１　環境・資源制約要因としての世界の土壌および水資源

－世界食料需給予測の準備としての概観－

上林 駒幸

Ｉ　はじめに

21世紀においても地球の人口は増大を続けており、農用地や水資源の利用可能性は世界全体の食料需給にとって制約条件となることが指摘されている。

今後の世界食料需給を見通す上で、このような環境・資源制約要因を考慮に入れる事が必要となっている。したがって、環境・資源制約要因となりうる「土壌」及び「水」について着目し、世界的現状の概要を以下にまとめる。

Ⅱ　砂漠化

１．土壌劣化及び砂漠化

「土壌劣化」は不合理的な土壌管理、または生物生産性を上げるあまり過度の収奪を土壌から行う場合に起こる土壌の生産性の低下を伴う土壌荒廃を総じて意味し、国を問わず世界共通の土壌問題として次第に顕在化しつつある事象である。一方、「砂漠化」は半乾燥地の耕地で特微的に出現しているローカルな土壌劣化の問題である。いずれも、土壌の持つ恒常的な生物生産性を不可逆的に低下させるという共通した内容を有する。そして、現在では、土壌劣化の主要な部分が砂漠化と、砂漠化とを合わせて関連性の強い土壌の塩類化で占められているという。良いほど砂漠化は土壌劣化を代表する内容になりつつある。砂漠化や土壌の塩類化が現在の土壌劣化の主要な内容となりつつあるのは、これらの土壌変化の過程が他の土壌劣化の原因、例えば、化学肥料や農薬の多用による土壌生態系の劣化に基づく生物生産性の低下に比べてはるかに急速に進展する内容を有し、しかも、それらの問題の現れ方が極めて激しく、地球環境変動特に不安定な気象変動に連動して、多くの場合土壌の生産性を殆ど無にしてしまうほど大きなインパクトがあるからである。また、急速に進行した人口圧の増大は不適切な土地開発を進めさせるとともに、激しい土壌侵食と土壌荒廃を誘発し、砂漠化をもたらしている。（名古屋大学出版会「土壌圏と地球環境問題」（木村真人編、1997年、129～130ページ）

* 農林水産政策研究所
2. 砂漠化の定義

砂漠化とは、砂漠化防止条約によれば、「乾燥地域、半乾燥地域、乾燥半湿潤地域における気候上の変動や人間活動を含む様々な要素に起因する土地の劣化（Land Degradation）」である。この場合、土地とは、土壌や水資源、地面の表層や植生などを含む概念であり、劣化とは、降雨や風による土壌の流出や河床への堆積、長時間をかけた自然植生の多様性の減少、土地の塩化など、土地に作用する一つ又は複数のプロセスによって生じる土地資源の潜在力の減少をいう。

3. 砂漠化が進む理由

主な砂漠化の原因としては、地球規模での大気循環の変動による乾燥地の移動という気候的要因と、乾燥地及び半乾燥地の脆弱な生態系の中で、その許容限度を超えた人間活動が行われることによるインパクトという人為的要因の二つが考えられている。

気候的要因としては、下降気流の発生又は水圧輸送量の減少などによって乾燥が進むことにより引き起こされ、地球的規模の気候変動によって、さらに砂漠化が進行しているといわれている。

人為的要因としては、草地の再生能力を超えた家畜の放牧（過放牧）、休耕期間の短縮等による地力の低下（過耕作）、薪炭材の過剰な採取が考えられている。

これからのほか、かんがい農地の塩類集積の問題がある。これは、かんがいが行われる際に、過剰なかんがい水や水路からの漏水等のために地下水源の上昇が起こったり、あるいは塩類濃度の高い地下水を用いたりするといった不適切なかんがいが行われることにより、水分が蒸発した後に水に含まれていた塩類が集積してしまい、塩化によって農地が荒廃、劣化してしまうことである。

また、植生や土壌基盤の弱い乾燥地では、耕作や放牧などで地面が裸地状態になり、乾季には風食、雨期には水による浸食が起こりやすくて、土壌の流出に伴い砂漠化も起こり、進んでいく場合もある。

以上のように、砂漠化の原因としては、気候的及び人為的要因が考えられるが、地球的規模の環境問題として現在注目されている砂漠化を考えた場合、気候的要因よりもむしろ人間活動（人為的要因）に伴って砂漠化が引き起こされていると考えられている。

砂漠化の進化により、いったん不毛の砂漠になってしまう土地は、膨大な労力および
費用をかけて再生しない限り、元の状態に戻ることは難しく、現在の影響が、どこかかかが
しか影響を受けていない土地の劣化を防ぐことは、劣化した土地を再生させることより、
はるかに効率的で、実行可能性を有する対策であると考えられている。
また、砂漠化の問題は、自然資源をベースにした開発途上国の発展のプロセスと深く関
わたっており、開発途上国と貧困、食料、雇用、教育、人口問題といった社会的、経済的、
文化的、政治的な観点に基づいた対策が行わなければならないと考えられている。
（中央法廃止「地球環境キーワード事典」（環境庁地球環境部編集、1998年、105〜106
ページ)

4. 砂漠化の現状と影響

1991年のUNEP（国連環境計画）の報告書では、砂漠化の影響を受けている土地の面
積は約36億ヘクタールと報告されている。これは、地球上の全陸地の約4分の1、世界的に
耕作可能な乾燥地域（乾燥、半乾燥、乾燥半湿潤地域の合計）約52億ヘクタールの約70%
に相当する。この他に、9億ヘクタールの極めて乾燥した地域、すなわち、砂漠が存在す
が、当然のことながら、砂漠は耕作可能な乾燥地域とは見なされない。また、砂漠化に
よって影響を受けている人口は約9億人で、世界の全人口の約6分の1に当たる。こうし
た砂漠化により影響を受けている地域の多くが開発途上国である。
第1表によれば、砂漠化の面積は地域別に見ると、アフリカが約10億ヘクタール、ア
ジアが約13億ヘクタールで、この両地域で、世界的な砂漠化の影響を受けている土地の面
積の約3分の2を占めている。

