密閉して37℃で60分間反応させる。血清を除去した後、濃縮洗浄液を水で10倍に希釈した洗浄液300 µLずつで4回洗浄する。洗浄したマイクロストリップの各穴及びプランクとした2穴に標識抗体制100 µLずつを加え、密閉して37℃で30分間反応させる。標識抗体制を除去した後、洗浄液300 µLずつで4回洗浄する。発色基質液100 µLずつを各穴に加え、室温で12分間反応させる。反応終了後直ちに、反応停止液を50 µLずつ加え、速やかに450nmの波長で各穴の吸光度値を測定する。
1.1.3 判定
被検材料の平均吸光度を付記1により算出する。
指示陽性血清の抗原陽性血及び抗原陰性血における平均吸光度値を指示陽性血清の平均吸光度値で除した値（以下「指示陽性血清の平均吸光度値」という）は0.60以上でなければならない。指示陰性血清の平均差引吸光度値を指示陽性血清のそれで除した値は、0.30未満でなければならない。
1.2 時異性試験
1.2.1 試験材料
1.2.1.1 被検材料
抗原吸着マイクロストリップを用いる。
1.2.1.2 対照血清
交差反応試験血清（付記2）、参照陽性血清（付記3）及び参照陰性血清（付記4）を用いる。
1.2.1.3 指示血清
指示陽性血清を用いる。
1.2.1.4 標識抗体
1.1.1.3の標識抗体制を用いる。
1.2.2 試験方法
抗原吸着マイクロストリップの保存液を捨て、抗原陽性血及び抗原陰性血の各穴に血清希釈用液でそれぞれ50倍に希釈した対照血清を100 µLずつ加え、1.1.2の試験方法を準用して試験を行
付記26 ST抗原固相化プレート2
STペニオン抗原2を炭酸緩衝液で1単位となるように希釈し、96穴平底プレートの各穴に100μLずつ加え、4℃で一夜反応させた後、洗浄液2で洗浄したもの。

付記27 炭酸緩衝液
1,000mL中
炭酸ナトリウム 1.59 g
炭酸水素ナトリウム 2.93 g
水 残量
pHを9.6に調整する。アジ化ナトリウム0.2gを添加する場合もある。

付記28 リン酸クエン酸緩衝液
1,000mL中
クエン酸（無水） 4.67 g
リン酸二水素ナトリウム・十二水和物 19.95 g
水 残量
pHを5.0に調整する。
1.2.3 判定
指示陽性血清の平均差引吸光度値を分母にした交差反応試験血清及び参照陰性血清のS/P値（付記5）は、いずれも0.80未満でなければならない、参照陽性血清の平均差引吸光度値は、0.60以上でなければならない。

1.3 方伝試験
1.3.1 試験材料
1.3.1.1 被検材料
抗原吸着マイクロストリップを用いる。
1.3.1.2 対照血清
参照陽性血清及び参照陰性血清を用いる。
1.3.1.3 標識抗体
1.1.1.3 の標識抗体を用いる。

1.3.2 試験方法
抗原吸着マイクロストリップの保存液を捨て、抗原陽性穴及び抗原陰性穴の各8穴に血清希釈用液でそれぞれ50倍に希釈した対照血清を100μLずつ加え、1.1.2 の試験方法を準用して試験を行う。

1.3.3 判定
参照陽性血清の平均差引吸光度値は、0.60以上でなければならない、参照陽性血清の平均差引吸光度値を分母にした参照陰性血清のS/P値は、0.30未満でなければならない。

付記1 平均吸光度値
平均吸光度値は、下記の計算式により算出する。
対照血清の平均吸光度値×対照血清の抗原陽性穴数は陰性穴での吸光度値の合計/穴数

付記2 交差反応試験血清
牛白血病ウイルスに対する抗体を保有しない牛を以下のウイルスで免疫して得られた血清で、各々以下の抗体価を示すもの
- 牛伝染性鼻気管炎ウイルス 中和抗体価16倍以上
- 牛ウイルス性下痢-粘膜線維ウイルス 中和抗体価16倍以上
- 牛BSウイルス 中和抗体価4倍以上
- 牛流行熱ウイルス 中和抗体価40倍以上
- 牛アデノウイルス7型 赤血球凝集抑制抗体価20倍以上
- 牛バラインフエンザ3型ウイルス 赤血球凝集抑制抗体価40倍以上

付記3 参照陽性血清
牛白血病ウイルスで免疫した牛の血清で、1.3 の試験を準用して試験を行うときに、抗原陽性穴における平均吸光度値から抗原陰性穴における平均吸光度値を引いた値が0.60 以上を示すもの。

付記4 参照陰性血清
牛白血病ウイルスに対する抗体陰性の牛の血清で、1.3 の試験を準用して試験を行うとき、S
付記 5 S/P値
参照又は指示陽性血清の抗原陰性穴における平均吸光度値をPC(P)、抗原陰性穴における平均吸光度値をPC(N)、対照血清の抗原陰性穴における平均吸光度値をS(P)、抗原陰性穴における平均吸光度値をS(N)として、S/P値は下記の計算式により算出する。

\[
\frac{S}{P}値 = \frac{S(P) - S(N)}{PC(P) - PC(N)}
\]
診断液の部牛海綿状脳症診断用酵素抗体反応キット（ワンステップ測定法）の項を次のように改める。