第1表 世界の乾燥地における砂漠化・土壌劣化の程度

<table>
<thead>
<tr>
<th>地域</th>
<th>全面積</th>
<th>沙漠化</th>
<th>沙漠化割合</th>
<th>地面積</th>
<th>沙漠化</th>
<th>沙漠化割合</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>万ha</td>
<td>万ha</td>
<td>％</td>
<td>万ha</td>
<td>万ha</td>
<td>％</td>
</tr>
<tr>
<td>アフリカ</td>
<td>1,042</td>
<td>180</td>
<td>124,235</td>
<td>99,506</td>
<td>5,722</td>
<td></td>
</tr>
<tr>
<td>アジア</td>
<td>9,202</td>
<td>3,181</td>
<td>157,124</td>
<td>118,760</td>
<td>38,364</td>
<td></td>
</tr>
<tr>
<td>オーストラリア</td>
<td>1,571</td>
<td>25</td>
<td>65,726</td>
<td>36,135</td>
<td>29,591</td>
<td></td>
</tr>
<tr>
<td>ヨーロッパ</td>
<td>1,990</td>
<td>191</td>
<td>11,157</td>
<td>8,052</td>
<td>3,105</td>
<td></td>
</tr>
<tr>
<td>北アメリカ</td>
<td>2,087</td>
<td>586</td>
<td>49,314</td>
<td>41,115</td>
<td>8,206</td>
<td></td>
</tr>
<tr>
<td>南アメリカ</td>
<td>842</td>
<td>142</td>
<td>39,090</td>
<td>29,775</td>
<td>9,315</td>
<td></td>
</tr>
<tr>
<td>世界合計</td>
<td>14,551</td>
<td>4,315</td>
<td>455,642</td>
<td>333,246</td>
<td>122,396</td>
<td></td>
</tr>
</tbody>
</table>

資料：H.Dregne, CASALS, 1991

これは両地域で耕作が可能な乾燥地のうちのそれぞれ73%、71%に相当し、砂漠化問題が

— 3 —
両地域の人々の生活を脅かす深刻な問題になっていることがこれらの数字からも明らかである。また、影響を受けている面積こそ両地域より少ないが、南北アメリカ地域でも砂漠化の受けている土地の割合は 70% を超えており、世界合計の耕作が可能な乾燥地のうち、70%が砂漠化の影響を受けているといった深刻な状況にある。

土地の形態別にみると、牧草地への影響が最も大きく、約 33.3 億ヘクタールの牧草地が砂漠化の影響を受けており、これは乾燥地域の全牧草地の面積の 73% に相当する。降雨依存農地では、約 2.1 億ヘクタールが影響を受けており、これは乾燥地域の降雨依存農地の約 47% に相当する。かんでい農地では、約 0.4 億ヘクタールが主に塩類集積というかたちでの砂漠化の影響を受けている。これは乾燥地域にあるかんでい農地の 30% に相当する。

砂漠化の人为的要因としては、過放牧、薪炭材の過剰採取、過開墾、不適切な水管理による塩類集積などがあげられる。これらは植生の減少、土壤浸食の増大、表層土壤への塩類集積を引き起こし、土壤の劣化、土地の生産力の減退をもたらしている。砂漠化の背景には当該地域住民の貧困と急激な人口増といった社会・経済的な要因が存在している。

乾燥地における砂漠化による土壤劣化のうち、人为的要因によるものを取り出してみる。第 2 表をみると、世界合計で、乾燥地帯における人为的要因による砂漠化面積は、10 億 3500 万ヘクタール存在する。

第 2 表 乾燥地における人为的要因別土壤の劣化面積

<table>
<thead>
<tr>
<th>地域</th>
<th>乾燥地面積</th>
<th>うち土壌の劣化面積</th>
<th>過放牧</th>
<th>樹木過伐採</th>
<th>過開墾</th>
<th>不適切な土壤・水管理</th>
<th>その他</th>
<th>人为的土壤劣化合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>アフリカ</td>
<td>1,266</td>
<td>185</td>
<td>19</td>
<td>54</td>
<td>62</td>
<td>0</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>アジア</td>
<td>1,672</td>
<td>119</td>
<td>112</td>
<td>42</td>
<td>97</td>
<td>1</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>オーストラリア</td>
<td>663</td>
<td>78</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>ヨーロッパ</td>
<td>300</td>
<td>41</td>
<td>39</td>
<td>0</td>
<td>18</td>
<td>1</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>北米</td>
<td>732</td>
<td>28</td>
<td>4</td>
<td>6</td>
<td>41</td>
<td>0</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>南米</td>
<td>516</td>
<td>26</td>
<td>32</td>
<td>9</td>
<td>12</td>
<td>0</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>世界合計</td>
<td>5,169</td>
<td>477</td>
<td>210</td>
<td>112</td>
<td>235</td>
<td>2</td>
<td>1,035</td>
<td></td>
</tr>
</tbody>
</table>

資料：UNEP1997年改変、鳥取大学乾燥地研究センター

このうち、過放牧による劣化が 4 億 7700 万ヘクタール、樹木の過伐採による劣化が 2 億 1000 万ヘクタール、不適切な土壤・水管理による劣化が 2 億 3500 百万ヘクタール、過開墾が 1 億 1200 万ヘクタールとなっている。

また、第 3 表により乾燥地帯における砂漠化面積 10 億 3500 万ヘクタールの内訳を劣化
の種類別にみると、水食が4億6700万ヘクタール、つづいて風食が4億3200万ヘクタール、化学的劣化が1億100万ヘクタール、物理的劣化が3500万ヘクタールとなっている。

第3表 乾燥地における人为的要因による種類別・程度別の土地劣化

<table>
<thead>
<tr>
<th>劣化の度合</th>
<th>劣化の種類</th>
<th>水食</th>
<th>風食</th>
<th>化学的劣化</th>
<th>物理的劣化</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>わずか</td>
<td>水食</td>
<td>175</td>
<td>197</td>
<td>44</td>
<td>11</td>
<td>427</td>
</tr>
<tr>
<td>中</td>
<td>水食</td>
<td>209</td>
<td>215</td>
<td>31</td>
<td>15</td>
<td>470</td>
</tr>
<tr>
<td>強</td>
<td>水食</td>
<td>79</td>
<td>18</td>
<td>24</td>
<td>9</td>
<td>130</td>
</tr>
<tr>
<td>極度</td>
<td>水食</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>世界合計</td>
<td></td>
<td>467</td>
<td>432</td>
<td>101</td>
<td>35</td>
<td>1,035</td>
</tr>
</tbody>
</table>

資料：GEMS/GRID 1991 based on GLASOD

砂漠化の進行は人間社会に様々な影響を及ぼすが、その最も直接的なものが、農地や牧草地などの土地の生産能力の低下である。乾燥地の耕地は、もともと自然条件が厳しい生産力の低い土地が多いため、砂漠化による土地の生産力の低下は、地域住民に食糧不足や薪材不足をもたらし、一層の貧困を招き、深刻なケースでは飢餓といった人間の生存そのものの脅威になる。また、地域住民が砂漠化した土地を放棄した場合は、都市に流れたり、国内に難民となって流出するなど、社会的な混乱を招き、極端な場合には民族間や国家間の紛争の原因となり得る。例えば、1972/73年、1983/84年をピークとするアフリカのサヘル地域（サハラ砂漠の南縁地域）の大干ばつの際には、多数の人命と家畜が失われるとともに、難民が広域で発生し、深刻な政治的、社会的問題となった。

また、UNEP の1991年の分析によれば、砂漠化により、毎年世界で約1000万ヘクタールの農地が、二度とかんがい農地や天水農地、放牧地として使用することのできない状態となって失われていると推計されている。砂漠化問題の構図をまとめたものが、以下の第1図である。
第1図 砂漠化問題の構図

資料：環境庁企画調整局地球環境部「砂漠化防止対策への提言」—砂漠化防止総合対策検討会中間報告書（1994年）
Ⅲ GAEZ(Global Agro-Ecological Zones)による土壌評価

1. はじめに

GAEZは、FAOおよびIIASA (International Institute of Applied System Analysis 本部：オーストリア)が共同で実施する、地球上の土壌資源、土壌の生産性、作物の潜在的生産可能性などを評価し、データベース化するプログラムである。昨今のコンピュータ及び人口衛星技術の発達により、地球上を微小な格子分割し、そのなかの降水量、気温などの気候データ、地形、土壌の性質などのデータを蓄積することにより、その土地の特定作物の生産に対する適応性や潜在的な土地の生産力を総合的に評価することが可能となる。以上のような土地のデータはFAO/UNESCOの世界デジタル土壌地図(DSMW)に蓄積されている。このデジタル土壌地図は、地球上を220万個の微小な格子セルに分割し、データを蓄積したものである。これを、肥料・農薬など栽培技術のレベルに応じた特定作物の生産技術体系とマッチングを行って評価することにより、土地がある作物をどの最大限の単収で生産できる可能性があるかという土地の潜在的生産性を測定することが可能となっている。ただし、かんがい農業については、水資源がどの程度入手可能かという評価はおこなっておらず、適度の水資源が常に入手可能であるという前提に基づいておる。気象データについては、最近完成されたイーストアングリア大学気象研究センターの世界各地における1901-1996年の経年データおよび平年データとしての1961-90年平均のデータを使用している。

2 GAEZによる地球上の農業の主な評価

GAEZによる評価によれば、地球表面の作物の耕作の可能性については、その13％が冷涼すぎ、その27％が乾燥しすぎ、その12％は土壌の傾斜が大きすぎ、その40％は土壌の肥沃土が足りず、耕作に適していない。これらの制約が重複する土地もあることを考慮しても、地球上の4分の3以上が穀物の耕作に不適な土地となっている。

穀物の耕作が可能な土地は、開発途上国で約18億ヘクタールであり、現在そのうち9億ヘクタールが実際に耕作されている。先進国で耕作可能な土地は7億6千5百ヘクタールであり、そのうち5億9千5百ヘクタールが実際に耕作されている。

現在実際に耕作されていないが、潜在的耕作可能性を持つ土地の80％が、南アメリカとサブサハラアフリカに集中している。これとは対照的に、アジアの耕作可能な土地は既
に耕作し尽くされている。そして、現在の人口増加が続けば、2050年には、人間の生存に必要な耕地面積を、一人当たり0.1ヘクタールというぎりぎりの水準にまで低下させるおそれがある。

世界全体で14億ヘクタールの森林があり、このうち先進国で12%、開発途上国で30%の森林が耕作に適している。しかし、これらをつぶして耕地にすることは、環境に深刻な結果をもたらす。

したがって、2050年に90億人に増加する地球の人口を養うためには、新たな農地を開発することはあまり現実性が無く、現在の耕地で農業の集約化を図ることが最も現実的な手段であると考えられる。もし持続的な土地管理と適当な投入（肥料・農薬など）があれば、農業の集約化によって2050年には90億人の人口を養うことが可能である。しかし、そのための条件として、多くの開発途上国において、投入や農業技術へのアクセスが可能となるよう、これらの国の社会経済の状態が大幅に改善する必要がある。

地球温暖化の穀物の生産への影響については、地理的な場所の違いにより複雑な結果をもたらす。先進国は温暖化により潜在的生産力を増大させる反面、多くの開発途上国では潜在的生産力は低下する。現在20億人の人口をかかえる約40の貧しい開発途上国において、4億5千万の栄養不良の人が存在するが、温暖化による気候の変化により栄養不良人口が飛躍的に増大し、貧困と食料不足からの脱却を困難にする可能性がある。

1960-96年の実績値からGAEZが評価した、最大限達成可能な穀物の単収が第4表にまとめられている。
第4表 天水農業およびかんがい農業において最大限達成可能な穀物の単収
（単位：トン／ヘクタール）

<table>
<thead>
<tr>
<th>投入材（肥料・農薬等）のレベル</th>
<th>作物</th>
<th>小麦</th>
<th>コメ</th>
<th>トウモロコシ</th>
</tr>
</thead>
<tbody>
<tr>
<td>天水農業地域</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>低投入レベル</td>
<td>熱帯</td>
<td>2.7</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>亜熱帯</td>
<td>4.3</td>
<td>4.7</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>溫帯</td>
<td>4.9</td>
<td>4.9</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>中間投入レベル</td>
<td>熱帯</td>
<td>5.7</td>
<td>7.7</td>
<td>8.5</td>
</tr>
<tr>
<td>亜熱帯</td>
<td>8.4</td>
<td>7.3</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>溫帯</td>
<td>8.7</td>
<td>6.9</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>高投入レベル</td>
<td>熱帯</td>
<td>8.5</td>
<td>9.9</td>
<td>12.5</td>
</tr>
<tr>
<td>亜熱帯</td>
<td>11.8</td>
<td>9.2</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>溫帯</td>
<td>12.1</td>
<td>8.6</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>かんがい農業地域</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中間投入レベル</td>
<td>熱帯</td>
<td>7.4</td>
<td>9.5</td>
<td>10.5</td>
</tr>
<tr>
<td>亜熱帯</td>
<td>10.2</td>
<td>9.9</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>溫帯</td>
<td>9.7</td>
<td>8.7</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>高投入レベル</td>
<td>熱帯</td>
<td>11.1</td>
<td>12.2</td>
<td>15.6</td>
</tr>
<tr>
<td>亜熱帯</td>
<td>14.2</td>
<td>12.7</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>溫帯</td>
<td>13.5</td>
<td>10.9</td>
<td>15.7</td>
<td></td>
</tr>
</tbody>
</table>

資料：IIASA “Global Agro-ecological Assessment for Agriculture in the 21st century” 2001