牛海綿状脳症診断用酵素抗体反応キット（ワンステップ測定法）

プリオン蛋白に対するモノクローナル抗体を固相化したプレートに、処理された検体と標識抗体を同時に添加し、酵素抗体法により牛海綿状脳症の異常プリオン蛋白を検出するためのキットである。

1 小分製品の試験
1.1 吸光度試験
1.1.1 試験材料
試験品を用いる。

1.1.2 試験方法
抗体固相マイクロプレートの1穴に陽性コントロールを、2穴に陰性コントロールをそれぞれ100 μLずつ加える。直ちに酵素標識抗体液を50 μLずつ各穴に加え、37℃で1時間反応させる。洗浄後プレートを洗浄し、各穴に基質液を100 μLずつ加える。プレートを遮光し、20 ～ 30℃で30分間反応させた後、反応停止液を100 μLずつ加える。各穴の吸光度を、主波長450nm、副波長630nmで測定する。

1.1.3 判定
陽性コントロールの吸光度値が1.0以上、陰性コントロールの吸光度値の平均が0.1以下でなければならない。

1.2 特異性試験及び力価試験
1.2.1 試験材料
試験品、非感染牛延髄（付記1）及び参照陽性検体（付記2）を用いる。

1.2.2 試験方法
1.2.2.1 陰性検体の作製
非感染牛延髄0.2gに、800 μLのホモジネット用調製試薬1（付記3）を加えてホモジナライズし、20%脂肪乳剤を用いる。20%脂肪乳剤250 μLに、調製試薬2（付記4）を300 μL加え、37℃で30分間反応させる。反応終了後、調製試薬3（付記5）を150 μL加え15,000G、25℃で10分間遠心する。上清を除去し、可溶性液を50 μL加え、100℃で5分間加熱して沈殿を懸濁する。検体希釈液を100 μL加え陰性検体とする。

1.2.2.2 酵素抗体反応
抗体固相マイクロプレートの3穴に陰性検体を、2穴に参照陽性検体を、1穴に陽性コントロールを、2穴に陰性コントロールをそれぞれ100 μLずつ加える。直ちに酵素標識抗体液を50 μLずつ各穴に加え、37℃で1時間反応させる。洗浄後プレートを洗浄し、各穴に基質液を100 μLずつ加える。プレートを遮光し、20 ～ 30℃で30分間反応させた後、各穴にそれぞれ100 μLの反応停止液を加える。各穴の吸光度を、主波長450nm、副波長630nmで測定する。

1.2.3 判定
陽性コントロールの吸光度値が1.0以上、陰性コントロールの吸光度値の平均が0.1以下の場合、試験が成立するものとする。検体の吸光度がカットオフ値（付記6）未満の場合は陰性、カットオフ値以上の場合は陽性と判定する。

陰性検体は陰性、参照陽性検体は陽性でなければならず。また、参照陽性検体の吸光度値は、0.2以上1.0未満でなければならず。

付記1 非感染牛延髄
牛海綿状脳症に感染していない牛の延縁

付記2 参照陽性検体
組織培養牛正常ブリオン蛋白が0.0025 μg/mLになるように陰性コントロールで溶解したものです

付記3 ホモジネート用調製試薬1
ホモジネート液1 mLに対しDNase I溶液を8 μL、コラゲナーゼ溶液を50 μLを加えたもの

付記4 調製試薬2
界面活性剤液1.7mLに対しプロテインーゼK溶液を100 μLを加えたもの

付記5 調製試薬3
浸漬液3 mLに対しプロテインーゼK反応停止液を100 μLを加えたもの

付記6 カットオフ値
陰性コントロール2穴の平均値に0.15を加えた値
<table>
<thead>
<tr>
<th>改 正 案</th>
<th>現 行</th>
</tr>
</thead>
<tbody>
<tr>
<td>通 則</td>
<td></td>
</tr>
<tr>
<td>1. この基準は、医薬品各条に掲げる動物用生物学的製剤の検定の基準である。</td>
<td></td>
</tr>
<tr>
<td>2. この基準による検定については、動物用生物学的製剤基準（平成14年10月3日農林水産省告示第1567号。以下「動物用製剤基準」という。）の通則中7から11まで、26、30から34まで及び36から38まで、医薬品各条中各医薬品に係る定義、一般試験法及び規格中生ワクチン製造用材料の規定を準用するものとする。</td>
<td></td>
</tr>
<tr>
<td>3. 「中間製品」とは、動物用医薬品等取締規則（平成16年農林水産省令第107号）第165条に規定する「被検定中間製品」をいう。</td>
<td></td>
</tr>
<tr>
<td>4. 小製造の試験は、通常、同一の製造番号又は製造記号ごとに行う。ただし、分注区分又は乾燥区分のある小製造品については、無菌試験（マイコプラズマ否定検査及びサルモネラ否定検査を除く。）、生菌数検査、芽胞数検査、無菌両否定検査、ウイルス含有量検査、その他特に規定する試験を区区分ごとに行い、その他の試験については区分ごとに等量混合して行う。</td>
<td></td>
</tr>
<tr>
<td>以下略</td>
<td></td>
</tr>
</tbody>
</table>

1. この基準は、医薬品各条に掲げる動物用生物学的製剤の検定の基準である。 |
2. この基準による検定については、動物用生物学的製剤基準（平成14年10月3日農林水産省告示第1567号。以下「動物用製剤基準」という。）の通則中7から11まで、21、25から29まで及び31から33まで、医薬品各条中各医薬品に係る定義、一般試験法及び規格中生ワクチン製造用材料の規定を準用するものとする。 |
3. 「中間製品」とは、動物用医薬品等取締規則（平成16年農林水産省令第107号）第165条に規定する「被検定中間製品」をいう。 |
4. 小製造の試験は、通常、同一の製造番号又は製造記号ごとに行う。ただし、分注区分又は乾燥区分のある小製造品については、無菌試験（マイコプラズマ否定検査及びサルモネラ否定検査を除く。）、生菌数検査、芽胞数検査、無菌両否定検査、ウイルス含有量検査、その他特に規定する試験を区分ごとに行い、その他の試験については区分ごとに等量混合して行う。 |
<p>| 以下略 |</p>
<table>
<thead>
<tr>
<th>改正案</th>
<th>現行</th>
</tr>
</thead>
<tbody>
<tr>
<td>豚パルボウイルス感染症不活化ワクチン</td>
<td>豚パルボウイルス感染症不活化ワクチン</td>
</tr>
<tr>
<td>豚パルボウイルス感染症（油性アジュバント加）不活化ワクチン</td>
<td>(続き)</td>
</tr>
</tbody>
</table>

豚パルボウイルスを培養瓶で増殖させて得たウイルス液を不活化し、油性アジュバントを添加したワクチンである。

1.小分製品の試験
1.1製造試験
一部製造法の変更試験法により試験を行い、これに適合しなければならない。
1.2不活化試験
1.2.1不活化試験
1.2.1.1不活化
試験品10mLに等量のクロロホルムを加えてよく混和後、遠心分離した上層の5mLを約100倍量以上のリン酸緩衝液（pH=7.2）で一度透析したものを試験とする。
1.2.2不活化試験
PK-15細胞を培養し、不活化したものを用いる。
1.2.3不活化試験

血液試験の推奨を認めない場合、活性ウイルスを使用判定は行わない。
1.3活性度検定試験
一般製品の活性度検定試験法1により試験を行い、これに適合しなければならない。

注: 約4mLとする。

1.4力価試験
1.4.1効力試験
1.4.1.1効力試験
試験品を注射材とする。
1.4.1.2効力

体質約300gのネコを用いる。
1.4.1.3赤血球凝集抑止
豚パルボウイルス90/15株又は適当と認められた株を用いて調製した豚赤血球凝集（付記3）の

1.4.2効力

(未完)
注射材料 2 mLずつを、6匹の試験動物の皮下に注射し、28 日目に得られた各個体の血清について、赤血球凝集抑制試験を行う。

被検血清を PBS で 5 倍に希釈し、等量の 25% アルコール液を加え、室温で 30 分間処理する。

還心後の上清に 10% メラミットの赤血球を加え、室温で 15 分間処理し、再び処理し、上清を採取する。これを PBS で 2 倍量希釈し、各稀釈の各試験に 5 ないし 20 単位の赤血球凝集抑制液を希釈加え、

4℃で一夜処理する。これを PBS で調製した 0.5vol %の抗凝集性の種又はモルモットの赤血球溶液

を加え、室温で 60 分間振盪し、赤血球凝集の有無を観察する。

14.3 判定

赤血球凝集を阻害した血清の最終希釈倍数を赤血球凝集抑制活性値とする。

試験動物の赤血球凝集抑制活性値の一定条件では、80 倍以上でなければならない。

付記 1 ワイルス培養用培養液

1,000 mL 中

トリプトフス、ホスファイト、プロス 2.95 g

乳酸リン酸鉄、尿素、アミノ酸

20 mL 又は 1.1 g

プルーム MEM

塩酸水素ナトリウムで pH を 7.2 〜 7.6 に調整する。

必要に応じて抗生物質を加えてもよい。

付記 2 ベロナール緩衝食塩液（pH 7.2）

1,000 mL 中

ベロナール 0.575 g

ベロナールナトリウム 0.375 g

塩化ナトリウム 8.5 g

水

付記 3 赤血球凝集抑制

豚パルボウイルス 5000 椎又は接近に認められた株を用いて調製した赤血球凝集抑制で、赤

血球凝集値は 64 倍以上のもの

豚繁殖・呼吸障害症候群生ワクチン

（以下略）
<table>
<thead>
<tr>
<th>新</th>
<th>旧</th>
<th>対照表</th>
</tr>
</thead>
<tbody>
<tr>
<td>動物用生物学的製剤基準各条ワクチンの部 禽サルモネラ症 (サルモネラ・エンテリティディス・サルモネラ・ティフィムリウム) (アジュバント加)不活化ワクチン</td>
<td>動物用生物学的製剤基準各条ワクチンの部 禽サルモネラ症 (サルモネラ・エンテリティディス・サルモネラ・ティフィムリウム) (アジュバント加)不活化ワクチン</td>
<td></td>
</tr>
</tbody>
</table>