これらは、小麦、コメ、とうもろこしに関するものであり、熱帯・亜熱帯・温帯別に、また、天水農業地域とかんがい農業地域に分けて、さらに、投入材の多寡のレベルに応じて、評価されている。これによれば、天水農業地域の低投入レベルとかんがい農業の高投入レベルの単収には2～5倍の格差が存在し、かんがい下で適切な栽培技術を採用した場合、耕地の生産性は飛躍的に高めることが可能であることが示されている。

現在、肥料の投入は、地域によって大きな格差がある。サブサハラアフリカでは、平均8kg/ヘクタールの施肥を行っているが、開発途上国平均では80kg/ヘクタール、そして先進国平均では200kg/ヘクタールとなっている。

地域ごとの穀物の多毛作の可能性については、第5表にまとめてある。
第5表 穀物の二毛作および三毛作に適した耕地の割合（投入材レベルは中）

<table>
<thead>
<tr>
<th>地域</th>
<th>殺作適地 (百万ha)</th>
<th>単毛作 (%)</th>
<th>二毛作 (%)</th>
<th>三毛作 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>オセアニア</td>
<td>87</td>
<td>83</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>アジア</td>
<td>366</td>
<td>63</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>アフリカ</td>
<td>678</td>
<td>58</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>ヨーロッパ･ロシア</td>
<td>422</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>中南アメリカ</td>
<td>606</td>
<td>19</td>
<td>65</td>
<td>17</td>
</tr>
<tr>
<td>北アメリカ</td>
<td>297</td>
<td>57</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>開発途上国</td>
<td>1645</td>
<td>45</td>
<td>47</td>
<td>8</td>
</tr>
<tr>
<td>先進国</td>
<td>811</td>
<td>82</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>世界合計</td>
<td>2455</td>
<td>57</td>
<td>36</td>
<td>7</td>
</tr>
</tbody>
</table>

資料：IIASA “Global Agro-ecological Assessment for Agriculture in the 21st century” 2001

これは、地域ごとの作物ローテーションが考慮されている。例えば、典型的な二毛作地域である中国の上海周辺では、最も生産性が高い夏作物としてコメとトウモロコシが、また冬作物として小麦と大麦が選ばれている。

ヨーロッパ及びロシアでは、多毛作は実際に存在しない。開発途上国全体では、およそ55%の天水農業地域が二毛作あるいは三毛作に適している。中南米では、この割合は80%を超えている。すなわち、65%が二毛作に適しており、17%が3毛作に適している。

今後予想される地球温暖化により、地球の平均気温が上昇し、降雨パターンが変化するとみられ、これらの変化が土地の耕作適地の場所・広がりや生産性を変化させると考えられる。第6表は温度及び降雨量の変化が穀物の生産に適した土地にもたらす変化をシナリオ分析を行ってまとめたものである。
第6表 気温および降雨量の変化により変化する穀物耕地適地面積の程度

(単位: 変化率%)

<table>
<thead>
<tr>
<th></th>
<th>気温の増加</th>
<th>気温の増加及び降雨量の増加</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+1℃</td>
<td>+2℃</td>
</tr>
<tr>
<td>オセアニア</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>アジア</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>アフリカ</td>
<td>-4</td>
<td>-8</td>
</tr>
<tr>
<td>ヨーロッパ・ロシア</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>中央アメリカ</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>南アメリカ</td>
<td>-4</td>
<td>-11</td>
</tr>
<tr>
<td>北アメリカ</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>開発途上国</td>
<td>-1</td>
<td>-6</td>
</tr>
<tr>
<td>先進国</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>世界合計</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

資料：IIASA "Global Agro-ecological Assessment for Agriculture in the 21st century" 2001

この結果によれば、もし気温が上昇しても、降雨量のパターンが変化しなければ、穀物生産に適した土地は減少し始めた地域も生ずる。一方、気温の上昇とともに、降雨量も増加するとすれば、地域によっては穀物の生産に適した土地の増加が始まる。例えば、気温が3度上昇するとともに、降雨量が10%増加する場合、地球全体では穀物耕作適地が4%増加する。先進国では、その増加は25%であり、その急激な増加は注目に値する。一方、開発途上国では、穀物耕作適地が11%減少する。このことは、地球温暖化は、アフリカ、アジア、ラテンアメリカの貧しい開発途上国々に深刻な影響が生ずることを示している。
IV 水資源と農業

1. 世界水フォーラム

「21世紀は水をめぐる争いの世紀となるだろう」という前世界銀行副総裁イスマイル・セラゲディン氏の言葉に象徴されるように、世界各地の水をめぐる問題が取り上げられ、今後2050年には90億人にまで増加すると予想される世界人口を養うための食料、その食料を生産するための水をいかに確保できるかが世界的に大きな懸念となっている。近年、水に関する国際的な関心が高まっている。1992年の水と環境に関する国際会議（ダナン会議）や同年の国連環境開発会議（地球サミット）における議論等を経て、1997年には世界水フォーラムがモロッコにおいて開催された。同フォーラムは、国際社会における水問題の開発に向けた議論を深め、その重要性を広く世界にアピールすることを目的として、その後も議論を重ねている。2003年3月16～23日には、アジアでは初の開催となる第3回世界水フォーラムが日本（滋賀、京都、大阪の琵琶湖流域）において開催され、フォーラム開催中には、世界各国から2万4千人を越える人々の参加による351の分科会が開催された。この成果として、政府やNGOなど様々な関係者の水問題の改善に向けた取組みを広く共有化していくための「世界水行動報告書」が作成された。

また、日本政府主催による関係国際会議は、3月22及び23日の2日間、京都国際会館において170の国・地域と47の国際機関等から130名を越える関係者を含む、約1300人が出席して開催された。この成果は、具体的な行動の実現に向けた参加各国と国際機関の合意による関係宣言として、各国政府や国際機関がそれぞれ提出した水に関する自発的行動である「水行動集(Portfolio of Water Actions)」にとりまとめられた。

2. 水資源の現状

農業用水に関しては、世界の人口が増え続けている状況において食料の安定的な供給をはかっていくために、その確保が不可欠であり、また、貧困層の大半が暮らしていける農村地域の持続的な発展を図るためにもその適切な利用が必要である。（平成14年9月30日農林水産省食料・農業・農村政策審議会農村振興分科会農業農村整備部会平成14年度第4回企画小委員会資料「世界の水資源とわが国の農業用水について」）

地球上の水は、液体、固体、あるいは気体の状態で、大気、地球表面、あるいは2000
メートルに達する地核の中に存在する。この水の総量の推定は、地球上の水の総量は約1兆8千6百立方キロメートルである。地球上に存在する水の大部分（97.5%）が塩分を含む海水であり、淡水の割合は約2.5%である。しかし、この淡水の大部分（68.7%）は、まず南・北極地域等の氷として存在しており、次に、その残りの殆ど（29.9%）が地下水として存在するため、河川水や湖沼水として存在する量は、地球上の淡水の約0.26%である。（Igor A. Shiklomanov, “Appraisal and Assessment of World Water Resources” March 2000）