改正案

<table>
<thead>
<tr>
<th>番号</th>
<th>鳥類サルモネラ症 (サルモネラ・エンテリティディス) (油性アジュバント加)不活化ワクチン</th>
</tr>
</thead>
</table>

新

1. 小分粋製品の試験
 1.1 無菌試験
 一般的な無菌試験法により試験を行い、これに適合しなければならない。

2. 力量試験
 2.1 力量試験
 2.1.1 注射液材料
 2.1.2 注射液材料
 2.1.2.1 注射法
 2.1.2.2 訓練動物
 2.1.2.3 結果

3. 驚え試験
 3.1 異物試験
 3.1.1 動物用生物学的試験
 3.1.1.1 注射部位試験 (非りBUN, 1)の試験
 3.1.1.2 血清学的試験 (非りBUN, 1)の試験

現行

1. 小分粋製品の試験
 1.1 無菌試験
 一般的な無菌試験法により試験を行い、これに適合しなければならない。

2. 力量試験
 2.1 力量試験
 2.1.1 注射液材料
 2.1.2 注射液材料
 2.1.2.1 注射法
 2.1.2.2 訓練動物
 2.1.2.3 結果

3. 驚え試験
 3.1 異物試験
 3.1.1 動物用生物学的試験
 3.1.1.1 注射部位試験 (非りBUN, 1)の試験
 3.1.1.2 血清学的試験 (非りBUN, 1)の試験

対照

1. 小分粋製品の試験
 1.1 無菌試験
 一般的な無菌試験法により試験を行い、これに適合しなければならない。

2. 力量試験
 2.1 力量試験
 2.1.1 注射液材料
 2.1.2 注射液材料
 2.1.2.1 注射法
 2.1.2.2 訓練動物
 2.1.2.3 結果

3. 驚え試験
 3.1 異物試験
 3.1.1 動物用生物学的試験
 3.1.1.1 注射部位試験 (非りBUN, 1)の試験
 3.1.1.2 血清学的試験 (非りBUN, 1)の試験
1.3.2.2 ELISA用抗原

1.3.2.2.1 ELISA用抗原

1.3.2.2.2 ELISA用抗原（付記1）を用いる。
のそれぞれ2穴に100 μlずつ加え、37℃で1時間反応させた後、洗浄液2で洗浄する。各穴に洗浄液を100 μlずつ加え、37℃で1時間洗浄する。洗浄液を100 μlずつ加え、37℃で1時間試験液を反応させ、反応後洗浄液を20 μlずつ加えて反応を停止させ、各穴の吸光度を450 nmで測定する。

1.3.2.3 副反応

ST参照値性血清の希釈液の吸光度より作成したSigma群血清から、試験液及び対照液の保存、並びにST参照値性血清及びST参照値性血清以外のELISA保存を経て、各試験液及び対照液の吸光度を測定する。

試験液の65%以上がELISA抗体液2倍以上でなければならず、ELISA抗体液は6倍平均値を2倍以上でなければならず、この場合、無反応のELISA抗体液の吸光度が0.3以下に減少する。4倍反応のELISA抗体液の吸光度が0.7以下に減少する。6倍反応のELISA抗体液の吸光度が0.7以下に減少する。6倍反応のELISA抗体液の吸光度が0.7以下に減少する。

付記1 SE検定ペプチド抗原

SE NT991膜の検定観察から作成したペプチド抗原を、ゲル過及びイオン交換クロマトグラフィーにより精製し、最少検出血清で選択したものを、20℃以下で保存する。試験液を用いて1.3.1.2の試験によりELISAを実施するとき、SE参照値性血清の吸光度が0.8〜0.7、参照値性血清の吸光度が0.6以下の信号を示すように洗浄液（付記27）で調整する。

付記2 SE参照値性血清

SE NT991膜で免疫した生ワクチン製造用材料の規格1.1由来の鶏の血清で、1.3.1.2の試験によりELISAを実施するとき、吸光度が0.3〜0.7を示す。洗浄後として20℃以下で保存する。

付記3 参照値性血清

生ワクチン製造用材料の規格1.1由来の鶏の血清で、1.3.1.2及び1.3.2.1の試験によりELISAを実施するとき、いずれの試験においても吸光度が0.1以下の信号を示す。洗浄後として20℃以下で保存する。

付記4 5 w/v%スチルミル酸洗浄液
洗浄液1にスチルミル酸を5 w/v%となるように加え、溶媒としたものを用いる。

付記5 SE拡散差分洗浄プレート

SE検定ペプチド抗原を雑菌酸洗浄液で希釈し、96穴プレートの各穴に50 μlずつ加え、37℃で1時間反応させた後、洗浄液1で洗浄する。次に5 w/v%スチルミル酸洗浄液を200 μlずつ加え、37℃で1時間反応させた後、洗浄液1で洗浄したものを用いる。

付記6 洗浄液

1.0000ml中

塩酸ナトリウム

0.8 g

塩酸カルシウム

0.2 g

リン酸二水素カリウム

0.2 g

リン酸二水素ナトリウムおよび二水化物

2.89 g

ポリプロピレン20

0.5 mL

洗浄後、pHを7.2〜7.4に調整する。

付記7 参照値活性体

SE検定ペプチド抗原の等電点のトリオイド（H+）液体で、1.3.1.2及び1.3.2.1の試験によりELISAを実施するとき、SE参照値性血清及びST参照値性血清の吸光度が0.3〜0.7を示し、参照値性血清の吸光度が0.1以下を示すように5 w/v%スチルミル酸洗浄液で調整する。

付記8 基質液

α-アミレーゼインヒビター30mgをリン酸鉄酸溶液で（付記28）25mLに溶かして溶解し、使用直前に過酸化水素水を10 μl 1000mLに加える。

付記9 反応停止液

1.0000ml中
付録10 SE・ペン毛脱脂2

SE・オータニルの培養液の液分を除したものを、SDS-PAGE で分子量 40 〜 50kDa のバンドを確認し、112.2 mL の液分を用いて 13L2 の試験により ELISA を実施するとき、100 倍から 6400 倍まで 2 倍減量を施した SE・ペン毛脱脂血清の検定を、10 倍から 100 倍の各程度の検定を、100 倍から 1000 倍の程度の検定を、1000 倍から 10000 倍の程度の検定を、10000 倍からの程度の検定を施す。検定結果が 1 倍以下の

付録11 食塩使用量

1000mL中

塩化カリウム 8.0 g

リン酸二水素カリウム 0.2 g

硝酸ナトリウム 0.2 g

塩酸 1.5 g

水 7.4 〜 7.6 に調和後、カゼイン 10.0 g を加えて溶解する。

付録12 SE・食塩使用量

SE・オータニルの培養液の液分を除したものを、SDS-PAGE で分子量 40 〜 50kDa のバンドを確認し、112.2 mL の液分を用いて 13L2 の試験により ELISA を実施するとき、ELISA 計量値 2 倍以下を示す。

付録13 SE・食塩使用量

生ワクチン製造用材料の規格 1.1 自来水の液分を、13L2 の試験により ELISA を実施することにより、検出されない場合、2 倍以下を示す。

付録14 SE・食塩使用量

SE・オータニルの培養液の液分を除したものを、SDS-PAGE で分子量 40 〜 50kDa のバンドを確認し、112.2 mL の液分を用いて 13L2 の試験により ELISA を実施するとき、100 倍から 6400 倍まで 2 倍減量を施した SE・食塩使用量の検定は、10 倍から 100 倍の各程度の検定を、100 倍から 1000 倍の程度の検定を、1000 倍から 10000 倍の程度の検定を、10000 倍からの程度の検定を施す。検定結果が 1 倍以下の

付録15 SE・食塩使用量

SE・ペン毛脱脂血清の検定を除したものを、SDS-PAGE で分子量 40 〜 50kDa のバンドを確認し、112.2 mL の液分を用いて 13L2 の試験により ELISA を実施することにより、検出されない場合、100 倍以下の濃度を加えて、4 倍までに濃度を増加させた場合、検出されなかったものを示す。

付録16 洗浄液

1000mL中

塩酸 8.0 g

リン酸二水素カリウム 0.2 g

硝酸ナトリウム 0.2 g

水 18.1 g

DMSO を 7.4 〜 7.6 に調和後、ポリソルペクト 20 を 0.5mL 添加する。

付録17 酸素供給量

ポルフリニヒニル-ニャリ ヤギ検体で、13L2 の試験により ELISA を実施することにより、検出されない場合、13L2 の試験と SE・オータニル検体の検定を、ELISA 計量値 2 倍以下を示す。
血清中の抗原体はELISA抗体価2段階以下を示すように、牛乳と牛乳を5vol%となるように添加した洗浄液で洗浄する。

付表18

<table>
<thead>
<tr>
<th>血清</th>
<th>0.2 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP標準液</td>
<td>1.5 mL</td>
</tr>
<tr>
<td>水</td>
<td>15 mL</td>
</tr>
<tr>
<td>TMB溶液</td>
<td>10 mL</td>
</tr>
</tbody>
</table>

付表19

<table>
<thead>
<tr>
<th>パセラ</th>
<th>110 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMB溶液</td>
<td>1,000 mL</td>
</tr>
</tbody>
</table>

付表20

| ST | A723株の培養細胞から作製したペプチド抗原を、グルロフォス及びイオン交換クロマトグラフィーにより精製し、リン酸緩衝液で洗浄したもので、−20℃以下に保存する。本抗原を用いて13222の試験によりELISAを実施するとき、血清体液の抗原価が0.3〜0.7、ポリペプチド体液の抗原価が0.1以下を示し、使用時の蛋白質量は0.07〜0.36μg/mlとなるように洗浄液で調整する。

付表21

| ST | A723株を体外接種した生ワクチン製造用材料の規格1.1由来の膜の血清で、13222の試験方法によりELISAを実施するとき、血清体液の抗原価が0.3〜0.7を示す。凍結して−20℃以下で保存する。

付表22

| ST | A723株の培養細胞を洗浄後、洗浄液で洗浄し、96孔プレートの各穴に50μLずつ加え、37℃で1時間反応させた後、洗浄液1Lで洗浄する。各穴に5μg/mlのペプチド抗原を200μLずつ加え、37℃で1時間反応させる後に、洗浄液1Lで洗浄したものを用いる。