河川水など、更新が行われる水資源の利用可能量を地域別にまとめたものが第7表である。

第7表 河川水など更新が行われる水資源の利用可能量

<table>
<thead>
<tr>
<th>地域</th>
<th>人口(1995年、百万人)</th>
<th>水資源の平均利用可能推定量(立方キロ／年)</th>
<th>一人当たり利用可能推定量(千立方メートル／年／人)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヨーロッパ</td>
<td>729</td>
<td>2,900</td>
<td>4.0</td>
</tr>
<tr>
<td>北アメリカ</td>
<td>298</td>
<td>7,890</td>
<td>26.5</td>
</tr>
<tr>
<td>アフリカ</td>
<td>703</td>
<td>4,050</td>
<td>5.8</td>
</tr>
<tr>
<td>アジア</td>
<td>3,423</td>
<td>13,510</td>
<td>3.9</td>
</tr>
<tr>
<td>南アメリカ</td>
<td>480</td>
<td>12,030</td>
<td>25.1</td>
</tr>
<tr>
<td>オセアニア</td>
<td>29</td>
<td>2,400</td>
<td>84.2</td>
</tr>
<tr>
<td>世界合計</td>
<td>5,662</td>
<td>42,780</td>
<td>7.6</td>
</tr>
</tbody>
</table>

資料: 1) A.Shiklomanov, “Appraisal and Assessment of World Water Resources”, March 2000

注: 「更新が行われる」とは、常に補充が行われるという意味であり、「更新が行われない水資源」とは、例えば化石帯層水のようなものである。

これによれば、地球上で再生・利用可能な水資源の総量は、年間42,780立方キロメートルである。しかし、降雨量の変動等から、年によって、±15〜25%の変動がある。

地域でみると、再生可能な水資源の総量は、アジアと南アメリカに集中している。しかし、人口一人当たりで見た場合、アジアでは、稠密な人口を反映して、年間一人当たり3千9百立方メートルと、地域別で見たなかの最小になっており、アジアは相対的に水資源が豊富ではないことをうかがわせる。また、ヨーロッパ、アフリカにおいても、一人当たりの水資源は他の地域に比較して少ない。

第8表は世界の再生可能な水資源の一人当たりの推移である。1995年までは実績値であり、2000年以降は予測値である。急速な人口の増加により、地球平均でみた一人当たり水

—13—
資源は1950年の17.0千立方メートルから1995年には7.6立方メートルへと、この期間で半分以下にと減少した。

第8表 世界の一人当たり水資源利用可能量の推移

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ヨーロッパ</td>
<td>5.3</td>
<td>4.8</td>
<td>4.4</td>
<td>4.2</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td>北アメリカ</td>
<td>46.0</td>
<td>38.6</td>
<td>34.0</td>
<td>30.9</td>
<td>27.9</td>
<td>26.5</td>
<td>25.1</td>
<td>23.1</td>
<td>20.6</td>
</tr>
<tr>
<td>アフリカ</td>
<td>18.3</td>
<td>14.6</td>
<td>11.4</td>
<td>8.7</td>
<td>6.5</td>
<td>5.8</td>
<td>5.1</td>
<td>4.1</td>
<td>3.0</td>
</tr>
<tr>
<td>アジア</td>
<td>9.7</td>
<td>7.9</td>
<td>6.3</td>
<td>5.1</td>
<td>4.3</td>
<td>3.9</td>
<td>3.7</td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>中南アメリカ</td>
<td>72.0</td>
<td>55.1</td>
<td>42.2</td>
<td>33.3</td>
<td>27.3</td>
<td>25.1</td>
<td>23.2</td>
<td>20.2</td>
<td>17.3</td>
</tr>
<tr>
<td>オセアニア</td>
<td>190.2</td>
<td>153.0</td>
<td>125.0</td>
<td>106.5</td>
<td>91.2</td>
<td>84.2</td>
<td>78.6</td>
<td>69.7</td>
<td>59.9</td>
</tr>
</tbody>
</table>

世界合計 17.0 | 14.2 | 11.6 | 9.7 | 8.1 | 7.6 | 7.1 | 6.3 | 5.4 |

資料: I.A. Shiklomanov “Appraisal and Assesment of World Water Resources” 2000
UN “World Population Prospect” 2001 edition

地域別に見ると、人口の増加の程度が大きいアジア、アフリカで、一人当たり水資源は急速に減少しており、また、将来も、その量は減少することが見込まれている。

また、この水資源は、年間で季節により大幅に変動することが知られている。地球全体で見て、河川の流量の約45-55%が雨期の季節に発生する。例えば、ヨーロッパでは4月～7月の間に46%が、アジアでは6～10月の間に54%が、アフリカでは9月～12月の間に44%が、南アメリカでは4月～7月の間に45%が、オセアニアでは1月～4月の間に46%が流出する。結局、世界平均では、5月～8月の間に46%の河川の流量が発生する。

世界的再生可能水資源のうち、多くが以下の6主要国に集中している。すなわち、ブラジル、ロシア、カナダ、アメリカ、中国、インドである。世界全体の河川流量のうち、40%以上の源泉がこれらの国にある。

次に、取水量ベースでみた水の使用量を第9表、第10表、第11表で見ると、世界合計の水の使用量は、1950年から1995年にかけて、約2.7倍に増加した。
第9表 世界の地域別水使用量の推移および予測

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ヨーロッパ</td>
<td>136</td>
<td>226</td>
<td>325</td>
<td>448</td>
<td>482</td>
<td>455</td>
<td>463</td>
<td>535</td>
<td>559</td>
</tr>
<tr>
<td>北アメリカ</td>
<td>287</td>
<td>410</td>
<td>555</td>
<td>676</td>
<td>653</td>
<td>686</td>
<td>705</td>
<td>744</td>
<td>796</td>
</tr>
<tr>
<td>アフリカ</td>
<td>56</td>
<td>89</td>
<td>123</td>
<td>166</td>
<td>203</td>
<td>219</td>
<td>235</td>
<td>275</td>
<td>337</td>
</tr>
<tr>
<td>アジア</td>
<td>643</td>
<td>1,163</td>
<td>1,417</td>
<td>1,742</td>
<td>2,114</td>
<td>2,231</td>
<td>2,357</td>
<td>2,628</td>
<td>3,254</td>
</tr>
<tr>
<td>中南アメリカ</td>
<td>48</td>
<td>66</td>
<td>87</td>
<td>117</td>
<td>152</td>
<td>167</td>
<td>182</td>
<td>213</td>
<td>260</td>
</tr>
<tr>
<td>オセアニア</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>24</td>
<td>29</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>世界合計</td>
<td>1,382</td>
<td>2,168</td>
<td>2,527</td>
<td>3,174</td>
<td>3,633</td>
<td>3,788</td>
<td>3,975</td>
<td>4,431</td>
<td>5,236</td>
</tr>
</tbody>
</table>