付表23

| ST | A723株の培養細胞を洗浄後、洗浄液で洗浄し、96孔プレートの各穴に50μLずつ加え、37℃で1時間反応させた後、洗浄液1Lで洗浄する。各穴に5μg/mlのペプチド抗原を200μLずつ加え、37℃で1時間反応させた後、洗浄液1Lで洗浄したものを用いる。

付表24

| ST | A723株の培養細胞を洗浄後、洗浄液で洗浄し、96孔プレートの各穴に50μLずつ加え、37℃で1時間反応させた後、洗浄液1Lで洗浄する。各穴に5μg/mlのペプチド抗原を200μLずつ加え、37℃で1時間反応させた後、洗浄液1Lで洗浄したものを用いる。

付表25

| ST | A723株の培養細胞を洗浄後、洗浄液で洗浄し、96孔プレートの各穴に50μLずつ加え、37℃で1時間反応させた後、洗浄液1Lで洗浄する。各穴に5μg/mlのペプチド抗原を200μLずつ加え、37℃で1時間反応させた後、洗浄液1Lで洗浄したものを用いる。
付記26 ST抗原固定化プレート
ST培養後当を炭酸錠溶液で1単位となるように希釈し、96穴平底プレートの各穴に100μLずつ加え、4℃で一夜反応させた後、洗浄液で洗浄したもの。

付記37 炭酸錠溶液
1,000mL中
炭酸ナトリウム 1.59g
炭酸水素ナトリウム 2.53g
水 調製
pHを9.6に調整する。酸化ナトリウム0.2gを増加する場合もある。

付記28 リン酸クエン酸緩衝液
1,000mL中
クエン酸（無水） 4.67g
リン酸水素リチウム十二水和物 19.95g
水 調製
pHを5.0に調整する。

鴨サルモネラ症（サルモネラ・エンテリティディス・サルモネラ・ティフィムリウム）（油性アジュバント加）不活化ワクチン
(以下略)

鴨サルモネラ症（サルモネラ・エンテリティディス・サルモネラ・ティフィムリウム）（油性アジュバント加）不活化ワクチン
(以下略)
<table>
<thead>
<tr>
<th>動物用生物学的製剤検定基準改訂案の変更</th>
<th>现 行</th>
</tr>
</thead>
<tbody>
<tr>
<td>牛白血病診断用受身赤血球凝集反応抗原</td>
<td>牛白血病診断用受身赤血球凝集反応抗原</td>
</tr>
<tr>
<td>(剤)</td>
<td>(剤)</td>
</tr>
<tr>
<td>牛白血病診断用酵素抗体反応キット</td>
<td>牛白血病診断用酵素抗体反応キット</td>
</tr>
<tr>
<td>牛白血病ウイルスを不活化及び可溶化後、牛白血病ウイルスgp51蛋白に対するナノクロー、トキロン抗体を用いて凝集した抗原をマイクロストリップに吸着させ。酵素抗体法により牛白血病ウイルス抗体を検出するためのキットである。</td>
<td>牛白血病ウイルスを不活化及び可溶化後、牛白血病ウイルスgp51蛋白に対するナノクロー、トキロン抗体を用いて凝集した抗原をマイクロストリップに吸着させ。酵素抗体法により牛白血病ウイルス抗体を検出するためのキットである。</td>
</tr>
</tbody>
</table>

1. 小分製品の試薬
 1.1 吸光度試薬
 1.1.1 試験材料
 1.1.2 反応用抗原
 1.1.3 標識抗体

 抗体系用緩衝液100倍に希釈したペルオキシダーゼ標識プロテインG溶液（以下「標識抗体」という）を用いる。

2. 試験方法
 抗原吸着マイクロストリップの保存液を捨て、抗原陽性値及び抗原陰性値の各3穴に指示陽性血清及び指示陰性血清をそれぞれ100 µLずつ加える。また、2穴をプランクとする。マイクロストリップを密閉して37℃で60分反応させる。血清を除去した後、濃縮洗浄液を水で10倍に希釈した洗浄液300 µLずつで4回洗浄する。洗浄したマイクロストリップの各穴及びプランクとした2穴に標識抗体100 µLずつを加え、密閉して37℃で30分反応させる。標識抗体を除去した後、洗浄液300 µLずつで4回洗浄する。発色基質液100 µLずつを各穴に加え、室温で12分反応させる。反応終了後直ちに、反応停止液を50 µLずつ加え、速やかに450nmの波長で各穴の吸光度値を測定する。

3. 判定
 被検材料の平均吸光度を付記1より算出する。
 指示陽性血清の抗原陽性値における平均吸光度値から抗原陰性値における平均吸光度値を引いた値（以下「平均差引吸光度値」という）は0.60以上でなければならず、指示陰性血清の平均差引吸光度値を指示陽性血清のそれぞれで検した値は、0.30未満でなければならない。
1.2 協同性試験
1.2.1 試験材料
1.2.1.1 被検材料
抗原吸着マイクロストリップを用いる。
1.2.1.2 対照血清
交差反応試験血清（付記2）、参照陽性血清（付記3）及び参照陰性血清（付記4）を用いる。
1.2.1.3 指示血清
指示陽性血清を用いる。
1.2.1.4 標識抗体
標識抗体を用いる。
1.1.1.3 の標識抗体を用いる。
1.2.2 試験方法
抗原吸着マイクロストリップの保存液を捨て、抗原陽性血清及び抗原陰性血清
の各2穴に血清希釈用液でそれぞれ500倍に希釈した対照血清を100 μLずつ
加え、1.1.2の試験方法を使用して試験を行う。
1.2.3 判定
指示陽性血清の平均差引吸光度値を分母にした交差反応試験血清及び参照
陰性血清のS/P値（付記5）は、いずれも0.30未満でなければならず、参照陽性
血清の平均差引吸光度値は、0.60以上でなければならない。
1.3 方偏試験
1.3.1 試験材料
1.3.1.1 被検材料
抗原吸着マイクロストリップを用いる。
1.3.1.2 対照血清
参照陽性血清及び参照陰性血清を用いる。
1.3.1.3 標識抗体
標識抗体を用いる。
1.3.2 試験方法
抗原吸着マイクロストリップの保存液を捨て、抗原陽性血清及び抗原陰性血清
の各8穴に血清希釈用液でそれぞれ500倍に希釈した対照血清を100 μLずつ加
え、1.1.2の試験方法を使用して試験を行う。
1.3.3 判定
参照陽性血清の平均差引吸光度値は、0.60以上でなければならない、参照陽性
血清の平均差引吸光度値を分母にした参照陰性血清のS/P値は、0.30未満で
なければならない。
付記1 平均吸光度値
平均吸光度値は、下記の計算式により算出する。
対照血清の平均吸光度値-参照血清の抗原陽性穴又は陰性穴での吸
光度値の合計/穴数
付記2 交差反応試験陽性

牛白血病ウイルスに対する抗体を保有しない牛を以下のウイルスで免疫して得られた血清で、各々以下の抗体価を示すもの

- 牛伝染性鼻気管炎ウイルス：中和抗体価16倍以上
- 牛ウイルス性下痢粘膜発症ウイルス：中和抗体価16倍以上
- 牛RSウイルス：中和抗体価4倍以上
- 牛流行性ウイルス：中和抗体価40倍以上
- 牛アデノウイルス7型：赤血球凝集抑制抗体価20倍以上
- 牛パラインフルエンザ3型ウイルス：赤血球凝集抑制抗体価40倍以上

付記3 参照陽性血清

牛白血病ウイルスで免疫した牛の血清で、13の試験を基準にして試験を行うとき、抗原陽性血清における平均吸光度値から抗原陰性血清における平均吸光度値を引いた値が0.60以上を示すもの

付記4 参照陰性血清

牛白血病ウイルスに対する抗体陰性の牛の血清で、13の試験を基準にして試験を行うとき、S/P値が0.30未満を示すもの

付記5 S/P値

参照又は対照陽性血清の抗原陽性血清における平均吸光度値をP(C)(P)、抗原陰性血清における平均吸光度値をP(C)(N)、対照血清の抗原陽性血清における平均吸光度値をS(C)(P)、抗原陰性血清における平均吸光度値をS(C)(N)として、S/P値は下記の計算式により算出する。

\[
S/P値 = \frac{S(C)(P) - S(C)(N)}{P(C)(P) - P(C)(N)}
\]

牛白血病診断用沈降反応抗原

(以下略)
<table>
<thead>
<tr>
<th>新旧対照表</th>
</tr>
</thead>
<tbody>
<tr>
<td>動物用生物学的製剤検定基準医薬品各条診断液の部：牛海綿状脳症診断用酵素抗体反応キット（化学発光）</td>
</tr>
</tbody>
</table>

牛海綿状脳症診断用酵素抗体反応キット（化学発光）

<table>
<thead>
<tr>
<th>1. 小分類品の試験</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 驗び実験</td>
</tr>
<tr>
<td>1.1.1 試験材料</td>
</tr>
<tr>
<td>1.1.2 試験方法</td>
</tr>
</tbody>
</table>

抗体純度の作製

非感染牛血ち3g、0.9gの塩化ナトリウム溶液を含む200mlに、再洗浄200mlを用いて、37℃で20分間反応させ、洗浄して15,000gで20分間遠心する。上清を除去し、可燃化を50mL加え、100℃で10分間加熱して脱酸素する。検体洗浄液を100mLの洗浄液とする。

2.1.2 原反応の作製

抗体原液を200mlに、0.9gの塩酸ナトリウム溶液を含む200mlに、再洗浄で37℃で20分間反応させ、洗浄して15,000gで20分間遠心する。上清を除去し、可燃化を50mL加え、100℃で5分間加熱して脱酸素する。検体洗浄液を100mLの洗浄液とする。

牛海綿状脳症診断用酵素抗体反応キット（化学発光）

<table>
<thead>
<tr>
<th>1. 小分類品の試験</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 驗び実験</td>
</tr>
<tr>
<td>1.1.1 試験材料</td>
</tr>
<tr>
<td>1.1.2 試験方法</td>
</tr>
</tbody>
</table>