資料: L.A. Shiklomanov “Appraisal and Assessment of World Water Resources” 2000

第10表 世界の人口の推移および予測

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ヨーロッパ</td>
<td>548</td>
<td>605</td>
<td>657</td>
<td>693</td>
<td>722</td>
<td>729</td>
<td>727</td>
<td>713</td>
<td>684</td>
</tr>
<tr>
<td>北アメリカ</td>
<td>172</td>
<td>204</td>
<td>232</td>
<td>255</td>
<td>283</td>
<td>298</td>
<td>314</td>
<td>342</td>
<td>394</td>
</tr>
<tr>
<td>アフリカ</td>
<td>221</td>
<td>277</td>
<td>352</td>
<td>467</td>
<td>619</td>
<td>703</td>
<td>794</td>
<td>997</td>
<td>1,359</td>
</tr>
<tr>
<td>アジア</td>
<td>1,289</td>
<td>1,706</td>
<td>2,142</td>
<td>2,531</td>
<td>3,164</td>
<td>3,423</td>
<td>3,722</td>
<td>4,145</td>
<td>4,777</td>
</tr>
<tr>
<td>中南アメリカ</td>
<td>167</td>
<td>218</td>
<td>265</td>
<td>361</td>
<td>440</td>
<td>480</td>
<td>519</td>
<td>584</td>
<td>685</td>
</tr>
<tr>
<td>オセアニア</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>23</td>
<td>26</td>
<td>29</td>
<td>31</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>世界合計</td>
<td>2,518</td>
<td>3,020</td>
<td>3,691</td>
<td>4,430</td>
<td>5,255</td>
<td>5,862</td>
<td>6,057</td>
<td>6,826</td>
<td>7,937</td>
</tr>
</tbody>
</table>

第11表 世界の地域別一人当たり水使用量の推移および予測

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ヨーロッパ</td>
<td>248</td>
<td>374</td>
<td>495</td>
<td>648</td>
<td>668</td>
<td>624</td>
<td>637</td>
<td>750</td>
<td>817</td>
</tr>
<tr>
<td>北アメリカ</td>
<td>1,669</td>
<td>2,010</td>
<td>2,392</td>
<td>2,651</td>
<td>2,307</td>
<td>2,302</td>
<td>2,245</td>
<td>2,175</td>
<td>2,047</td>
</tr>
<tr>
<td>アフリカ</td>
<td>252</td>
<td>322</td>
<td>346</td>
<td>355</td>
<td>328</td>
<td>312</td>
<td>296</td>
<td>276</td>
<td>248</td>
</tr>
<tr>
<td>アジア</td>
<td>603</td>
<td>684</td>
<td>662</td>
<td>662</td>
<td>668</td>
<td>652</td>
<td>642</td>
<td>634</td>
<td>681</td>
</tr>
<tr>
<td>中南アメリカ</td>
<td>285</td>
<td>301</td>
<td>305</td>
<td>324</td>
<td>345</td>
<td>348</td>
<td>351</td>
<td>359</td>
<td>374</td>
</tr>
<tr>
<td>オセアニア</td>
<td>800</td>
<td>908</td>
<td>1,047</td>
<td>1,022</td>
<td>1,096</td>
<td>1,048</td>
<td>1,048</td>
<td>1,060</td>
<td>988</td>
</tr>
<tr>
<td>世界合計</td>
<td>548</td>
<td>652</td>
<td>685</td>
<td>716</td>
<td>691</td>
<td>663</td>
<td>656</td>
<td>648</td>
<td>660</td>
</tr>
</tbody>
</table>

注: 表9.10より地域別一人当たり水使用量を計算し作成。

今後も水の使用量は着実に増加し、2025年には1995年の38%増が想定されている。ただし、人口の増加を考慮に入れられた一人当たりの水使用量は、急激な人口増加を反映して、1950年から95年にかけて、22%の増加にとどまっている。一人当たりの水使用量は、1980年に716立方キロと、最高値を記録した後、減少に転じている。2025年へ向けた将来
予測をみても、全体の水使用量の増加傾向は続くものの、一人当たり水使用量はやや減少の傾向が続くものと予想される。また、世界の水使用量の60％近くはアジアで使用されているが、一人当たり水使用量を見ると、北アメリカの使用量が最も多い。第12表は世界的水使用量の推移および予測を経済活動別にみたものである。

第12表 世界の経済活動別水使用量の推移および予測

(単位：立方キロメートル／年)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>農業用</td>
<td>513</td>
<td>885</td>
<td>1060</td>
<td>1481</td>
<td>1743</td>
<td>2112</td>
<td>2425</td>
<td>2504</td>
<td>2605</td>
<td>2817</td>
<td>3189</td>
</tr>
<tr>
<td>生活用</td>
<td>21.5</td>
<td>58.9</td>
<td>86.7</td>
<td>118</td>
<td>160</td>
<td>219</td>
<td>305</td>
<td>344</td>
<td>384</td>
<td>472</td>
<td>607</td>
</tr>
<tr>
<td>工業用</td>
<td>43.7</td>
<td>127</td>
<td>204</td>
<td>339</td>
<td>547</td>
<td>713</td>
<td>735</td>
<td>752</td>
<td>776</td>
<td>906</td>
<td>1170</td>
</tr>
<tr>
<td>貯水用</td>
<td>0.3</td>
<td>7.1</td>
<td>11.1</td>
<td>30.2</td>
<td>76.1</td>
<td>131</td>
<td>167</td>
<td>188</td>
<td>208</td>
<td>235</td>
<td>269</td>
</tr>
<tr>
<td>合計</td>
<td>579</td>
<td>1068</td>
<td>1382</td>
<td>1868</td>
<td>2526</td>
<td>3175</td>
<td>3632</td>
<td>3788</td>
<td>3973</td>
<td>4342</td>
<td>5235</td>
</tr>
</tbody>
</table>

資料：I.A Shiklomanov “Appraisal and Assesment of World Water Resources” 2000

農業用水使用量が最も多く、続いて工業用、生活用、貯水用の順になっている。いずれの用途も増加傾向にあり、今後もその傾向が続くことが予想されている。第13表は水使用量をシエアにして示したものである。