抗体純度の作製

非感染牛血ち3g、0.9gの塩化ナトリウム溶液を含む200mlに、再洗浄200mlを用いて、37℃で20分間反応させ、洗浄して15,000gで20分間遠心する。上清を除去し、可燃化を50mL加え、100℃で5分間加熱して脱酸素する。検体洗浄液を100mLの洗浄液とする。

2.1.2 原反応の作製

抗体原液を200mlに、0.9gの塩酸ナトリウム溶液を含む200mlに、再洗浄で37℃で20分間反応させ、洗浄して15,000gで20分間遠心する。上清を除去し、可燃化を50mL加え、100℃で5分間加熱して脱酸素する。検体洗浄液を100mLの洗浄液とする。
<table>
<thead>
<tr>
<th>付記1</th>
<th>非感染牛延髄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>牛海綿状脳症に感染していない牛の延髄</td>
</tr>
</tbody>
</table>

| 導入延髄 |
|----------|---------------------|
| 非感染牛延髄 |
| 牛海綿状脳症に感染していない牛の延髄 |

<table>
<thead>
<tr>
<th>付記2</th>
<th>非感染牛延髄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>牛海綿状脳症に感染していない牛の延髄</td>
</tr>
</tbody>
</table>

| 導入延髄 |
|----------|---------------------|
| 非感染牛延髄 |
| 牛海綿状脳症に感染していない牛の延髄 |

<table>
<thead>
<tr>
<th>付記3</th>
<th>非感染牛延髄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>牛海綿状脳症に感染していない牛の延髄</td>
</tr>
</tbody>
</table>

| 導入延髄 |
|----------|---------------------|
| 非感染牛延髄 |
| 牛海綿状脳症に感染していない牛の延髄 |

<table>
<thead>
<tr>
<th>付記4</th>
<th>非感染牛延髄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>牛海綿状脳症に感染していない牛の延髄</td>
</tr>
</tbody>
</table>

| 導入延髄 |
|----------|---------------------|
| 非感染牛延髄 |
| 牛海綿状脳症に感染していない牛の延髄 |

<table>
<thead>
<tr>
<th>付記5</th>
<th>非感染牛延髄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>牛海綿状脳症に感染していない牛の延髄</td>
</tr>
</tbody>
</table>

| 導入延髄 |
|----------|---------------------|
| 非感染牛延髄 |
| 牛海綿状脳症に感染していない牛の延髄 |

<table>
<thead>
<tr>
<th>付記6</th>
<th>非感染牛延髄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>牛海綿状脳症に感染していない牛の延髄</td>
</tr>
</tbody>
</table>

| 導入延髄 |
|----------|---------------------|
| 非感染牛延髄 |
| 牛海綿状脳症に感染していない牛の延髄 |

<table>
<thead>
<tr>
<th>付記7</th>
<th>非感染牛延髄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>牛海綿状脳症に感染していない牛の延髄</td>
</tr>
</tbody>
</table>

<p>	導入延髄
非感染牛延髄	
牛海綿状脳症に感染していない牛の延髄	</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>300</td>
<td>278,900</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>300</td>
<td>278,900</td>
</tr>
</tbody>
</table>

(※補足)
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>66,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>47,900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>47,900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>20,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
改める。
別表4 動物用医薬品の検定に関する標準処理期間

<table>
<thead>
<tr>
<th>藥剤</th>
<th>標準処理期間（日）</th>
</tr>
</thead>
<tbody>
<tr>
<td>（血液の部） （略）</td>
<td>（略）</td>
</tr>
<tr>
<td>（ワクチンの部） （略）</td>
<td>（略）</td>
</tr>
<tr>
<td>脲パルボウイルス感染症不活化ワクチン</td>
<td>70</td>
</tr>
<tr>
<td>脲パルボウイルス感染症（急性アジュバント加）不活化ワクチン</td>
<td>70</td>
</tr>
<tr>
<td>（略）</td>
<td>（略）</td>
</tr>
<tr>
<td>（診断用の部） （略）</td>
<td>（略）</td>
</tr>
<tr>
<td>牛自血病診断用受血者血球凝集反応抗原</td>
<td>40</td>
</tr>
<tr>
<td>牛自血病診断用受血者血球凝集反応キット</td>
<td>40</td>
</tr>
<tr>
<td>（以下略）</td>
<td>（以下略）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>藥剤</th>
<th>標準処理期間（日）</th>
</tr>
</thead>
<tbody>
<tr>
<td>（血液の部） （略）</td>
<td>（略）</td>
</tr>
<tr>
<td>（ワクチンの部） （略）</td>
<td>（略）</td>
</tr>
<tr>
<td>脲パルボウイルス感染症不活化ワクチン</td>
<td>70</td>
</tr>
<tr>
<td>脲パルボウイルス感染症（急性アジュバント加）不活化ワクチン</td>
<td>70</td>
</tr>
<tr>
<td>（略）</td>
<td>（略）</td>
</tr>
<tr>
<td>（診断用の部） （略）</td>
<td>（略）</td>
</tr>
<tr>
<td>牛自血病診断用受血者血球凝集反応抗原</td>
<td>40</td>
</tr>
<tr>
<td>牛自血病診断用受血者血球凝集反応キット</td>
<td>40</td>
</tr>
<tr>
<td>（以下略）</td>
<td>（以下略）</td>
</tr>
</tbody>
</table>