第13表 世界の経済活動別水使用量の推移および予測（シエア）

(単位：%)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>農業用</td>
<td>89</td>
<td>82</td>
<td>78</td>
<td>75</td>
<td>69</td>
<td>67</td>
<td>67</td>
<td>66</td>
<td>66</td>
<td>64</td>
<td>61</td>
</tr>
<tr>
<td>生活用</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>工業用</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>22</td>
<td>22</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>貯水用</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>合計</td>
<td>100</td>
</tr>
</tbody>
</table>

資料：I.A Shiklomanov “Appraisal and Assesment of World Water Resources” 2000

これによれば、最大の用途である農業用の水使用量のシエアは、1940年以来減少傾向にあり、今後も減少することが見込まれる。一方、家庭用水など生活用の水使用量の割合は増加傾向にあり、人口の増加等を反映して、今後もそのシエアは徐々に増加することが見
込まれている。工業用および貯水用のシェアは増加傾向にあったが、将来はそのシェアは安定的に推移するものと見込まれる。

農業用の水の使用の主な用途として考えられるかんがいに関し、参考として第14表に世界のかんがい農地面積の推移およびその予測を示す。

第14表 かんがい農地面積の推移および予測

(単位:百万ヘクタール)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>世界のかんがい農地面積</td>
<td>47.3</td>
<td>75.9</td>
<td>101</td>
<td>142</td>
<td>169</td>
<td>198</td>
<td>243</td>
<td>253</td>
<td>264</td>
<td>288</td>
<td>329</td>
</tr>
</tbody>
</table>

資料: I.A. Shiklanov “Appraisal and Assessment of World Water Resources” 2000

これによれば、世界のかんがい農地は、1995年実績で2億5300万ヘクタールである。2010年には2億8800万ヘクタール、2025年には3億2900万ヘクタールに増加することが予測されている。しかし、このような傾向なかんがい農地面積の増加が続くかどうかは、世界各地域の経済・財政動向等の人為的要因および気象動向等の自然的要因により、予断を許さないものと考えられる。

第2図は、世界各地域における水資源利用可能量に占める水資源利用量の割合を示したものですので、利用可能な資源のうちそのどのくらいの割合を利用しているのかを示している。
この図を地域の平均でみれば、ヨーロッパ、北アメリカ、アフリカ、アジア、南アメリカ、オセアニアの世界の各地域ともに、利用可能な資源の20%以下を使用しているに過ぎず、将来もその割合が大幅に増加することはないとみられる。しかし、各地域を細かく見ていくと、例えば北アフリカにみられるように、1995年において利用可能な水资源のほとんどを使用しており、2025年の水の使用量が利用可能な水资源を超過する、きわめて水资源の逼迫した地域が存在する。他にも、北中国、南アジア、西アジアにおいて、今後、水资源が逼迫することが見込まれる。

このような水资源の逼迫が地球上のどの程度の人口に影響を与えているかをまとめたものが第15表である。
第15表 利用可能な水量の現状および予測

<table>
<thead>
<tr>
<th>状態</th>
<th>供給量（立方m/人）</th>
<th>1995年人口 (100万人)</th>
<th>%</th>
<th>2025年人口 (100万人)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>逼迫</td>
<td><500</td>
<td>1,077</td>
<td>19</td>
<td>1,783</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>500-1,000</td>
<td>587</td>
<td>10</td>
<td>624</td>
<td>9</td>
</tr>
<tr>
<td>不足</td>
<td>1,000-1,700</td>
<td>689</td>
<td>12</td>
<td>1,077</td>
<td>15</td>
</tr>
<tr>
<td>十分</td>
<td>>1,700</td>
<td>3,091</td>
<td>55</td>
<td>3,494</td>
<td>48</td>
</tr>
<tr>
<td>利用不可</td>
<td></td>
<td>241</td>
<td>4</td>
<td>296</td>
<td>4</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>5,665</td>
<td>100</td>
<td>7,274</td>
<td>100</td>
</tr>
</tbody>
</table>

資料: World Resource Institute, "World Resources 2000-2001"

この表は、WRI（World Resource Institute = 世界資源研究所）が、1日当たりの水供給量と人口の対比を1995年時点で現状把握として行うとともに、2025年の1日当たりの水供給量と人口との関係を予測したものである。

これによれば、1人1日当たりの水供給量が1000立方メートル以下の場合は、水供給量は逼迫、1700立方メートル以下の場合は、水供給量は不足と定義している。この定義に基づけば、1995年時点で、水供給量が1700立方メートル以下の水不足の下で生活する人々の合計は23億5000万人で、地球人口全体の41%を占めているとみられるが、このような水不足人口は今後増加し、2025年には地球の全人口のおよそ半分、49%の34億8000万人に達すると見込まれている。ほぼすべての大陸で河川の改変が行われた結果、水の自然な流れに影響をきたし、乾季になると流れの多くは海に注ぎ込む前に干上がってしまうようになった。たとえばコロラド川、黄河、インダス川、ガンジス川、ナイール川、シルダリア川、アムダリア川がそうである（世界資源研究所、「世界の資源 2000-2001」）。

地下水については、第16表の世界気象機関の資料によるように、世界の水使用量のうち、全体の19%、農業用の20%は地下水によってまかなわれていると推定されている。

—19—
表16 世界の取水源別水使用の用途別割合（1995年）

<table>
<thead>
<tr>
<th></th>
<th>取水量（立方キロ／年）</th>
<th>表流水・地下水別の割合（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>表流水</td>
<td>地下水</td>
</tr>
<tr>
<td>生活用水</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>農業用水</td>
<td>1940</td>
<td>480</td>
</tr>
<tr>
<td>工業用水</td>
<td>220</td>
<td>30</td>
</tr>
<tr>
<td>発電</td>
<td>450</td>
<td>0</td>
</tr>
<tr>
<td>訂水</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>合計</td>
<td>2830</td>
<td>670</td>
</tr>
</tbody>
</table>

資料: 世界気象機関（I.A. Shiklomanov, Assessment of Water Resources and Water Availability in the world), 1996

現在、世界各地で、帯水層への年間の地下水かん養量に対し、使用量（揚水量）の多い例もみられ、地下水位の低下等の影響が懸念されている。

国際水管理研究所の推計によれば、世界の大西洋に流れ込む年間3万3000立方キロメートル（Postel,1999）の表流水のうち、8%が地下水のかん養に回っているとすると、2640立方キロメートルの地下水が毎年再生されていると考えられるが、この量は、第16表にある地下水の年間使用量670立方キロメートルの約4倍となり、数字の上では、十分な供給があるように見受けられる。また、FAOのAQUASTATによれば、中国は再生可能な地下水源の9%、インドは約3分の1を使用しているにすぎないが、これらの国における地下水位の低下は数字でみるよりはるかに深刻な様相を呈している。これらの原因は、地下水資源および需要者である住民や農民の地域的偏在によるものである。中国の例をとると、中国南部では、中国全体の68%の地下水源に対し、54%の人口、36%の農地を有しているが、一方、中国北部では、中国全体の31%の地下水源に対し、46%の人口と64%の農地を有しており、このような地下水源に対する農地の偏在が中国北部のかんがい農業による地下水資源の過剰使用を招いている（Kramer and Zhu 1988, Lunzhang 1994）。

第17表は、ワールドオッティチェ研究所が農業、特にかんがい農業との関連を念頭においてとりまとめた世界の地下水の過剰使用の例である。
第17表 世界各地域の地下水の過剰使用の例

<table>
<thead>
<tr>
<th>国</th>
<th>地域</th>
<th>地下水の過剰使用の様相</th>
</tr>
</thead>
<tbody>
<tr>
<td>中国</td>
<td>華北平原</td>
<td>平原の大部分において、年間地下水位が2～3mずつ低下。汲み上げ費用の増加の結果、農民はかんがい農業を放棄しつつある。</td>
</tr>
<tr>
<td>アメリカ</td>
<td>南部大平原</td>
<td>かんがいは化石帯水層であるオガララ帯水層に関して。テキサス、カンサス、オクラホマのかんがい農地は、水源の枯渇により縮小傾向。</td>
</tr>
<tr>
<td>パキスタン</td>
<td>Punjab 地域</td>
<td>パルチスタン地方及び北西国境付近において、地下水位が低下。</td>
</tr>
<tr>
<td>インド</td>
<td>Punjab, Harvana, Rajasthan, Andhra Pradesh, Maharashtra, Tamil Nadu, その他地域</td>
<td>地下水位が場所により毎年1～3mずつ低下。いくつかの州では揚水量がかん養量の2倍に達する。インドの穀倉地域であるPunjab地方の地下水位は年間およそ1mずつ低下。</td>
</tr>
<tr>
<td>イラン</td>
<td>Chenaran平野、北東イラン</td>
<td>地下水位は年間2.8mずつ低下。さらに2001年の干ばつにより新しい井戸を掘った結果、Mashad市の近くの地下水位は8mの低下。</td>
</tr>
<tr>
<td>イエメン</td>
<td>全土</td>
<td>全土で地下水位は毎年2mずつ低下。首都のあるサヌア盆地では毎年6mずつ低下。首都サヌアでは、2010年頃には地下水が枯渇すると予測されている。</td>
</tr>
<tr>
<td>メキシコ</td>
<td>Guajuayato州</td>
<td>同州は農業地域であるが、地下水位は毎年1.8～3.3mずつ低下。</td>
</tr>
</tbody>
</table>

資料：ワールドウオッチ研究所 2002年8月9日発表「世界の多くの国に広がる水不足」
http://www.greatlakesdirectory.org/zarticles/080902_water_shortages.htm
特に、中国については、同研究所の2001年1月の報告によれば、中国の小麦の半分以上とトウモロコシの３分の１を算出する華北平原において、北京の地質環境監視研究所が行った調査によると、華北平原の中心である河北省では2000年に、深層の地下水の平均水位が2.9メートル低下し、また同省のいくつかの都市の周辺では、6メートルも低下した。1996年末の時点で河北平原の5つの地域－河北省、河南省、山東省、それに北京市と天津市の周辺には360万本の井戸があり、その大部分がかんがい用だった。

帯水層が枯渇しつつあるいま、中国は水の需給バランスを回復するための方法を再考している。なかでも有力なのが、水利用効率の改善、南から北への導水、穀物輸入という3つの案であるという。

V. おわりに（世界食料需給モデル開発との関係）

これまで、世界の食料需給を見通す上での資源・環境の制約要因として、「土壌」および「水」に注目し、世界の現状の概要をまとめてみた。

資源・環境の制約要因としての「土壌」および「水」には、土壌劣化・砂漠化や水資源の枯渇の可能性という点で、今後の世界の食料需給に対する不安定要因が存在する。しかし、これらの制約要因は、資源・環境それ自体から内在的に発するものであるというよりも、むしろ、現在急速な勢いで増加し、2050年には93億人と、現在より30億人あまり増加する世界の人口増加が、地球の有限な資源・環境に対して大きな負荷をかけていくことから発生するものである可能性が強い。したがって、資源・環境の制約要因とは、有限である地球資源・環境を、今後増加する世界人口がどのように利用していくかという、「人口＝資源・環境問題」とも言い替えても可能である。

また、現在FAOをはじめとする多くの国連機関や国際機関が資源・環境問題に取り組んでいるが、その成果を総合的に世界食料需給モデルに結びつけることは、方法論的には現段階では極めて限られた分野以外には、実施が極めて困難であるといわざるを得ない。その理由は、資源・環境問題に対する分析は進展しているものの、世界各国を横断的に網羅するような時系列でのデータベースなど、計量経済モデルを組み立てる上で必要不可欠な要素が、この分野で殆ど整備されていないことによる。

また、土地や水問題を分析する切り口は、水系であるとか、地方であるとか、必ずしも人間が人为的に引いた国境による区分に併せて行うという方法論にとらわれない場合が多い。この事は、国別の構成にする必要がある経済モデルの構築とはかみあわなくなるとい
う問題を招来する。
現在のところ、唯一、世界食料需給モデルを構築する際のデータベースに使用が可能と思われるのは、FAOSTAT中の世界各国別のかんがい農地面積である。それ以外には、国別のモジュールの統合によって完成される部分均衡世界食料需給モデルの構築に適した土地・水資源に関するデータベースを見つけることはできなかった。
さらに、今後、仮に、各種データベースの整備が進展したとしても、これらのデータベースをモデルにどのように組み込んでいくのかという方法論上の問題が存在する。将来、どのようなデータベースが整備され、それらを元に、どのようなメカニズムを通じ世界の食料需給を予測する際の方程式に反映されるのかについての方法論の開発については、多くの問題が残っており、今後の課題であるといえる。

[参考文献]
[1] 名古屋大学出版会「土壌圏と地球環境問題」（木村真人編、1997）
http://www.unep.net/des/
http://www.iiasa.ac.at/docs/HOTP/May02/gaez2002.pdf
[7] 2002 年 7 月 18 日東京大学生産技術研究所記者会見「世界の水危機、日本の水問題」

— 23 —

http://www.maff.go.jp/nouson/keikaku/kikaku_syojinkai/mizusigen/mizusigen.htm